diff options
92 files changed, 26699 insertions, 1733 deletions
diff --git a/gr-vocoder/examples/codec2_audio_loopback.py b/gr-vocoder/examples/codec2_audio_loopback.py index bf95f39ce9..b63d508025 100755 --- a/gr-vocoder/examples/codec2_audio_loopback.py +++ b/gr-vocoder/examples/codec2_audio_loopback.py @@ -24,14 +24,15 @@ from gnuradio import gr from gnuradio import audio from gnuradio import blocks from gnuradio import vocoder +from gnuradio.vocoder import codec2 def build_graph(): tb = gr.top_block() src = audio.source(8000) src_scale = blocks.multiply_const_ff(32767) f2s = blocks.float_to_short() - enc = vocoder.codec2_encode_sp() - dec = vocoder.codec2_decode_ps() + enc = vocoder.codec2_encode_sp(codec2.MODE_2400) + dec = vocoder.codec2_decode_ps(codec2.MODE_2400) s2f = blocks.short_to_float() sink_scale = blocks.multiply_const_ff(1.0/32767.) sink = audio.sink(8000) diff --git a/gr-vocoder/grc/vocoder_codec2_decode_ps.xml b/gr-vocoder/grc/vocoder_codec2_decode_ps.xml index 8b5f348671..b6e10ef8ba 100644 --- a/gr-vocoder/grc/vocoder_codec2_decode_ps.xml +++ b/gr-vocoder/grc/vocoder_codec2_decode_ps.xml @@ -8,11 +8,42 @@ <name>CODEC2 Audio Decoder</name> <key>vocoder_codec2_decode_ps</key> <import>from gnuradio import vocoder</import> - <make>vocoder.codec2_decode_ps()</make> + <import>from gnuradio.vocoder import codec2</import> + <make>vocoder.codec2_decode_ps($mode)</make> + <param> + <name>Bit rate</name> + <key>mode</key> + <value>codec2.MODE_2400</value> + <type>int</type> + <option> + <name>3200 bps</name> + <key>codec2.MODE_3200</key> + </option> + <option> + <name>2400 bps</name> + <key>codec2.MODE_2400</key> + </option> + <option> + <name>1600 bps</name> + <key>codec2.MODE_1600</key> + </option> + <option> + <name>1400 bps</name> + <key>codec2.MODE_1400</key> + </option> + <option> + <name>1300 bps</name> + <key>codec2.MODE_1300</key> + </option> + <option> + <name>1200 bps</name> + <key>codec2.MODE_1200</key> + </option> + </param> <sink> <name>in</name> <type>byte</type> - <vlen>50</vlen> + <vlen>{ 0: 64, 1: 48, 2: 64, 3: 56, 4: 52, 5: 48 }[$mode]</vlen> </sink> <source> <name>out</name> diff --git a/gr-vocoder/grc/vocoder_codec2_encode_sp.xml b/gr-vocoder/grc/vocoder_codec2_encode_sp.xml index 0fb0ecc2ff..6af54fa586 100644 --- a/gr-vocoder/grc/vocoder_codec2_encode_sp.xml +++ b/gr-vocoder/grc/vocoder_codec2_encode_sp.xml @@ -8,7 +8,38 @@ <name>CODEC2 Audio Encoder</name> <key>vocoder_codec2_encode_sp</key> <import>from gnuradio import vocoder</import> - <make>vocoder.codec2_encode_sp()</make> + <import>from gnuradio.vocoder import codec2</import> + <make>vocoder.codec2_encode_sp($mode)</make> + <param> + <name>Bit rate</name> + <key>mode</key> + <value>codec2.MODE_2400</value> + <type>int</type> + <option> + <name>3200 bps</name> + <key>codec2.MODE_3200</key> + </option> + <option> + <name>2400 bps</name> + <key>codec2.MODE_2400</key> + </option> + <option> + <name>1600 bps</name> + <key>codec2.MODE_1600</key> + </option> + <option> + <name>1400 bps</name> + <key>codec2.MODE_1400</key> + </option> + <option> + <name>1300 bps</name> + <key>codec2.MODE_1300</key> + </option> + <option> + <name>1200 bps</name> + <key>codec2.MODE_1200</key> + </option> + </param> <sink> <name>in</name> <type>short</type> @@ -16,7 +47,7 @@ <source> <name>out</name> <type>byte</type> - <vlen>50</vlen> + <vlen>{ 0: 64, 1: 48, 2: 64, 3: 56, 4: 52, 5: 48 }[$mode]</vlen> </source> </block> diff --git a/gr-vocoder/include/gnuradio/vocoder/CMakeLists.txt b/gr-vocoder/include/gnuradio/vocoder/CMakeLists.txt index ea0562f36f..1ad2f711fc 100644 --- a/gr-vocoder/include/gnuradio/vocoder/CMakeLists.txt +++ b/gr-vocoder/include/gnuradio/vocoder/CMakeLists.txt @@ -24,6 +24,7 @@ install(FILES api.h alaw_decode_bs.h alaw_encode_sb.h + codec2.h codec2_decode_ps.h codec2_encode_sp.h cvsd_decode_bs.h diff --git a/gr-vocoder/include/gnuradio/vocoder/codec2.h b/gr-vocoder/include/gnuradio/vocoder/codec2.h new file mode 100644 index 0000000000..ca09e4dfc0 --- /dev/null +++ b/gr-vocoder/include/gnuradio/vocoder/codec2.h @@ -0,0 +1,54 @@ +/* -*- c++ -*- */ +/* + * Copyright 2014 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#ifndef _VOCODER_CODEC2_H_ +#define _VOCODER_CODEC2_H_ + +#include <gnuradio/vocoder/api.h> + +extern "C" { +#include "../lib/codec2/codec2.h" +} + +namespace gr { + namespace vocoder { + + class VOCODER_API codec2 { + public: + + enum bit_rate { + MODE_3200 = CODEC2_MODE_3200, + MODE_2400 = CODEC2_MODE_2400, + MODE_1600 = CODEC2_MODE_1600, + MODE_1400 = CODEC2_MODE_1400, + MODE_1300 = CODEC2_MODE_1300, + MODE_1200 = CODEC2_MODE_1200, + }; + + private: + + }; + + } /* namespace vocoder */ +} /* namespace gr */ + +#endif /* _VOCODER_CODEC2_H_ */ diff --git a/gr-vocoder/include/gnuradio/vocoder/codec2_decode_ps.h b/gr-vocoder/include/gnuradio/vocoder/codec2_decode_ps.h index 041877174b..49add0f9ee 100644 --- a/gr-vocoder/include/gnuradio/vocoder/codec2_decode_ps.h +++ b/gr-vocoder/include/gnuradio/vocoder/codec2_decode_ps.h @@ -24,6 +24,7 @@ #define INCLUDED_VOCODER_CODEC2_DECODE_PS_H #include <gnuradio/vocoder/api.h> +#include <gnuradio/vocoder/codec2.h> #include <gnuradio/sync_interpolator.h> namespace gr { @@ -33,7 +34,7 @@ namespace gr { * \brief CODEC2 Vocoder Decoder * \ingroup audio_blk * - * Input: A vector of 50 unpacked bits forming a Codec2 frame. + * Input: A vector of unpacked bits forming a Codec2 frame. * * Output: 16-bit short values of an audio signal with sampling rate 8 kHz. * @@ -47,8 +48,10 @@ namespace gr { /*! * \brief Make Codec2 decoder block. + * + * \param mode Encoded bit rate/mode */ - static sptr make(); + static sptr make(int mode=codec2::MODE_2400); }; } /* namespace vocoder */ diff --git a/gr-vocoder/include/gnuradio/vocoder/codec2_encode_sp.h b/gr-vocoder/include/gnuradio/vocoder/codec2_encode_sp.h index 12b91b0428..b9b3283dba 100644 --- a/gr-vocoder/include/gnuradio/vocoder/codec2_encode_sp.h +++ b/gr-vocoder/include/gnuradio/vocoder/codec2_encode_sp.h @@ -24,6 +24,7 @@ #define INCLUDED_VOCODER_CODEC2_ENCODE_SP_H #include <gnuradio/vocoder/api.h> +#include <gnuradio/vocoder/codec2.h> #include <gnuradio/sync_decimator.h> namespace gr { @@ -35,13 +36,7 @@ namespace gr { * * Input: Speech (audio) signal as 16-bit shorts, sampling rate 8 kHz. * - * Output: Vector of 50 unpacked bits, forming one Codec2 frame, per 160 input samples. - * - * Note that the Codec2 library produces 7 bytes with a total of 50 bits - * per frame. The bits are MSB-first on these 7 bytes, so the first item - * of the output vector is the MSB of the first byte of the frame. - * If this block is combined with the gr::vocoder::codec2_decode_ps block, - * this will work out of the box. + * Output: Vector of unpacked bits, forming one Codec2 frame, per 160 input samples. * */ class VOCODER_API codec2_encode_sp : virtual public sync_decimator @@ -52,8 +47,10 @@ namespace gr { /*! * \brief Make Codec2 encoder block. + * + * \param mode Encoded bit rate/mode */ - static sptr make(); + static sptr make(int mode=codec2::MODE_2400); }; } /* namespace vocoder */ diff --git a/gr-vocoder/lib/CMakeLists.txt b/gr-vocoder/lib/CMakeLists.txt index 67271ee903..e11b143c51 100644 --- a/gr-vocoder/lib/CMakeLists.txt +++ b/gr-vocoder/lib/CMakeLists.txt @@ -100,6 +100,7 @@ link_directories(${LOG4CPP_LIBRARY_DIRS}) list(APPEND gr_vocoder_sources alaw_decode_bs_impl.cc alaw_encode_sb_impl.cc + codec2.cc codec2_decode_ps_impl.cc codec2_encode_sp_impl.cc cvsd_decode_bs_impl.cc diff --git a/gr-vocoder/lib/codec2.cc b/gr-vocoder/lib/codec2.cc new file mode 100644 index 0000000000..6d0ef61352 --- /dev/null +++ b/gr-vocoder/lib/codec2.cc @@ -0,0 +1,33 @@ +/* -*- c++ -*- */ +/* + * Copyright 2002,2007,2008,2012,2013 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +#include <gnuradio/vocoder/codec2.h> + +namespace gr { + namespace vocoder { + + } /* namespace vocoder */ +} /* namespace gr */ diff --git a/gr-vocoder/lib/codec2/CMakeLists.txt b/gr-vocoder/lib/codec2/CMakeLists.txt index f4ccd22401..ac25b7cce7 100644 --- a/gr-vocoder/lib/codec2/CMakeLists.txt +++ b/gr-vocoder/lib/codec2/CMakeLists.txt @@ -73,20 +73,101 @@ add_custom_command( ) ######################################################################## -# Create codebookdvq +# Create codebookvq ######################################################################## -set(CODEBOOKSDVQ - ${CMAKE_CURRENT_SOURCE_DIR}/codebook/dlsp1.txt - ${CMAKE_CURRENT_SOURCE_DIR}/codebook/dlsp2.txt - ${CMAKE_CURRENT_SOURCE_DIR}/codebook/dlsp3.txt - ${CMAKE_CURRENT_SOURCE_DIR}/codebook/dlsp4.txt - ${CMAKE_CURRENT_SOURCE_DIR}/codebook/dlsp5.txt +set(CODEBOOKSVQ + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp1.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp2.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp3.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp4.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp45678910.txt +) + +add_custom_command( + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookvq.c + DEPENDS generate_codebook ${CODEBOOKSVQ} + COMMAND generate_codebook lsp_cbvq ${CODEBOOKSVQ} > ${CMAKE_CURRENT_BINARY_DIR}/codebookvq.c +) + +######################################################################## +# Create codebookjnd +######################################################################## +set(CODEBOOKSJND + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp1.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp2.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp3.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lsp4.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspjnd5-10.txt +) + +add_custom_command( + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookjnd.c + DEPENDS generate_codebook ${CODEBOOKSJND} + COMMAND generate_codebook lsp_cbjnd ${CODEBOOKSJND} > ${CMAKE_CURRENT_BINARY_DIR}/codebookjnd.c +) + +######################################################################## +# Create codebookjvm +######################################################################## +set(CODEBOOKSJVM + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspjvm1.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspjvm2.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspjvm3.txt +) + +add_custom_command( + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookjvm.c + DEPENDS generate_codebook ${CODEBOOKSJVM} + COMMAND generate_codebook lsp_cbjvm ${CODEBOOKSJVM} > ${CMAKE_CURRENT_BINARY_DIR}/codebookjvm.c +) + +######################################################################## +# Create codebookvqanssi +######################################################################## +set(CODEBOOKSVQANSSI + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspvqanssi1.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspvqanssi2.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspvqanssi3.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspvqanssi4.txt +) + +add_custom_command( + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookvqanssi.c + DEPENDS generate_codebook ${CODEBOOKSVQANSSI} + COMMAND generate_codebook lsp_cbvqanssi ${CODEBOOKSVQANSSI} > ${CMAKE_CURRENT_BINARY_DIR}/codebookvqanssi.c +) + +######################################################################## +# Create codebookdt +######################################################################## +set(CODEBOOKSDT + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt1.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt2.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt3.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt4.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt5.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt6.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt7.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt8.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt9.txt + ${CMAKE_CURRENT_SOURCE_DIR}/codebook/lspdt10.txt +) + +add_custom_command( + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookdt.c + DEPENDS generate_codebook ${CODEBOOKSDT} + COMMAND generate_codebook lsp_cbdt ${CODEBOOKSDT} > ${CMAKE_CURRENT_BINARY_DIR}/codebookdt.c ) +######################################################################## +# Create codebookge +######################################################################## +set(CODEBOOKSGE ${CMAKE_CURRENT_SOURCE_DIR}/codebook/gecb.txt) + add_custom_command( - OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookdvq.c - DEPENDS generate_codebook ${CODEBOOKSDVQ} - COMMAND generate_codebook lsp_cbdvq ${CODEBOOKSDVQ} > ${CMAKE_CURRENT_BINARY_DIR}/codebookdvq.c + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/codebookge.c + DEPENDS generate_codebook ${CODEBOOKSGE} + COMMAND generate_codebook ge_cb ${CODEBOOKSGE} > ${CMAKE_CURRENT_BINARY_DIR}/codebookge.c ) ######################################################################## @@ -95,7 +176,13 @@ add_custom_command( list(APPEND gr_vocoder_sources ${CMAKE_CURRENT_BINARY_DIR}/codebook.c ${CMAKE_CURRENT_BINARY_DIR}/codebookd.c - ${CMAKE_CURRENT_BINARY_DIR}/codebookdvq.c + ${CMAKE_CURRENT_BINARY_DIR}/codebookvq.c + ${CMAKE_CURRENT_BINARY_DIR}/codebookjnd.c + ${CMAKE_CURRENT_BINARY_DIR}/codebookjvm.c + ${CMAKE_CURRENT_BINARY_DIR}/codebookvqanssi.c + ${CMAKE_CURRENT_BINARY_DIR}/codebookdt.c + ${CMAKE_CURRENT_BINARY_DIR}/codebookge.c + ${CMAKE_CURRENT_SOURCE_DIR}/dump.c ${CMAKE_CURRENT_SOURCE_DIR}/lpc.c @@ -103,7 +190,8 @@ list(APPEND gr_vocoder_sources ${CMAKE_CURRENT_SOURCE_DIR}/postfilter.c ${CMAKE_CURRENT_SOURCE_DIR}/sine.c ${CMAKE_CURRENT_SOURCE_DIR}/codec2.c - ${CMAKE_CURRENT_SOURCE_DIR}/fft.c + ${CMAKE_CURRENT_SOURCE_DIR}/fifo.c + ${CMAKE_CURRENT_SOURCE_DIR}/fdmdv.c ${CMAKE_CURRENT_SOURCE_DIR}/kiss_fft.c ${CMAKE_CURRENT_SOURCE_DIR}/interp.c ${CMAKE_CURRENT_SOURCE_DIR}/lsp.c diff --git a/gr-vocoder/lib/codec2/ampexp.c b/gr-vocoder/lib/codec2/ampexp.c new file mode 100644 index 0000000000..ccec6dce8e --- /dev/null +++ b/gr-vocoder/lib/codec2/ampexp.c @@ -0,0 +1,1093 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: ampexp.c + AUTHOR......: David Rowe + DATE CREATED: 7 August 2012 + + Functions for experimenting with amplitude quantisation. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not,see <http://www.gnu.org/licenses/>. +*/ + + +#include <assert.h> +#include <ctype.h> +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#include "ampexp.h" + + +#define PRED_COEFF 0.9 + +/* states for amplitude experiments */ + +struct codebook { + unsigned int k; + unsigned int log2m; + unsigned int m; + float *cb; + unsigned int offset; +}; + +struct AEXP { + float A_prev[MAX_AMP]; + int frames; + float snr; + int snr_n; + float var; + int var_n; + float vq_var; + int vq_var_n; + struct codebook *vq1,*vq2,*vq3,*vq4,*vq5; + + int indexes[5][3]; + MODEL model[3]; + float mag[3]; + MODEL model_uq[3]; +}; + + +/*---------------------------------------------------------------------------*\ + + Bruce Perens' funcs to load codebook files + +\*---------------------------------------------------------------------------*/ + + +static const char format[] = +"The table format must be:\n" +"\tTwo integers describing the dimensions of the codebook.\n" +"\tThen, enough numbers to fill the specified dimensions.\n"; + +static float get_float(FILE * in, const char * name, char * * cursor, char * buffer, int size) +{ + for ( ; ; ) { + char * s = *cursor; + char c; + + while ( (c = *s) != '\0' && !isdigit(c) && c != '-' && c != '.' ) + s++; + + /* Comments start with "#" and continue to the end of the line. */ + if ( c != '\0' && c != '#' ) { + char * end = 0; + float f = 0; + + f = strtod(s, &end); + + if ( end != s ) + *cursor = end; + return f; + } + + if ( fgets(buffer, size, in) == NULL ) { + fprintf(stderr, "%s: Format error. %s\n", name, format); + exit(1); + } + *cursor = buffer; + } +} + +static struct codebook *load(const char * name) +{ + FILE *file; + char line[2048]; + char *cursor = line; + struct codebook *b = malloc(sizeof(struct codebook)); + int i; + int size; + + file = fopen(name, "rt"); + assert(file != NULL); + + *cursor = '\0'; + + b->k = (int)get_float(file, name, &cursor, line, sizeof(line)); + b->m = (int)get_float(file, name ,&cursor, line, sizeof(line)); + size = b->k * b->m; + + b->cb = (float *)malloc(size * sizeof(float)); + + for ( i = 0; i < size; i++ ) { + b->cb[i] = get_float(file, name, &cursor, line, sizeof(line)); + } + + fclose(file); + + return b; +} + + +/*---------------------------------------------------------------------------* \ + + amp_experiment_create() + + Inits states for amplitude quantisation experiments. + +\*---------------------------------------------------------------------------*/ + +struct AEXP *amp_experiment_create() { + struct AEXP *aexp; + int i,j,m; + + aexp = (struct AEXP *)malloc(sizeof(struct AEXP)); + assert (aexp != NULL); + + for(i=0; i<MAX_AMP; i++) + aexp->A_prev[i] = 1.0; + aexp->frames = 0; + aexp->snr = 0.0; + aexp->snr_n = 0; + aexp->var = 0.0; + aexp->var_n = 0; + aexp->vq_var = 0.0; + aexp->vq_var_n = 0; + + //aexp->vq1 = load("amp_1_80_1024a.txt"); + //aexp->vq1 = load("../unittest/st1_10_1024.txt"); + //aexp->vq1 = load("../unittest/amp41_80_1024.txt"); + //aexp->vq1->offset = 40; + aexp->vq1 = load("../unittest/amp1_10_1024.txt"); + aexp->vq1->offset = 0; + aexp->vq2 = load("../unittest/amp11_20_1024.txt"); + aexp->vq2->offset = 10; + + aexp->vq3 = load("../unittest/amp21_40_1024.txt"); + aexp->vq3->offset = 20; + aexp->vq4 = load("../unittest/amp41_60_1024.txt"); + aexp->vq4->offset = 40; + aexp->vq5 = load("../unittest/amp61_80_256.txt"); + aexp->vq5->offset = 60; + + #ifdef CAND2_GS + //aexp->vq1 = load("../unittest/t1_amp1_20_1024.txt"); + //aexp->vq1 = load("../unittest/t2_amp1_20_1024.txt"); + aexp->vq1 = load("../unittest/amp1_20_1024.txt"); + aexp->vq1->offset = 0; + aexp->vq2 = load("../unittest/amp21_40_1024.txt"); + aexp->vq2->offset = 20; + aexp->vq3 = load("../unittest/amp41_60_1024.txt"); + aexp->vq3->offset = 40; + aexp->vq4 = load("../unittest/amp61_80_32.txt"); + aexp->vq4->offset = 60; + #endif + + //#define CAND2_GS + #ifdef CAND2_GS + aexp->vq1 = load("../unittest/amp1_20_1024.txt"); + aexp->vq2 = load("../unittest/amp21_40_1024.txt"); + aexp->vq3 = load("../unittest/amp41_80_1024.txt"); + aexp->vq4 = load("../unittest/amp61_80_32.txt"); + aexp->vq1->offset = 0; + aexp->vq2->offset = 20; + aexp->vq3->offset = 40; + aexp->vq4->offset = 60; + #endif + + //#define CAND1 + #ifdef CAND1 + aexp->vq1 = load("../unittest/amp1_10_128.txt"); + aexp->vq2 = load("../unittest/amp11_20_512.txt"); + aexp->vq3 = load("../unittest/amp21_40_1024.txt"); + aexp->vq4 = load("../unittest/amp41_60_1024.txt"); + aexp->vq5 = load("../unittest/amp61_80_32.txt"); + aexp->vq1->offset = 0; + aexp->vq2->offset = 10; + aexp->vq3->offset = 20; + aexp->vq4->offset = 40; + aexp->vq5->offset = 60; + #endif + + for(i=0; i<3; i++) { + for(j=0; j<5; j++) + aexp->indexes[j][i] = 0; + aexp->mag[i] = 1.0; + aexp->model[i].Wo = TWO_PI*100.0/8000.0; + aexp->model[i].L = floor(PI/aexp->model[i].Wo); + for(m=1; m<=MAX_AMP; m++) + aexp->model[i].A[m] = 10.0; + aexp->model_uq[i] = aexp->model[i]; + } + + return aexp; +} + + +/*---------------------------------------------------------------------------* \ + + amp_experiment_destroy() + +\*---------------------------------------------------------------------------*/ + +void amp_experiment_destroy(struct AEXP *aexp) { + assert(aexp != NULL); + if (aexp->snr != 0.0) + printf("snr: %4.2f dB\n", aexp->snr/aexp->snr_n); + if (aexp->var != 0.0) + printf("var...: %4.3f std dev...: %4.3f (%d amplitude samples)\n", + aexp->var/aexp->var_n, sqrt(aexp->var/aexp->var_n), aexp->var_n); + if (aexp->vq_var != 0.0) + printf("vq var: %4.3f std dev...: %4.3f (%d amplitude samples)\n", + aexp->vq_var/aexp->vq_var_n, sqrt(aexp->vq_var/aexp->vq_var_n), aexp->vq_var_n); + free(aexp); +} + + +/*---------------------------------------------------------------------------*\ + + Various test and experimental functions ................ + +\*---------------------------------------------------------------------------*/ + +/* + Quantisation noise simulation. Assume noise on amplitudes is a uniform + distribution, of +/- x dB. This means x = sqrt(3)*sigma. + + Note: for uniform distribution var = = sigma * sigma = (b-a)*(b-a)/12. +*/ + +static void add_quant_noise(struct AEXP *aexp, MODEL *model, int start, int end, float sigma_dB) +{ + int m; + float x_dB; + float noise_sam_dB; + float noise_sam_lin; + + x_dB = sqrt(3.0) * sigma_dB; + + for(m=start; m<=end; m++) { + noise_sam_dB = x_dB*(1.0 - 2.0*rand()/RAND_MAX); + //printf("%f\n", noise_sam_dB); + noise_sam_lin = pow(10.0, noise_sam_dB/20.0); + model->A[m] *= noise_sam_lin; + aexp->var += noise_sam_dB*noise_sam_dB; + aexp->var_n++; + } + +} + +/* + void print_sparse_pred_error() + + use to check pred error stats (e.g. of first 1kHz) in Octave: + + $ ./c2sim ../raw/hts1a.raw --ampexp > amppe.txt + + octave> load ../src/amppe.txt + octave> std(nonzeros(amppe(:,1:20))) + octave> hist(nonzeros(amppe(:,1:20)),20); + + */ + + +static void print_sparse_pred_error(struct AEXP *aexp, MODEL *model, float mag_thresh) +{ + int m, index; + float mag, error; + float sparse_pe[MAX_AMP]; + + mag = 0.0; + for(m=1; m<=model->L; m++) + mag += model->A[m]*model->A[m]; + mag = 10*log10(mag/model->L); + + if (mag > mag_thresh) { + for(m=0; m<MAX_AMP; m++) { + sparse_pe[m] = 0.0; + } + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + error = PRED_COEFF*20.0*log10(aexp->A_prev[m]) - 20.0*log10(model->A[m]); + //error = 20.0*log10(model->A[m]) - mag; + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe[index] = error; + } + + /* dump sparse amp vector */ + + for(m=0; m<MAX_AMP; m++) + printf("%f ", sparse_pe[m]); + printf("\n"); + } +} + + +static float frame_energy(MODEL *model, float *enormdB) { + int m; + float e, edB; + + e = 0.0; + for(m=1; m<=model->L; m++) + e += model->A[m]*model->A[m]; + edB = 10*log10(e); + + #define VER_E0 + + #ifdef VER_E0 + *enormdB = 10*log10(e/model->L); /* make high and low pitches have similar amps */ + #endif + + #ifdef VER_E1 + e = 0.0; + for(m=1; m<=model->L; m++) + e += 10*log10(model->A[m]*model->A[m]); + *enormdB = e; + #endif + + #ifdef VER_E2 + e = 0.0; + for(m=1; m<=model->L; m++) + e += 10*log10(model->A[m]*model->A[m]); + *enormdB = e/model->L; + #endif + //printf("%f\n", enormdB); + + return edB; +} + +static void print_sparse_amp_error(struct AEXP *aexp, MODEL *model, float edB_thresh) +{ + int m, index; + float edB, enormdB, error, dWo; + float sparse_pe[MAX_AMP]; + + edB = frame_energy(model, &enormdB); + //printf("%f\n", enormdB); + dWo = fabs((aexp->model_uq[2].Wo - aexp->model_uq[1].Wo)/aexp->model_uq[2].Wo); + + if ((edB > edB_thresh) && (dWo < 0.1)) { + for(m=0; m<MAX_AMP; m++) { + sparse_pe[m] = 0.0; + } + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + error = 20.0*log10(model->A[m]) - enormdB; + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe[index] = error; + } + + /* dump sparse amp vector */ + + for(m=0; m<MAX_AMP; m++) + printf("%f ", sparse_pe[m]); + printf("\n"); + } +} + + +int vq_amp(float cb[], float vec[], float weights[], int d, int e, float *se) +{ + float error; /* current error */ + int besti; /* best index so far */ + float best_error; /* best error so far */ + int i,j; + float diff, metric, best_metric; + + besti = 0; + best_metric = best_error = 1E32; + for(j=0; j<e; j++) { + metric = error = 0.0; + for(i=0; i<d; i++) { + if (vec[i] != 0.0) { + diff = (cb[j*d+i] - vec[i]); + error += diff*diff; + metric += weights[i]*diff*diff; + } + } + if (metric < best_metric) { + best_error = error; + best_metric = metric; + besti = j; + } + } + + *se += best_error; + + return(besti); +} + + +static int split_vq(float sparse_pe_out[], struct AEXP *aexp, struct codebook *vq, float weights[], float sparse_pe_in[]) +{ + int i, j, non_zero, vq_ind; + float se; + + vq_ind = vq_amp(vq->cb, &sparse_pe_in[vq->offset], &weights[vq->offset], vq->k, vq->m, &se); + printf("\n offset %d k %d m %d vq_ind %d j: ", vq->offset, vq->k, vq->m, vq_ind); + + non_zero = 0; + for(i=0, j=vq->offset; i<vq->k; i++,j++) { + if (sparse_pe_in[j] != 0.0) { + printf("%d ", j); + sparse_pe_in[j] -= vq->cb[vq->k * vq_ind + i]; + sparse_pe_out[j] += vq->cb[vq->k * vq_ind + i]; + non_zero++; + } + } + aexp->vq_var_n += non_zero; + return vq_ind; +} + + +static void sparse_vq_pred_error(struct AEXP *aexp, + MODEL *model +) +{ + int m, index; + float error, amp_dB, edB, enormdB; + float sparse_pe_in[MAX_AMP]; + float sparse_pe_out[MAX_AMP]; + float weights[MAX_AMP]; + + edB = frame_energy(model, &enormdB); + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_in[m] = 0.0; + sparse_pe_out[m] = 0.0; + } + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + error = PRED_COEFF*20.0*log10(aexp->A_prev[m]) - 20.0*log10(model->A[m]); + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_in[index] = error; + weights[index] = model->A[m]; + } + + /* vector quantise */ + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_out[m] = sparse_pe_in[m]; + } + + //#define SIM_VQ + #ifndef SIM_VQ + split_vq(sparse_pe_out, aexp, aexp->vq1, weights, sparse_pe_in); + #else + for(m=aexp->vq->offset; m<aexp->vq->offset+aexp->vq->k; m++) { + if (sparse_pe_in[m] != 0.0) { + float error = 8*(1.0 - 2.0*rand()/RAND_MAX); + aexp->vq_var += error*error; + aexp->vq_var_n++; + sparse_pe_out[m] = sparse_pe_in[m] + error; + } + } + #endif + + if (edB > -100.0) + for(m=0; m<MAX_AMP; m++) { + if (sparse_pe_in[m] != 0.0) + aexp->vq_var += pow(sparse_pe_out[m] - sparse_pe_in[m], 2.0); + } + + /* transform quantised amps back */ + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + amp_dB = PRED_COEFF*20.0*log10(aexp->A_prev[m]) - sparse_pe_out[index]; + //printf("in: %f out: %f\n", sparse_pe_in[index], sparse_pe_out[index]); + //printf("amp_dB: %f A[m] (dB) %f\n", amp_dB, 20.0*log10(model->A[m])); + model->A[m] = pow(10.0, amp_dB/20.0); + } + //exit(0); +} + + +static void split_error(struct AEXP *aexp, struct codebook *vq, float sparse_pe_in[], int ind) +{ + int i, j; + + for(i=0, j=vq->offset; i<vq->k; i++,j++) { + if (sparse_pe_in[j] != 0.0) { + sparse_pe_in[j] -= vq->cb[vq->k * ind + i]; + } + } +} + + +static void sparse_vq_amp(struct AEXP *aexp, MODEL *model) +{ + int m, index; + float error, amp_dB, enormdB; + float sparse_pe_in[MAX_AMP]; + float sparse_pe_out[MAX_AMP]; + float weights[MAX_AMP]; + + frame_energy(model, &enormdB); + + aexp->mag[2] = enormdB; + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_in[m] = 0.0; + sparse_pe_out[m] = 0.0; + } + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + error = 20.0*log10(model->A[m]) - enormdB; + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_in[index] = error; + weights[index] = pow(model->A[m],0.8); + } + + /* vector quantise */ + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_out[m] = sparse_pe_in[m]; + } + + for(m=0; m<80; m++) + sparse_pe_out[m] = 0; + + #define SPLIT + #ifdef SPLIT + aexp->indexes[0][2] = split_vq(sparse_pe_out, aexp, aexp->vq1, weights, sparse_pe_in); + + aexp->indexes[1][2] = split_vq(sparse_pe_out, aexp, aexp->vq2, weights, sparse_pe_in); + aexp->indexes[2][2] = split_vq(sparse_pe_out, aexp, aexp->vq3, weights, sparse_pe_in); + aexp->indexes[3][2] = split_vq(sparse_pe_out, aexp, aexp->vq4, weights, sparse_pe_in); + aexp->indexes[4][2] = split_vq(sparse_pe_out, aexp, aexp->vq5, weights, sparse_pe_in); + #endif + //#define MULTISTAGE + #ifdef MULTISTAGE + aexp->indexes[0][2] = split_vq(sparse_pe_out, aexp, aexp->vq1, weights, sparse_pe_in); + aexp->indexes[1][2] = split_vq(sparse_pe_out, aexp, aexp->vq2, weights, sparse_pe_in); + aexp->indexes[2][2] = split_vq(sparse_pe_out, aexp, aexp->vq3, weights, sparse_pe_in); + //aexp->indexes[3][2] = split_vq(sparse_pe_out, aexp, aexp->vq4, weights, sparse_pe_in); + #endif + + for(m=0; m<MAX_AMP; m++) { + if (sparse_pe_in[m] != 0.0) + aexp->vq_var += pow(sparse_pe_out[m] - sparse_pe_in[m], 2.0); + } + + /* transform quantised amps back */ + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + amp_dB = sparse_pe_out[index] + enormdB; + model->A[m] = pow(10.0, amp_dB/20.0); + } + //exit(0); +} + + +static void update_snr_calc(struct AEXP *aexp, MODEL *m1, MODEL *m2) +{ + int m; + float signal, noise, signal_dB; + + assert(m1->L == m2->L); + + signal = 0.0; noise = 1E-32; + for(m=1; m<=m1->L; m++) { + signal += m1->A[m]*m1->A[m]; + noise += pow(m1->A[m] - m2->A[m], 2.0); + //printf("%f %f\n", before[m], model->phi[m]); + } + signal_dB = 10*log10(signal); + if (signal_dB > -100.0) { + aexp->snr += 10.0*log10(signal/noise); + aexp->snr_n++; + } +} + + +/* gain/shape vq search. Returns index of best gain. Gain is additive (as we use log quantisers) */ + +int gain_shape_vq_amp(float cb[], float vec[], float weights[], int d, int e, float *se, float *best_gain) +{ + float error; /* current error */ + int besti; /* best index so far */ + float best_error; /* best error so far */ + int i,j,m; + float diff, metric, best_metric, gain, sumAm, sumCb; + + besti = 0; + best_metric = best_error = 1E32; + for(j=0; j<e; j++) { + + /* compute optimum gain */ + + sumAm = sumCb = 0.0; + m = 0; + for(i=0; i<d; i++) { + if (vec[i] != 0.0) { + m++; + sumAm += vec[i]; + sumCb += cb[j*d+i]; + } + } + gain = (sumAm - sumCb)/m; + + /* compute error */ + + metric = error = 0.0; + for(i=0; i<d; i++) { + if (vec[i] != 0.0) { + diff = vec[i] - cb[j*d+i] - gain; + error += diff*diff; + metric += weights[i]*diff*diff; + } + } + if (metric < best_metric) { + best_error = error; + best_metric = metric; + *best_gain = gain; + besti = j; + } + } + + *se += best_error; + + return(besti); +} + + +static void gain_shape_split_vq(float sparse_pe_out[], struct AEXP *aexp, struct codebook *vq, float weights[], float sparse_pe_in[], float *best_gain) +{ + int i, j, non_zero, vq_ind; + float se; + + vq_ind = gain_shape_vq_amp(vq->cb, &sparse_pe_in[vq->offset], &weights[vq->offset], vq->k, vq->m, &se, best_gain); + //printf("\n offset %d k %d m %d vq_ind %d gain: %4.2f j: ", vq->offset, vq->k, vq->m, vq_ind, *best_gain); + + non_zero = 0; + for(i=0, j=vq->offset; i<vq->k; i++,j++) { + if (sparse_pe_in[j] != 0.0) { + //printf("%d ", j); + sparse_pe_out[j] = vq->cb[vq->k * vq_ind + i] + *best_gain; + non_zero++; + } + } + aexp->vq_var_n += non_zero; +} + + +static void gain_shape_sparse_vq_amp(struct AEXP *aexp, MODEL *model) +{ + int m, index; + float amp_dB, best_gain; + float sparse_pe_in[MAX_AMP]; + float sparse_pe_out[MAX_AMP]; + float weights[MAX_AMP]; + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_in[m] = 0.0; + sparse_pe_out[m] = 0.0; + } + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_in[index] = 20.0*log10(model->A[m]); + weights[index] = model->A[m]; + } + + /* vector quantise */ + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_out[m] = sparse_pe_in[m]; + } + + gain_shape_split_vq(sparse_pe_out, aexp, aexp->vq1, weights, sparse_pe_in, &best_gain); + gain_shape_split_vq(sparse_pe_out, aexp, aexp->vq2, weights, sparse_pe_in, &best_gain); + gain_shape_split_vq(sparse_pe_out, aexp, aexp->vq3, weights, sparse_pe_in, &best_gain); + gain_shape_split_vq(sparse_pe_out, aexp, aexp->vq4, weights, sparse_pe_in, &best_gain); + + for(m=0; m<MAX_AMP; m++) { + if (sparse_pe_in[m] != 0.0) + aexp->vq_var += pow(sparse_pe_out[m] - sparse_pe_in[m], 2.0); + } + + /* transform quantised amps back */ + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + amp_dB = sparse_pe_out[index]; + model->A[m] = pow(10.0, amp_dB/20.0); + } + //exit(0); +} + + +static void interp_split_vq(float sparse_pe_out[], struct AEXP *aexp, struct codebook *vq, float sparse_pe_in[], int ind) +{ + int i, j; + float amp_dB; + + for(i=0, j=vq->offset; i<vq->k; i++,j++) { + if (sparse_pe_in[j] != 0.0) { + amp_dB = 0.5*(aexp->mag[0] + vq->cb[vq->k * aexp->indexes[ind][0] + i]); + amp_dB += 0.5*(aexp->mag[2] + vq->cb[vq->k * aexp->indexes[ind][2] + i]); + sparse_pe_out[j] = amp_dB; + } + } +} + + +static void vq_interp(struct AEXP *aexp, MODEL *model, int on) +{ + int i, j, m, index; + float amp_dB; + //struct codebook *vq = aexp->vq1; + float sparse_pe_in[MAX_AMP]; + float sparse_pe_out[MAX_AMP]; + + /* replace odd frames with interp */ + /* once we get an even input frame we can interpolate and output odd */ + /* using VQ to interpolate. This assumes some correlation in + adjacent VQ samples */ + + memcpy(&aexp->model[2], model, sizeof(MODEL)); + + /* once we get an even input frame we have enough information to + replace prev odd frame with interpolated version */ + + if (on && ((aexp->frames % 2) == 0)) { + + /* copy Wo, L, and phases */ + + memcpy(model, &aexp->model[1], sizeof(MODEL)); + //printf("mags: %4.2f %4.2f %4.2f Am: \n", aexp->mag[0], aexp->mag[1], aexp->mag[2]); + + /* now replace Am by interpolation, use similar design to VQ + to handle different bands */ + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_in[index] = 20.0*log10(model->A[m]); + } + + /* this can be used for when just testing partial interpolation */ + + for(m=0; m<MAX_AMP; m++) { + //sparse_pe_out[m] = sparse_pe_in[m]; + sparse_pe_out[m] = 0; + } + + interp_split_vq(sparse_pe_out, aexp, aexp->vq1, sparse_pe_in, 0); + interp_split_vq(sparse_pe_out, aexp, aexp->vq2, sparse_pe_in, 1); + interp_split_vq(sparse_pe_out, aexp, aexp->vq3, sparse_pe_in, 2); + interp_split_vq(sparse_pe_out, aexp, aexp->vq4, sparse_pe_in, 3); + interp_split_vq(sparse_pe_out, aexp, aexp->vq5, sparse_pe_in, 4); + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + amp_dB = sparse_pe_out[index]; + //printf(" %4.2f", 10.0*log10(model->A[m])); + model->A[m] = pow(10.0, amp_dB/20.0); + //printf(" %4.2f\n", 10.0*log10(model->A[m])); + } + + #ifdef INITIAL_VER + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + + if (index < vq->k) { + amp_dB = 0.5*(aexp->mag[0] + vq->cb[vq->k * aexp->indexes[0] + index]); + amp_dB += 0.5*(aexp->mag[2] + vq->cb[vq->k * aexp->indexes[2] + index]); + //printf(" %4.2f", 10.0*log10(model->A[m])); + //amp_dB = 10; + model->A[m] = pow(10.0, amp_dB/20.0); + printf(" %4.2f\n", 10.0*log10(model->A[m])); + } + } + + #endif + } + else + memcpy(model, &aexp->model[1], sizeof(MODEL)); + + /* update memories */ + + for(i=0; i<2; i++) { + memcpy(&aexp->model[i], &aexp->model[i+1], sizeof(MODEL)); + for(j=0; j<5; j++) + aexp->indexes[j][i] = aexp->indexes[j][i+1]; + aexp->mag[i] = aexp->mag[i+1]; + } + +} + + +/* + This functions tests theory that some bands can be combined together + due to less frequency resolution at higher frequencies. This will + reduce the amount of information we need to encode. +*/ + +void smooth_samples(struct AEXP *aexp, MODEL *model, int mode) +{ + int m, i, j, index, step, nav, v, en; + float sparse_pe_in[MAX_AMP], av, amp_dB; + float sparse_pe_out[MAX_AMP]; + float smoothed[MAX_AMP], smoothed_out[MAX_AMP]; + float weights[MAX_AMP]; + float enormdB; + + frame_energy(model, &enormdB); + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_in[m] = 0.0; + sparse_pe_out[m] = 0.0; + } + + /* set up sparse array */ + + for(m=1; m<=model->L; m++) { + assert(model->A[m] > 0.0); + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_out[index] = sparse_pe_in[index] = 20.0*log10(model->A[m]) - enormdB; + } + + /* now combine samples at high frequencies to reduce dimension */ + + step=4; + for(i=MAX_AMP/2,v=0; i<MAX_AMP; i+=step,v++) { + + /* average over one band */ + + av = 0.0; nav = 0; + en = i+step; + if (en > (MAX_AMP-1)) + en = MAX_AMP-1; + for(j=i; j<en; j++) { + if (sparse_pe_in[j] != 0.0) { + av += sparse_pe_in[j]; + nav++; + } + } + if (nav) { + av /= nav; + smoothed[v] = av; + weights[v] = pow(10.0,av/20.0); + //weights[v] = 1.0; + } + else + smoothed[v] = 0.0; + + } + + if (mode == 1) { + for(i=0; i<v; i++) + printf("%5.2f ", smoothed[i]); + printf("\n"); + } + + if (mode == 2) { + for(i=0; i<v; i++) + smoothed_out[i] = 0; + split_vq(smoothed_out, aexp, aexp->vq1, weights, smoothed); + for(i=0; i<v; i++) + smoothed[i] = smoothed_out[i]; + } + + /* set all samples to smoothed average */ + + step = 4; + for(i=MAX_AMP/2,v=0; i<MAX_AMP; i+=step,v++) { + en = i+step; + if (en > (MAX_AMP-1)) + en = MAX_AMP-1; + for(j=i; j<en; j++) + sparse_pe_out[j] = smoothed[v]; + } + + /* convert back to Am */ + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + amp_dB = sparse_pe_out[index] + enormdB; + //printf("%d %4.2f %4.2f\n", m, 10.0*log10(model->A[m]), amp_dB); + model->A[m] = pow(10.0, amp_dB/20.0); + } + +} + +#define MAX_BINS 40 +static float bins[] = { + /*1000.0, 1200.0, 1400.0, 1600.0, 1800,*/ + 2000.0, 2400.0, 2800.0, + 3000.0, 3400.0, 3600.0, 4000.0}; + +void smooth_amp(struct AEXP *aexp, MODEL *model) { + int m, i; + int nbins; + int b; + float f; + float av[MAX_BINS]; + int nav[MAX_BINS]; + + nbins = sizeof(bins)/sizeof(float); + + /* clear all bins */ + + for(i=0; i<MAX_BINS; i++) { + av[i] = 0.0; + nav[i] = 0; + } + + /* add amps into each bin */ + + for(m=1; m<=model->L; m++) { + f = m*model->Wo*FS/TWO_PI; + if (f > bins[0]) { + + /* find bin */ + + for(i=0; i<nbins; i++) + if ((f > bins[i]) && (f <= bins[i+1])) + b = i; + assert(b < MAX_BINS); + + av[b] += model->A[m]*model->A[m]; + nav[b]++; + } + + } + + /* use averages to est amps */ + + for(m=1; m<=model->L; m++) { + f = m*model->Wo*FS/TWO_PI; + if (f > bins[0]) { + + /* find bin */ + + for(i=0; i<nbins; i++) + if ((f > bins[i]) && (f <= bins[i+1])) + b = i; + assert(b < MAX_BINS); + + /* add predicted phase error to this bin */ + + printf("L %d m %d f %4.f b %d\n", model->L, m, f, b); + + printf(" %d: %4.3f -> ", m, 20*log10(model->A[m])); + model->A[m] = sqrt(av[b]/nav[b]); + printf("%4.3f\n", 20*log10(model->A[m])); + } + } + printf("\n"); +} + +/*---------------------------------------------------------------------------* \ + + amp_experiment() + + Amplitude quantisation experiments. + +\*---------------------------------------------------------------------------*/ + +void amp_experiment(struct AEXP *aexp, MODEL *model, char *arg) { + int m,i; + + memcpy(&aexp->model_uq[2], model, sizeof(MODEL)); + + if (strcmp(arg, "qn") == 0) { + add_quant_noise(aexp, model, 1, model->L, 1); + update_snr_calc(aexp, &aexp->model_uq[2], model); + } + + /* print training samples that can be > train.txt for training VQ */ + + if (strcmp(arg, "train") == 0) + print_sparse_amp_error(aexp, model, 00.0); + + /* VQ of amplitudes, no interpolation (ie 10ms rate) */ + + if (strcmp(arg, "vq") == 0) { + sparse_vq_amp(aexp, model); + vq_interp(aexp, model, 0); + update_snr_calc(aexp, &aexp->model_uq[1], model); + } + + /* VQ of amplitudes, interpolation (ie 20ms rate) */ + + if (strcmp(arg, "vqi") == 0) { + sparse_vq_amp(aexp, model); + vq_interp(aexp, model, 1); + update_snr_calc(aexp, &aexp->model_uq[1], model); + } + + /* gain/shape VQ of amplitudes, 10ms rate (doesn't work that well) */ + + if (strcmp(arg, "gsvq") == 0) { + gain_shape_sparse_vq_amp(aexp, model); + vq_interp(aexp, model, 0); + update_snr_calc(aexp, &aexp->model_uq[1], model); + } + + if (strcmp(arg, "smooth") == 0) { + smooth_samples(aexp, model, 0); + update_snr_calc(aexp, &aexp->model_uq[2], model); + } + + if (strcmp(arg, "smoothtrain") == 0) { + smooth_samples(aexp, model, 1); + //update_snr_calc(aexp, &aexp->model_uq[2], model); + } + + if (strcmp(arg, "smoothvq") == 0) { + smooth_samples(aexp, model, 2); + update_snr_calc(aexp, &aexp->model_uq[2], model); + } + + if (strcmp(arg, "smoothamp") == 0) { + smooth_amp(aexp, model); + update_snr_calc(aexp, &aexp->model_uq[2], model); + } + + /* update states */ + + for(m=1; m<=model->L; m++) + aexp->A_prev[m] = model->A[m]; + aexp->frames++; + for(i=0; i<3; i++) + aexp->model_uq[i] = aexp->model_uq[i+1]; +} + diff --git a/gr-vocoder/lib/codec2/ampexp.h b/gr-vocoder/lib/codec2/ampexp.h new file mode 100644 index 0000000000..8954ea282e --- /dev/null +++ b/gr-vocoder/lib/codec2/ampexp.h @@ -0,0 +1,39 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: ampexp.h + AUTHOR......: David Rowe + DATE CREATED: & August 2012 + + Functions for experimenting with amplitude quantisation. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not,see <http://www.gnu.org/licenses/>. +*/ + +#ifndef __AMPEX__ +#define __AMPEXP__ + +#include "defines.h" + +struct AEXP; + +struct AEXP *amp_experiment_create(); +void amp_experiment_destroy(struct AEXP *aexp); +void amp_experiment(struct AEXP *aexp, MODEL *model, char *arg); + +#endif diff --git a/gr-vocoder/lib/codec2/c2dec.c b/gr-vocoder/lib/codec2/c2dec.c index 3123e96fbc..df4e82f77a 100644 --- a/gr-vocoder/lib/codec2/c2dec.c +++ b/gr-vocoder/lib/codec2/c2dec.c @@ -27,54 +27,213 @@ #include "codec2.h" +#include <assert.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> -#define BITS_SIZE ((CODEC2_BITS_PER_FRAME + 7) / 8) +#define NONE 0 /* no bit errors */ +#define UNIFORM 1 /* random bit errors */ +#define TWO_STATE 2 /* Two state error model */ +#define UNIFORM_RANGE 3 /* random bit errors over a certain range */ int main(int argc, char *argv[]) { - void *codec2; - FILE *fin; - FILE *fout; - short buf[CODEC2_SAMPLES_PER_FRAME]; - unsigned char bits[BITS_SIZE]; - - if (argc != 3) { - printf("usage: %s InputBitFile OutputRawSpeechFile\n", argv[0]); + int mode; + void *codec2; + FILE *fin; + FILE *fout; + FILE *fber = NULL; + short *buf; + unsigned char *bits, *prev_bits; + int nsam, nbit, nbyte, i, byte, frames, bits_proc, bit_errors, error_mode; + int nstart_bit, nend_bit, bit_rate; + int state, next_state; + float ber, r, burst_length, burst_period, burst_timer, ber_est; + unsigned char mask; + + if ((argc != 4) && (argc != 5) && (argc != 6) && (argc != 7)) { + printf("basic usage.................: c2dec 3200|2400|1600|1400|1300|1200 InputBitFile OutputRawSpeechFile\n"); + printf("uniform errors usage........: c2dec 3200|2400|1600|1400|1300|1200 InputBitFile OutputRawSpeechFile uniformBER startBit endBit\n"); + printf("uniform error on range usage: c2dec 3200|2400|1600|1400|1300|1200 InputBitFile OutputRawSpeechFile uniformBER\n"); + printf("demod BER estimate..........: c2dec 3200|2400|1600|1400|1300|1200 InputBitFile OutputRawSpeechFile BERfile\n"); + printf("two state fading usage......: c2dec 3200|2400|1600|1400|1300|1200 InputBitFile OutputRawSpeechFile burstLength burstPeriod\n"); + printf("e.g c2dec 1400 hts1a.c2 hts1a_1400.raw\n"); + printf("e.g c2dec 1400 hts1a.c2 hts1a_1400.raw 0.9\n"); + printf("e.g c2dec 1400 hts1a.c2 hts1a_1400.raw 0.99 0.9\n"); exit(1); } - if (strcmp(argv[1], "-") == 0) fin = stdin; - else if ( (fin = fopen(argv[1],"rb")) == NULL ) { + if (strcmp(argv[1],"3200") == 0) + mode = CODEC2_MODE_3200; + else if (strcmp(argv[1],"2400") == 0) + mode = CODEC2_MODE_2400; + else if (strcmp(argv[1],"1600") == 0) + mode = CODEC2_MODE_1600; + else if (strcmp(argv[1],"1400") == 0) + mode = CODEC2_MODE_1400; + else if (strcmp(argv[1],"1300") == 0) + mode = CODEC2_MODE_1300; + else if (strcmp(argv[1],"1200") == 0) + mode = CODEC2_MODE_1200; + else { + fprintf(stderr, "Error in mode: %s. Must be 3200, 2400, 1600, 1400, 1300 or 1200\n", argv[1]); + exit(1); + } + bit_rate = atoi(argv[1]); + + if (strcmp(argv[2], "-") == 0) fin = stdin; + else if ( (fin = fopen(argv[2],"rb")) == NULL ) { fprintf(stderr, "Error opening input bit file: %s: %s.\n", - argv[1], strerror(errno)); + argv[2], strerror(errno)); exit(1); } - if (strcmp(argv[2], "-") == 0) fout = stdout; - else if ( (fout = fopen(argv[2],"wb")) == NULL ) { + if (strcmp(argv[3], "-") == 0) fout = stdout; + else if ( (fout = fopen(argv[3],"wb")) == NULL ) { fprintf(stderr, "Error opening output speech file: %s: %s.\n", - argv[2], strerror(errno)); + argv[3], strerror(errno)); exit(1); } - codec2 = codec2_create(); + error_mode = NONE; + ber = 0.0; + burst_length = burst_period = 0.0; + burst_timer = 0.0; + + codec2 = codec2_create(mode); + nsam = codec2_samples_per_frame(codec2); + nbit = codec2_bits_per_frame(codec2); + buf = (short*)malloc(nsam*sizeof(short)); + nbyte = (nbit + 7) / 8; + bits = (unsigned char*)malloc(nbyte*sizeof(char)); + prev_bits = (unsigned char*)malloc(nbyte*sizeof(char)); + frames = bit_errors = bits_proc = 0; + nstart_bit = 0; + nend_bit = nbit-1; + + if (argc == 5) { + /* see if 4th argument is a valid file name */ + if ( (fber = fopen(argv[4],"rb")) == NULL ) { + /* otherwise it must be BER value for uniform errors */ + ber = atof(argv[4]); + error_mode = UNIFORM; + } + } + + if (argc == 6) { + error_mode = TWO_STATE; + burst_length = atof(argv[4]); + burst_period = atof(argv[5]); + nstart_bit = 0; + nend_bit = 2; + state = 0; + } + + if (argc == 7) { + error_mode = UNIFORM_RANGE; + ber = atof(argv[4]); + nstart_bit = atoi(argv[5]); + nend_bit = atoi(argv[6]); + fprintf(stderr, "ber: %f nstart_bit: %d nend_bit: %d\n", ber, nstart_bit, nend_bit); + state = 0; + } - while(fread(bits, sizeof(char), BITS_SIZE, fin) == BITS_SIZE) { - codec2_decode(codec2, buf, bits); - fwrite(buf, sizeof(short), CODEC2_SAMPLES_PER_FRAME, fout); + assert(nend_bit <= nbit); + + while(fread(bits, sizeof(char), nbyte, fin) == (size_t)nbyte) { + frames++; + + // apply bit errors, MSB of byte 0 is bit 0 in frame */ + + if ((error_mode == UNIFORM) || (error_mode == UNIFORM_RANGE)) { + for(i=nstart_bit; i<nend_bit+1; i++) { + r = (float)rand()/RAND_MAX; + if (r < ber) { + byte = i/8; + //printf("nbyte %d nbit %d i %d byte %d bits[%d] 0x%0x ", nbyte, nbit, i, byte, byte, bits[byte]); + mask = 1 << (7 - i + byte*8); + bits[byte] ^= mask; + //printf("shift: %d mask: 0x%0x bits[%d] 0x%0x\n", 7 - i + byte*8, mask, byte, bits[byte] ); + bit_errors++; + } + bits_proc++; + } + } + + if (error_mode == TWO_STATE) { + burst_timer += (float)nbit/bit_rate; + fprintf(stderr, "burst_timer: %f state: %d\n", burst_timer, state); + + next_state = state; + switch(state) { + case 0: + + /* clear channel state - no bit errors */ + + if (burst_timer > (burst_period - burst_length)) + next_state = 1; + break; + + case 1: + + /* burst error state - 50% bit error rate */ + + for(i=nstart_bit; i<nend_bit+1; i++) { + r = (float)rand()/RAND_MAX; + if (r < 0.5) { + byte = i/8; + bits[byte] ^= 1 << (7 - i + byte*8); + bit_errors++; + } + bits_proc++; + } + + if (burst_timer > burst_period) { + burst_timer = 0.0; + next_state = 0; + } + break; + + } + + state = next_state; + } + + if (fber != NULL) { + if (fread(&ber_est, sizeof(float), 1, fber) != 1) { + fprintf(stderr, "ran out of BER estimates!\n"); + exit(1); + } + //fprintf(stderr, "ber_est: %f\n", ber_est); + } + else + ber_est = 0.0; + + /* frame repeat logic */ + if (ber_est > 0.15) { + //memcpy(bits, prev_bits, nbyte); + // fprintf(stderr, "repeat\n"); + } + + codec2_decode(codec2, buf, bits, ber_est); + fwrite(buf, sizeof(short), nsam, fout); //if this is in a pipeline, we probably don't want the usual //buffering to occur if (fout == stdout) fflush(stdout); if (fin == stdin) fflush(stdin); - } + memcpy(prev_bits, bits, nbyte); + } + + if (error_mode) + fprintf(stderr, "actual BER: %1.3f\n", (float)bit_errors/bits_proc); codec2_destroy(codec2); + free(buf); + free(bits); fclose(fin); fclose(fout); diff --git a/gr-vocoder/lib/codec2/c2demo.c b/gr-vocoder/lib/codec2/c2demo.c index b9e17a78eb..0090069c65 100644 --- a/gr-vocoder/lib/codec2/c2demo.c +++ b/gr-vocoder/lib/codec2/c2demo.c @@ -32,21 +32,26 @@ */ #include "codec2.h" +#include "sine.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> -#define BITS_SIZE ((CODEC2_BITS_PER_FRAME + 7) / 8) - int main(int argc, char *argv[]) { - void *codec2; - FILE *fin; - FILE *fout; - short buf[CODEC2_SAMPLES_PER_FRAME]; - unsigned char bits[BITS_SIZE]; + struct CODEC2 *codec2; + FILE *fin; + FILE *fout; + short *buf; + unsigned char *bits; + int nsam, nbit, i, r; + + for(i=0; i<10; i++) { + r = codec2_rand(); + printf("[%d] r = %d\n", i, r); + } if (argc != 3) { printf("usage: %s InputRawSpeechFile OutputRawSpeechFile\n", argv[0]); @@ -65,18 +70,27 @@ int main(int argc, char *argv[]) exit(1); } + #ifdef DUMP + dump_on("c2demo"); + #endif + /* Note only one set of Codec 2 states is required for an encoder and decoder pair. */ - codec2 = codec2_create(); + codec2 = codec2_create(CODEC2_MODE_1300); + nsam = codec2_samples_per_frame(codec2); + buf = (short*)malloc(nsam*sizeof(short)); + nbit = codec2_bits_per_frame(codec2); + bits = (unsigned char*)malloc(nbit*sizeof(char)); - while(fread(buf, sizeof(short), CODEC2_SAMPLES_PER_FRAME, fin) == - CODEC2_SAMPLES_PER_FRAME) { + while(fread(buf, sizeof(short), nsam, fin) == (size_t)nsam) { codec2_encode(codec2, bits, buf); - codec2_decode(codec2, buf, bits); - fwrite(buf, sizeof(short), CODEC2_SAMPLES_PER_FRAME, fout); + codec2_decode(codec2, buf, bits, 0.0); + fwrite(buf, sizeof(short), nsam, fout); } + free(buf); + free(bits); codec2_destroy(codec2); fclose(fin); diff --git a/gr-vocoder/lib/codec2/c2enc.c b/gr-vocoder/lib/codec2/c2enc.c index 0e5b26cfdc..ab1ebe4387 100644 --- a/gr-vocoder/lib/codec2/c2enc.c +++ b/gr-vocoder/lib/codec2/c2enc.c @@ -33,49 +33,74 @@ #include <string.h> #include <errno.h> -#define BITS_SIZE ((CODEC2_BITS_PER_FRAME + 7) / 8) - int main(int argc, char *argv[]) { - void *codec2; - FILE *fin; - FILE *fout; - short buf[CODEC2_SAMPLES_PER_FRAME]; - unsigned char bits[BITS_SIZE]; - - if (argc != 3) { - printf("usage: %s InputRawspeechFile OutputBitFile\n", argv[0]); + int mode; + void *codec2; + FILE *fin; + FILE *fout; + short *buf; + unsigned char *bits; + int nsam, nbit, nbyte; + + if (argc != 4) { + printf("usage: c2enc 3200|2400|1600|1400|1300|1200 InputRawspeechFile OutputBitFile\n"); + printf("e.g c2enc 1400 ../raw/hts1a.raw hts1a.c2\n"); exit(1); } - if (strcmp(argv[1], "-") == 0) fin = stdin; - else if ( (fin = fopen(argv[1],"rb")) == NULL ) { - fprintf(stderr, "Error opening input bit file: %s: %s.\n", - argv[1], strerror(errno)); + if (strcmp(argv[1],"3200") == 0) + mode = CODEC2_MODE_3200; + else if (strcmp(argv[1],"2400") == 0) + mode = CODEC2_MODE_2400; + else if (strcmp(argv[1],"1600") == 0) + mode = CODEC2_MODE_1600; + else if (strcmp(argv[1],"1400") == 0) + mode = CODEC2_MODE_1400; + else if (strcmp(argv[1],"1300") == 0) + mode = CODEC2_MODE_1300; + else if (strcmp(argv[1],"1200") == 0) + mode = CODEC2_MODE_1200; + else { + fprintf(stderr, "Error in mode: %s. Must be 3200, 2400, 1600, 1400, 1300 or 1200\n", argv[1]); exit(1); } - if (strcmp(argv[2], "-") == 0) fout = stdout; - else if ( (fout = fopen(argv[2],"wb")) == NULL ) { - fprintf(stderr, "Error opening output speech file: %s: %s.\n", + if (strcmp(argv[2], "-") == 0) fin = stdin; + else if ( (fin = fopen(argv[2],"rb")) == NULL ) { + fprintf(stderr, "Error opening input speech file: %s: %s.\n", argv[2], strerror(errno)); exit(1); } - codec2 = codec2_create(); + if (strcmp(argv[3], "-") == 0) fout = stdout; + else if ( (fout = fopen(argv[3],"wb")) == NULL ) { + fprintf(stderr, "Error opening output compressed bit file: %s: %s.\n", + argv[3], strerror(errno)); + exit(1); + } + + codec2 = codec2_create(mode); + nsam = codec2_samples_per_frame(codec2); + nbit = codec2_bits_per_frame(codec2); + buf = (short*)malloc(nsam*sizeof(short)); + nbyte = (nbit + 7) / 8; + + bits = (unsigned char*)malloc(nbyte*sizeof(char)); - while(fread(buf, sizeof(short), CODEC2_SAMPLES_PER_FRAME, fin) == - CODEC2_SAMPLES_PER_FRAME) { + while(fread(buf, sizeof(short), nsam, fin) == (size_t)nsam) { codec2_encode(codec2, bits, buf); - fwrite(bits, sizeof(char), BITS_SIZE, fout); - //if this is in a pipeline, we probably don't want the usual - //buffering to occur + fwrite(bits, sizeof(char), nbyte, fout); + // if this is in a pipeline, we probably don't want the usual + // buffering to occur if (fout == stdout) fflush(stdout); if (fin == stdin) fflush(stdin); } codec2_destroy(codec2); + free(buf); + free(bits); fclose(fin); fclose(fout); diff --git a/gr-vocoder/lib/codec2/c2sim.c b/gr-vocoder/lib/codec2/c2sim.c index e335078b64..8f07299d0d 100644 --- a/gr-vocoder/lib/codec2/c2sim.c +++ b/gr-vocoder/lib/codec2/c2sim.c @@ -4,8 +4,9 @@ AUTHOR......: David Rowe DATE CREATED: 20/8/2010 - Codec2 simulation. Combines encoder and decoder and allows switching in - out various algorithms and quantisation steps. + Codec2 simulation. Combines encoder and decoder and allows + switching in and out various algorithms and quantisation steps. Used + for algorithm development. \*---------------------------------------------------------------------------*/ @@ -32,6 +33,8 @@ #include <string.h> #include <errno.h> #include <math.h> +#include <unistd.h> +#include <getopt.h> #include "defines.h" #include "sine.h" @@ -43,32 +46,12 @@ #include "phase.h" #include "postfilter.h" #include "interp.h" +#include "ampexp.h" +#include "phaseexp.h" -/*---------------------------------------------------------------------------*\ - - switch_present() - - Searches the command line arguments for a "switch". If the switch is - found, returns the command line argument where it ws found, else returns - NULL. - -\*---------------------------------------------------------------------------*/ - -int switch_present(sw,argc,argv) -register char sw[]; /* switch in string form */ -register int argc; /* number of command line arguments */ -register char *argv[]; /* array of command line arguments in string form */ -{ - register int i; /* loop variable */ - - for(i=1; i<argc; i++) - if (!strcmp(sw,argv[i])) - return(i); +void synth_one_frame(kiss_fft_cfg fft_inv_cfg, short buf[], MODEL *model, float Sn_[], float Pn[], int prede, float *de_mem, float gain); +void print_help(const struct option *long_options, int num_opts, char* argv[]); - return 0; -} - -void synth_one_frame(short buf[], MODEL *model, float Sn_[], float Pn[]); /*---------------------------------------------------------------------------*\ @@ -78,386 +61,829 @@ void synth_one_frame(short buf[], MODEL *model, float Sn_[], float Pn[]); int main(int argc, char *argv[]) { - FILE *fout; /* output speech file */ - FILE *fin; /* input speech file */ - short buf[N]; /* input/output buffer */ - float Sn[M]; /* float input speech samples */ - COMP Sw[FFT_ENC]; /* DFT of Sn[] */ - float w[M]; /* time domain hamming window */ - COMP W[FFT_ENC]; /* DFT of w[] */ - MODEL model; - float Pn[2*N]; /* trapezoidal synthesis window */ - float Sn_[2*N]; /* synthesised speech */ - int i; /* loop variable */ - int frames; - float prev_Wo; - float pitch; - int voiced1 = 0; - - char out_file[MAX_STR]; - int arg; - float snr; - float sum_snr; - - int lpc_model, order = LPC_ORD; - int lsp, lspd, lspdvq, lsp_quantiser; - float ak[LPC_MAX]; - COMP Sw_[FFT_ENC]; - COMP Ew[FFT_ENC]; - - int dump; - - int phase0; - float ex_phase[MAX_AMP+1]; - - int postfilt; - float bg_est; - - int hand_voicing; - FILE *fvoicing = 0; - - MODEL prev_model, interp_model; - int decimate; - float lsps[LPC_ORD]; - float prev_lsps[LPC_ORD]; - float e, prev_e; - float ak_interp[LPC_MAX]; - - void *nlp_states; - float hpf_states[2]; - int resample; - float AresdB_prev[MAX_AMP]; - - for(i=0; i<MAX_AMP; i++) - AresdB_prev[i] = 0.0; - - for(i=0; i<M; i++) - Sn[i] = 1.0; - for(i=0; i<2*N; i++) - Sn_[i] = 0; - - prev_Wo = TWO_PI/P_MAX; - - prev_model.Wo = TWO_PI/P_MIN; - prev_model.L = floor(PI/prev_model.Wo); - for(i=1; i<=prev_model.L; i++) { - prev_model.A[i] = 0.0; - prev_model.phi[i] = 0.0; - } - for(i=1; i<=MAX_AMP; i++) { - ex_phase[i] = 0.0; - } - for(i=0; i<LPC_ORD; i++) { - prev_lsps[i] = i*PI/(LPC_ORD+1); - } - e = prev_e = 1; - hpf_states[0] = hpf_states[1] = 0.0; - - nlp_states = nlp_create(); - - if (argc < 2) { - fprintf(stderr, "\nCodec2 - 2400 bit/s speech codec - Simulation Program\n" - "\thttp://rowetel.com/codec2.html\n\n" - "usage: %s InputFile [-o OutputFile]\n" - "\t[--lpc Order]\n" - "\t[--lsp]\n" - "\t[--lspd]\n" - "\t[--lspdvq]\n" - "\t[--phase0]\n" - "\t[--postfilter]\n" - "\t[--hand_voicing]\n" - "\t[--dec]\n" - "\t[--dump DumpFilePrefix]\n", argv[0]); - exit(1); - } - - /* Interpret command line arguments -------------------------------------*/ - - /* Input file */ - - if ((fin = fopen(argv[1],"rb")) == NULL) { - fprintf(stderr, "Error opening input speech file: %s: %s.\n", - argv[1], strerror(errno)); - exit(1); - } - - /* Output file */ - - if ((arg = switch_present("-o",argc,argv))) { - if ((fout = fopen(argv[arg+1],"wb")) == NULL) { - fprintf(stderr, "Error opening output speech file: %s: %s.\n", - argv[arg+1], strerror(errno)); - exit(1); + FILE *fout = NULL; /* output speech file */ + FILE *fin; /* input speech file */ + short buf[N]; /* input/output buffer */ + float Sn[M]; /* float input speech samples */ + float Sn_pre[M]; /* pre-emphasised input speech samples */ + COMP Sw[FFT_ENC]; /* DFT of Sn[] */ + kiss_fft_cfg fft_fwd_cfg; + kiss_fft_cfg fft_inv_cfg; + float w[M]; /* time domain hamming window */ + COMP W[FFT_ENC]; /* DFT of w[] */ + MODEL model; + float Pn[2*N]; /* trapezoidal synthesis window */ + float Sn_[2*N]; /* synthesised speech */ + int i; /* loop variable */ + int frames; + float prev_Wo, prev__Wo, uq_Wo, prev_uq_Wo; + float pitch; + int voiced1 = 0; + char out_file[MAX_STR]; + char ampexp_arg[MAX_STR]; + char phaseexp_arg[MAX_STR]; + float snr; + float sum_snr; + + int lpc_model = 0, order = LPC_ORD; + int lsp = 0, lspd = 0, lspvq = 0; + int lspres = 0; + int lspdt = 0, lspdt_mode = LSPDT_ALL; + int dt = 0, lspjvm = 0, lspanssi = 0, lspjnd = 0, lspmel = 0; + int prede = 0; + float pre_mem = 0.0, de_mem = 0.0; + float ak[LPC_MAX]; + COMP Sw_[FFT_ENC]; + COMP Ew[FFT_ENC]; + + int phase0 = 0; + float ex_phase[MAX_AMP+1]; + + int postfilt; + float bg_est; + + int hand_voicing = 0, phaseexp = 0, ampexp = 0, hi = 0, simlpcpf = 0; + int lpcpf = 0; + FILE *fvoicing = 0; + + MODEL prev_model, interp_model; + int decimate = 0; + float lsps[LPC_MAX]; + float prev_lsps[LPC_MAX], prev_lsps_[LPC_MAX]; + float lsps__prev[LPC_MAX]; + float lsps__prev2[LPC_MAX]; + float e, prev_e; + float ak_interp[LPC_MAX]; + int lsp_indexes[LPC_MAX]; + float lsps_[LPC_MAX]; + float Woe_[2]; + + void *nlp_states; + float hpf_states[2]; + int scalar_quant_Wo_e = 0; + int vector_quant_Wo_e = 0; + int dump_pitch_e = 0; + FILE *fjvm = NULL; + #ifdef DUMP + int dump; + #endif + struct PEXP *pexp = NULL; + struct AEXP *aexp = NULL; + float gain = 1.0; + + char* opt_string = "ho:"; + struct option long_options[] = { + { "lpc", required_argument, &lpc_model, 1 }, + { "lspjnd", no_argument, &lspjnd, 1 }, + { "lspmel", no_argument, &lspmel, 1 }, + { "lsp", no_argument, &lsp, 1 }, + { "lspd", no_argument, &lspd, 1 }, + { "lspvq", no_argument, &lspvq, 1 }, + { "lspres", no_argument, &lspres, 1 }, + #ifdef __EXPERIMENTAL__ + { "lspdt", no_argument, &lspdt, 1 }, + { "lspdt_mode", required_argument, NULL, 0 }, + #endif + { "lspjvm", no_argument, &lspjvm, 1 }, + #ifdef __EXPERIMENTAL__ + { "lspanssi", no_argument, &lspanssi, 1 }, + #endif + { "phase0", no_argument, &phase0, 1 }, + { "phaseexp", required_argument, &phaseexp, 1 }, + { "ampexp", required_argument, &exp, 1 }, + { "postfilter", no_argument, &postfilt, 1 }, + { "hand_voicing", required_argument, &hand_voicing, 1 }, + { "dec", no_argument, &decimate, 1 }, + { "dt", no_argument, &dt, 1 }, + { "hi", no_argument, &hi, 1 }, + { "simlpcpf", no_argument, &simlpcpf, 1 }, + { "lpcpf", no_argument, &lpcpf, 1 }, + { "prede", no_argument, &prede, 1 }, + { "dump_pitch_e", required_argument, &dump_pitch_e, 1 }, + { "sq_pitch_e", no_argument, &scalar_quant_Wo_e, 1 }, + { "vq_pitch_e", no_argument, &vector_quant_Wo_e, 1 }, + { "rate", required_argument, NULL, 0 }, + { "gain", required_argument, NULL, 0 }, + #ifdef DUMP + { "dump", required_argument, &dump, 1 }, + #endif + { "help", no_argument, NULL, 'h' }, + { NULL, no_argument, NULL, 0 } + }; + int num_opts=sizeof(long_options)/sizeof(struct option); + + for(i=0; i<M; i++) { + Sn[i] = 1.0; + Sn_pre[i] = 1.0; } - strcpy(out_file,argv[arg+1]); - } - else - fout = NULL; - - lpc_model = 0; - if ((arg = switch_present("--lpc",argc,argv))) { - lpc_model = 1; - order = atoi(argv[arg+1]); - if ((order < 4) || (order > 20)) { - fprintf(stderr, "Error in lpc order: %d\n", order); - exit(1); - } - } - - dump = switch_present("--dump",argc,argv); -#ifdef DUMP - if (dump) - dump_on(argv[dump+1]); -#endif - - lsp = switch_present("--lsp",argc,argv); - lsp_quantiser = 0; - if (lsp) - assert(order == LPC_ORD); + for(i=0; i<2*N; i++) + Sn_[i] = 0; - lspd = switch_present("--lspd",argc,argv); - if (lspd) - assert(order == LPC_ORD); + prev_uq_Wo = prev_Wo = prev__Wo = TWO_PI/P_MAX; - lspdvq = switch_present("--lspdvq",argc,argv); - if (lspdvq) - assert(order == LPC_ORD); + prev_model.Wo = TWO_PI/P_MIN; + prev_model.L = floor(PI/prev_model.Wo); + for(i=1; i<=prev_model.L; i++) { + prev_model.A[i] = 0.0; + prev_model.phi[i] = 0.0; + } + for(i=1; i<=MAX_AMP; i++) { + //ex_phase[i] = (PI/3)*(float)rand()/RAND_MAX; + ex_phase[i] = 0.0; + } + for(i=0; i<LPC_ORD; i++) { + lsps_[i] = prev_lsps[i] = prev_lsps_[i] = i*PI/(LPC_ORD+1); + lsps__prev[i] = lsps__prev2[i] = i*PI/(LPC_ORD+1); + } + e = prev_e = 1; + hpf_states[0] = hpf_states[1] = 0.0; - phase0 = switch_present("--phase0",argc,argv); - if (phase0) { - ex_phase[0] = 0; - } + nlp_states = nlp_create(M); - hand_voicing = switch_present("--hand_voicing",argc,argv); - if (hand_voicing) { - fvoicing = fopen(argv[hand_voicing+1],"rt"); - assert(fvoicing != NULL); - } + if (argc < 2) { + print_help(long_options, num_opts, argv); + } - bg_est = 0.0; - postfilt = switch_present("--postfilter",argc,argv); + /*----------------------------------------------------------------*\ + + Interpret Command Line Arguments + + \*----------------------------------------------------------------*/ + + while(1) { + int option_index = 0; + int opt = getopt_long(argc, argv, opt_string, + long_options, &option_index); + if (opt == -1) + break; + switch (opt) { + case 0: + if(strcmp(long_options[option_index].name, "lpc") == 0) { + order = atoi(optarg); + if((order < 4) || (order > 20)) { + fprintf(stderr, "Error in LPC order: %s\n", optarg); + exit(1); + } + #ifdef DUMP + } else if(strcmp(long_options[option_index].name, "dump") == 0) { + if (dump) + dump_on(optarg); + #endif + } else if(strcmp(long_options[option_index].name, "lsp") == 0 + || strcmp(long_options[option_index].name, "lspd") == 0 + || strcmp(long_options[option_index].name, "lspvq") == 0) { + assert(order == LPC_ORD); + } else if(strcmp(long_options[option_index].name, "lspdt_mode") == 0) { + if (strcmp(optarg,"all") == 0) + lspdt_mode = LSPDT_ALL; + else if (strcmp(optarg,"low") == 0) + lspdt_mode = LSPDT_LOW; + else if (strcmp(optarg,"high") == 0) + lspdt_mode = LSPDT_HIGH; + else { + fprintf(stderr, "Error in lspdt_mode: %s\n", optarg); + exit(1); + } + } else if(strcmp(long_options[option_index].name, "hand_voicing") == 0) { + if ((fvoicing = fopen(optarg,"rt")) == NULL) { + fprintf(stderr, "Error opening voicing file: %s: %s.\n", + optarg, strerror(errno)); + exit(1); + } + } else if(strcmp(long_options[option_index].name, "dump_pitch_e") == 0) { + if ((fjvm = fopen(optarg,"wt")) == NULL) { + fprintf(stderr, "Error opening pitch & energy dump file: %s: %s.\n", + optarg, strerror(errno)); + exit(1); + } + } else if(strcmp(long_options[option_index].name, "phaseexp") == 0) { + strcpy(phaseexp_arg, optarg); + } else if(strcmp(long_options[option_index].name, "ampexp") == 0) { + strcpy(ampexp_arg, optarg); + } else if(strcmp(long_options[option_index].name, "gain") == 0) { + gain = atof(optarg); + } else if(strcmp(long_options[option_index].name, "rate") == 0) { + if(strcmp(optarg,"3200") == 0) { + lpc_model = 1; order = 10; + scalar_quant_Wo_e = 1; + lspd = 1; + phase0 = 1; + postfilt = 1; + decimate = 1; + lpcpf = 1; + } else if(strcmp(optarg,"2400") == 0) { + lpc_model = 1; order = 10; + vector_quant_Wo_e = 1; + lsp = 1; + phase0 = 1; + postfilt = 1; + decimate = 1; + lpcpf = 1; + } else if(strcmp(optarg,"1400") == 0) { + lpc_model = 1; order = 10; + vector_quant_Wo_e = 1; + lsp = 1; lspdt = 1; + phase0 = 1; + postfilt = 1; + decimate = 1; + dt = 1; + lpcpf = 1; + } else if(strcmp(optarg,"1200") == 0) { + lpc_model = 1; order = 10; + scalar_quant_Wo_e = 1; + lspjvm = 1; lspdt = 1; + phase0 = 1; + postfilt = 1; + decimate = 1; + dt = 1; + lpcpf = 1; + } else { + fprintf(stderr, "Error: invalid output rate %s\n", optarg); + exit(1); + } + } + break; + + case 'h': + print_help(long_options, num_opts, argv); + break; + + case 'o': + if (strcmp(optarg, "-") == 0) fout = stdout; + else if ((fout = fopen(optarg,"wb")) == NULL) { + fprintf(stderr, "Error opening output speech file: %s: %s.\n", + optarg, strerror(errno)); + exit(1); + } + strcpy(out_file,optarg); + break; + + default: + /* This will never be reached */ + break; + } + } - decimate = switch_present("--dec",argc,argv); + /* Input file */ - arg = switch_present("--resample",argc,argv); - resample = atoi(argv[arg+1]); + if ((fin = fopen(argv[optind],"rb")) == NULL) { + fprintf(stderr, "Error opening input speech file: %s: %s.\n", + argv[optind], strerror(errno)); + exit(1); + } - /* Initialise ------------------------------------------------------------*/ + ex_phase[0] = 0; + bg_est = 0.0; + Woe_[0] = Woe_[1] = 1.0; - make_analysis_window(w,W); - make_synthesis_window(Pn); - quantise_init(); + /* + printf("lspd: %d lspdt: %d lspdt_mode: %d phase0: %d postfilt: %d " + "decimate: %d dt: %d\n",lspd,lspdt,lspdt_mode,phase0,postfilt, + decimate,dt); + */ - /* Main loop ------------------------------------------------------------*/ + /* Initialise ------------------------------------------------------------*/ - frames = 0; - sum_snr = 0; - while(fread(buf,sizeof(short),N,fin)) { - frames++; - //printf("frame: %d", frames); + fft_fwd_cfg = kiss_fft_alloc(FFT_ENC, 0, NULL, NULL); /* fwd FFT,used in several places */ + fft_inv_cfg = kiss_fft_alloc(FFT_DEC, 1, NULL, NULL); /* inverse FFT, used just for synth */ + make_analysis_window(fft_fwd_cfg, w, W); + make_synthesis_window(Pn); + quantise_init(); + if (phaseexp) + pexp = phase_experiment_create(); + if (ampexp) + aexp = amp_experiment_create(); - /* Read input speech */ + /*----------------------------------------------------------------*\ - for(i=0; i<M-N; i++) - Sn[i] = Sn[i+N]; - for(i=0; i<N; i++) { - //Sn[i+M-N] = hpf((float)buf[i], hpf_states); - Sn[i+M-N] = (float)buf[i]; - } + Main Loop - /* Estimate pitch */ + \*----------------------------------------------------------------*/ - nlp(nlp_states,Sn,N,M,P_MIN,P_MAX,&pitch,Sw,&prev_Wo); - model.Wo = TWO_PI/pitch; + frames = 0; + sum_snr = 0; + while(fread(buf,sizeof(short),N,fin)) { + frames++; + //printf("frame: %d ", frames); - /* estimate model parameters */ + /* Read input speech */ - dft_speech(Sw, Sn, w); - two_stage_pitch_refinement(&model, Sw); - estimate_amplitudes(&model, Sw, W); -#ifdef DUMP - dump_Sn(Sn); dump_Sw(Sw); dump_model(&model); -#endif + for(i=0; i<M-N; i++) { + Sn[i] = Sn[i+N]; + Sn_pre[i] = Sn_pre[i+N]; + } + for(i=0; i<N; i++) + Sn[i+M-N] = buf[i]; - /* optional zero-phase modelling */ + pre_emp(&Sn_pre[M-N], &Sn[M-N], &pre_mem, N); - if (phase0) { - float Wn[M]; /* windowed speech samples */ - float Rk[LPC_MAX+1]; /* autocorrelation coeffs */ -#ifdef DUMP - dump_phase(&model.phi[0], model.L); -#endif + /*------------------------------------------------------------*\ - /* find aks here, these are overwritten if LPC modelling is enabled */ + Estimate Sinusoidal Model Parameters - for(i=0; i<M; i++) - Wn[i] = Sn[i]*w[i]; - autocorrelate(Wn,Rk,M,order); - levinson_durbin(Rk,ak,order); + \*------------------------------------------------------------*/ -#ifdef DUMP - dump_ak(ak, LPC_ORD); -#endif + nlp(nlp_states,Sn,N,P_MIN,P_MAX,&pitch,Sw,W,&prev_uq_Wo); + model.Wo = TWO_PI/pitch; - /* determine voicing */ + dft_speech(fft_fwd_cfg, Sw, Sn, w); + two_stage_pitch_refinement(&model, Sw); + estimate_amplitudes(&model, Sw, W, 1); + uq_Wo = model.Wo; - snr = est_voicing_mbe(&model, Sw, W, Sw_, Ew, prev_Wo); -#ifdef DUMP - dump_Sw_(Sw_); - dump_Ew(Ew); - dump_snr(snr); -#endif + #ifdef DUMP + dump_Sn(Sn); dump_Sw(Sw); dump_model(&model); + #endif - /* just to make sure we are not cheating - kill all phases */ + if (ampexp) + amp_experiment(aexp, &model, ampexp_arg); - for(i=0; i<MAX_AMP; i++) - model.phi[i] = 0; + if (phaseexp) { + #ifdef DUMP + dump_phase(&model.phi[0], model.L); + #endif + phase_experiment(pexp, &model, phaseexp_arg); + #ifdef DUMP + dump_phase_(&model.phi[0], model.L); + #endif + } - if (hand_voicing) { - fscanf(fvoicing,"%d\n",&model.voiced); + if (hi) { + int m; + for(m=1; m<model.L/2; m++) + model.A[m] = 0.0; + for(m=3*model.L/4; m<=model.L; m++) + model.A[m] = 0.0; } - } - /* optional LPC model amplitudes */ + /*------------------------------------------------------------*\ - if (lpc_model) { - int lsp_indexes[LPC_MAX]; + Zero-phase modelling - e = speech_to_uq_lsps(lsps, ak, Sn, w, order); + \*------------------------------------------------------------*/ - if (lsp) { - encode_lsps(lsp_indexes, lsps, LPC_ORD); - decode_lsps(lsps, lsp_indexes, LPC_ORD); - bw_expand_lsps(lsps, LPC_ORD); - lsp_to_lpc(lsps, ak, LPC_ORD); - } + if (phase0) { + float Wn[M]; /* windowed speech samples */ + float Rk[LPC_MAX+1]; /* autocorrelation coeffs */ - if (lspd) { - float lsps_[LPC_ORD]; + #ifdef DUMP + dump_phase(&model.phi[0], model.L); + #endif - lspd_quantise(lsps, lsps_, LPC_ORD); - lsp_to_lpc(lsps_, ak, LPC_ORD); - } + /* find aks here, these are overwritten if LPC modelling is enabled */ - if (lspdvq) { - float lsps_[LPC_ORD]; + if (prede) { + for(i=0; i<M; i++) + Wn[i] = Sn_pre[i]*w[i]; + } + else { - lspdvq_quantise(lsps, lsps_, LPC_ORD); - lsp_to_lpc(lsps_, ak, LPC_ORD); - } + for(i=0; i<M; i++) + Wn[i] = Sn[i]*w[i]; + } + autocorrelate(Wn,Rk,M,order); + levinson_durbin(Rk,ak,order); - e = decode_energy(encode_energy(e)); - model.Wo = decode_Wo(encode_Wo(model.Wo)); + /* determine voicing */ - aks_to_M2(ak, order, &model, e, &snr, 1); - apply_lpc_correction(&model); - sum_snr += snr; -#ifdef DUMP - dump_quantised_model(&model); -#endif - } + snr = est_voicing_mbe(&model, Sw, W, Sw_, Ew, prev_uq_Wo); - /* optional resampling of model amplitudes */ + if (dump_pitch_e) + fprintf(fjvm, "%f %f %d ", model.Wo, snr, model.voiced); - printf("frames=%d\n", frames); - if (resample) { - snr = resample_amp_nl(&model, resample, AresdB_prev); - sum_snr += snr; -#ifdef DUMP - dump_quantised_model(&model); -#endif - } + //printf("snr %3.2f v: %d Wo: %f prev_Wo: %f\n", snr, model.voiced, + // model.Wo, prev_uq_Wo); + #ifdef DUMP + dump_Sw_(Sw_); + dump_Ew(Ew); + dump_snr(snr); + #endif - /* option decimation to 20ms rate, which enables interpolation - routine to synthesise in between frame */ + /* just to make sure we are not cheating - kill all phases */ - if (decimate) { - if (!phase0) { - printf("needs --phase0 to resample phase for interpolated Wo\n"); - exit(0); - } - if (!lpc_model) { - printf("needs --lpc 10 to resample amplitudes\n"); - exit(0); + for(i=0; i<=MAX_AMP; i++) + model.phi[i] = 0; + + if (hand_voicing) { + fscanf(fvoicing,"%d\n",&model.voiced); + } } - /* odd frame - interpolate */ + /*------------------------------------------------------------*\ + + LPC model amplitudes and LSP quantisation + + \*------------------------------------------------------------*/ + + if (lpc_model) { + + if (prede) + e = speech_to_uq_lsps(lsps, ak, Sn_pre, w, order); + else + e = speech_to_uq_lsps(lsps, ak, Sn, w, order); + + #ifdef DUMP + dump_ak(ak, LPC_ORD); + #endif + + /* tracking down -ve energy values with BW expansion */ + /* + if (e < 0.0) { + int i; + FILE*f=fopen("x.txt","wt"); + for(i=0; i<M; i++) + fprintf(f,"%f\n", Sn[i]); + fclose(f); + printf("e = %f frames = %d\n", e, frames); + for(i=0; i<order; i++) + printf("%f ", ak[i]); + exit(0); + } + */ + + if (dump_pitch_e) + fprintf(fjvm, "%f\n", e); + + #ifdef DUMP + /* dump order is different if we are decimating */ + if (!decimate) + dump_lsp(lsps); + for(i=0; i<LPC_ORD; i++) + prev_lsps[i] = lsps[i]; + #endif + + /* various LSP quantisation schemes */ + + if (lsp) { + encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD); + decode_lsps_scalar(lsps_, lsp_indexes, LPC_ORD); + bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } + + if (lspd) { + encode_lspds_scalar(lsp_indexes, lsps, LPC_ORD); + decode_lspds_scalar(lsps_, lsp_indexes, LPC_ORD); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } + +#ifdef __EXPERIMENTAL__ + if (lspvq) { + lspvq_quantise(lsps, lsps_, LPC_ORD); + bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } +#endif + + if (lspjvm) { + /* Jean-Marc's multi-stage, split VQ */ + lspjvm_quantise(lsps, lsps_, LPC_ORD); + { + float lsps_bw[LPC_ORD]; + memcpy(lsps_bw, lsps_, sizeof(float)*LPC_ORD); + bw_expand_lsps(lsps_bw, LPC_ORD, 50.0, 100.0); + lsp_to_lpc(lsps_bw, ak, LPC_ORD); + } + } + +#ifdef __EXPERIMENTAL__ + if (lspanssi) { + /* multi-stage VQ from Anssi Ramo OH3GDD */ + + lspanssi_quantise(lsps, lsps_, LPC_ORD, 5); + bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } +#endif - if (frames%2) { + /* experimenting with non-linear LSP spacing to see if + it's just noticable */ + + if (lspjnd) { + for(i=0; i<LPC_ORD; i++) + lsps_[i] = lsps[i]; + locate_lsps_jnd_steps(lsps_, LPC_ORD); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } + + /* Another experiment with non-linear LSP spacing, this + time using a scaled version of mel frequency axis + warping. The scaling is such that the integer output + can be directly sent over the channel. + */ + + if (lspmel) { + float f, f_; + int mel[LPC_ORD]; + + for(i=0; i<LPC_ORD; i++) { + f = (4000.0/PI)*lsps[i]; + mel[i] = floor(100.0*log10(1.0 + f/700.0) + 0.5); + } + + for(i=1; i<LPC_ORD; i++) { + if (mel[i] == mel[i-1]) + mel[i]++; + } + + for(i=0; i<LPC_ORD; i++) { + f_ = 700.0*( pow(10.0, (float)mel[i]/100.0) - 1.0); + lsps_[i] = f_*(PI/4000.0); + } + for(i=5; i<10; i++) { + lsps_[i] = lsps[i]; + } + + lsp_to_lpc(lsps_, ak, LPC_ORD); + } + + /* we need lsp__prev[] for lspdt and decimate. If no + other LSP quantisation is used we use original LSPs as + there is no quantised version available. TODO: this is + mess, we should have structures and standard + nomenclature for previous frames values, lsp_[] + shouldn't be overwritten as we may want to dump it for + analysis. Re-design some time. + */ + + if (!lsp && !lspd && !lspvq && !lspres && !lspjvm && !lspanssi && !lspjnd && !lspmel) + for(i=0; i<LPC_ORD; i++) + lsps_[i] = lsps[i]; + + /* Odd frames are generated by quantising the difference + between the previous frames LSPs and this frames */ + +#ifdef __EXPERIMENTAL__ + if (lspdt && !decimate) { + if (frames%2) { + lspdt_quantise(lsps, lsps_, lsps__prev, lspdt_mode); + bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } + for(i=0; i<LPC_ORD; i++) + lsps__prev[i] = lsps_[i]; + } +#endif - interp_model.voiced = voiced1; + /* + When decimation is enabled we only send LSPs to the + decoder on odd frames. In the Delta-time LSPs case we + encode every second odd frame (i.e. every 3rd frame out + of 4) by quantising the difference between the 1st + frames LSPs and the 3rd frames: + + 10ms, frame 1: discard (interpolate at decoder) + 20ms, frame 2: send "full" LSP frame + 30ms, frame 3: discard (interpolate at decoder) + 40ms, frame 4: send LSPs differences between frame 4 and frame 2 + */ + + if (lspdt && decimate) { + /* print previous LSPs to make sure we are using the right set */ + if ((frames%4) == 0) { + //printf(" lspdt "); + //#define LSPDT + #ifdef LSPDT + lspdt_quantise(lsps, lsps_, lsps__prev2, lspdt_mode); + #else + for(i=0; i<LPC_ORD; i++) + lsps_[i] = lsps__prev2[i]; + #endif + bw_expand_lsps(lsps_, LPC_ORD, 50.0, 100.0); + lsp_to_lpc(lsps_, ak, LPC_ORD); + } + + for(i=0; i<LPC_ORD; i++) { + lsps__prev2[i] = lsps__prev[i]; + lsps__prev[i] = lsps_[i]; + } + } + #ifdef DUMP + /* if using decimated (20ms) frames we dump interp + LSPs below */ + if (!decimate) + dump_lsp_(lsps_); + #endif + + if (scalar_quant_Wo_e) { + + e = decode_energy(encode_energy(e)); + + if (!decimate) { + /* we send params every 10ms, delta-time every 20ms */ + if (dt && (frames % 2)) + model.Wo = decode_Wo_dt(encode_Wo_dt(model.Wo, prev_Wo),prev_Wo); + else + model.Wo = decode_Wo(encode_Wo(model.Wo)); + } + + if (decimate) { + /* we send params every 20ms */ + if (dt && ((frames % 4) == 0)) { + /* delta-time every 40ms */ + model.Wo = decode_Wo_dt(encode_Wo_dt(model.Wo, prev__Wo),prev__Wo); + } + else + model.Wo = decode_Wo(encode_Wo(model.Wo)); + } + + model.L = PI/model.Wo; /* if we quantise Wo re-compute L */ + } + + if (vector_quant_Wo_e) { + + /* JVM's experimental joint Wo & LPC energy quantiser */ + + //printf("\nWo %f e %f\n", model.Wo, e); + quantise_WoE(&model, &e, Woe_); + //printf("Wo %f e %f\n", model.Wo, e); + + } + + aks_to_M2(fft_fwd_cfg, ak, order, &model, e, &snr, 1, simlpcpf, lpcpf, 1, LPCPF_BETA, LPCPF_GAMMA); + apply_lpc_correction(&model); + + #ifdef DUMP + dump_ak_(ak, LPC_ORD); + #endif + + /* note SNR on interpolated frames can't be measured properly + by comparing Am as L has changed. We can dump interp lsps + and compare them, + */ + #ifdef DUMP + dump_lpc_snr(snr); + #endif + sum_snr += snr; + #ifdef DUMP + dump_quantised_model(&model); + #endif + } - #ifdef LOG_LIN_INTERP - interpolate(&interp_model, &prev_model, &model); - #else - interpolate_lsp(&interp_model, &prev_model, &model, - prev_lsps, prev_e, lsps, e, ak_interp); - apply_lpc_correction(&interp_model); - #endif + /*------------------------------------------------------------*\ + + Decimation to 20ms frame rate + + \*------------------------------------------------------------*/ + + if (decimate) { + float lsps_interp[LPC_ORD]; + + if (!phase0) { + printf("needs --phase0 to resample phase for interpolated Wo\n"); + exit(0); + } + if (!lpc_model) { + printf("needs --lpc 10 to resample amplitudes\n"); + exit(0); + } + + /* + Each 20ms we synthesise two 10ms frames: + + frame 1: discard except for voicing bit + frame 2: interpolate frame 1 LSPs from frame 2 and frame 0 + synthesise frame 1 and frame 2 speech + frame 3: discard except for voicing bit + frame 4: interpolate frame 3 LSPs from frame 4 and frame 2 + synthesise frame 3 and frame 4 speech + */ + + if ((frames%2) == 0) { + //printf("frame: %d\n", frames); + + /* decode interpolated frame */ + + interp_model.voiced = voiced1; + + interpolate_lsp(fft_fwd_cfg, &interp_model, &prev_model, &model, + prev_lsps_, prev_e, lsps_, e, ak_interp, lsps_interp); + apply_lpc_correction(&interp_model); + + /* used to compare with c2enc/c2dec version + + printf(" Wo: %1.5f L: %d v1: %d prev_e: %f\n", + interp_model.Wo, interp_model.L, interp_model.voiced, prev_e); + printf(" lsps_interp: "); + for(i=0; i<LPC_ORD; i++) + printf("%5.3f ", lsps_interp[i]); + printf("\n A..........: "); + for(i=0; i<10; i++) + printf("%5.3f ",interp_model.A[i]); + + printf("\n Wo: %1.5f L: %d e: %3.2f v2: %d\n", + model.Wo, model.L, e, model.voiced); + printf(" lsps_......: "); + for(i=0; i<LPC_ORD; i++) + printf("%5.3f ", lsps_[i]); + printf("\n A..........: "); + for(i=0; i<10; i++) + printf("%5.3f ",model.A[i]); + printf("\n"); + */ + + #ifdef DUMP + /* do dumping here so we get lsp dump file in correct order */ + dump_lsp(prev_lsps); + dump_lsp(lsps_interp); + dump_lsp(lsps); + dump_lsp(lsps_); + #endif + + if (phase0) + phase_synth_zero_order(fft_fwd_cfg, &interp_model, ak_interp, ex_phase, + order); + if (postfilt) + postfilter(&interp_model, &bg_est); + synth_one_frame(fft_inv_cfg, buf, &interp_model, Sn_, Pn, prede, &de_mem, gain); + //printf(" buf[0] %d\n", buf[0]); + if (fout != NULL) + fwrite(buf,sizeof(short),N,fout); + + /* decode this frame */ + + if (phase0) + phase_synth_zero_order(fft_fwd_cfg, &model, ak, ex_phase, order); + if (postfilt) + postfilter(&model, &bg_est); + synth_one_frame(fft_inv_cfg, buf, &model, Sn_, Pn, prede, &de_mem, gain); + //printf(" buf[0] %d\n", buf[0]); + if (fout != NULL) + fwrite(buf,sizeof(short),N,fout); + + /* update states for next time */ + + prev_model = model; + for(i=0; i<LPC_ORD; i++) + prev_lsps_[i] = lsps_[i]; + prev_e = e; + } + else { + voiced1 = model.voiced; + } + } + else { + /* no decimation - sythesise each 10ms frame immediately */ if (phase0) - phase_synth_zero_order(&interp_model, ak_interp, ex_phase, - order); - if (postfilt) - postfilter(&interp_model, &bg_est); - synth_one_frame(buf, &interp_model, Sn_, Pn); - if (fout != NULL) fwrite(buf,sizeof(short),N,fout); + phase_synth_zero_order(fft_fwd_cfg, &model, ak, ex_phase, order); - if (phase0) - phase_synth_zero_order(&model, ak, ex_phase, order); if (postfilt) postfilter(&model, &bg_est); - synth_one_frame(buf, &model, Sn_, Pn); + synth_one_frame(fft_inv_cfg, buf, &model, Sn_, Pn, prede, &de_mem, gain); if (fout != NULL) fwrite(buf,sizeof(short),N,fout); - - prev_model = model; - for(i=0; i<LPC_ORD; i++) - prev_lsps[i] = lsps[i]; - prev_e = e; - } - else { - voiced1 = model.voiced; } + + prev__Wo = prev_Wo; + prev_Wo = model.Wo; + prev_uq_Wo = uq_Wo; + //if (frames == 8) { + // exit(0); + //} } - else { - if (phase0) - phase_synth_zero_order(&model, ak, ex_phase, order); - if (postfilt) - postfilter(&model, &bg_est); - synth_one_frame(buf, &model, Sn_, Pn); - if (fout != NULL) fwrite(buf,sizeof(short),N,fout); - } - prev_Wo = TWO_PI/pitch; - } - fclose(fin); - if (fout != NULL) - fclose(fout); + /*----------------------------------------------------------------*\ - if (lpc_model || resample) - printf("SNR av = %5.2f dB\n", sum_snr/frames); + End Main Loop -#ifdef DUMP - if (dump) - dump_off(); -#endif + \*----------------------------------------------------------------*/ + + fclose(fin); - if (hand_voicing) - fclose(fvoicing); + if (fout != NULL) + fclose(fout); - nlp_destroy(nlp_states); + if (lpc_model) + printf("SNR av = %5.2f dB\n", sum_snr/frames); - return 0; + if (phaseexp) + phase_experiment_destroy(pexp); + if (ampexp) + amp_experiment_destroy(aexp); + #ifdef DUMP + if (dump) + dump_off(); + #endif + + if (hand_voicing) + fclose(fvoicing); + + nlp_destroy(nlp_states); + + return 0; } -void synth_one_frame(short buf[], MODEL *model, float Sn_[], float Pn[]) +void synth_one_frame(kiss_fft_cfg fft_inv_cfg, short buf[], MODEL *model, float Sn_[], float Pn[], int prede, float *de_mem, float gain) { int i; - synthesise(Sn_, model, Pn, 1); + synthesise(fft_inv_cfg, Sn_, model, Pn, 1); + if (prede) + de_emp(Sn_, Sn_, de_mem, N); for(i=0; i<N; i++) { + Sn_[i] *= gain; if (Sn_[i] > 32767.0) buf[i] = 32767; else if (Sn_[i] < -32767.0) @@ -467,3 +893,36 @@ void synth_one_frame(short buf[], MODEL *model, float Sn_[], float Pn[]) } } + +void print_help(const struct option* long_options, int num_opts, char* argv[]) +{ + int i; + char *option_parameters; + + fprintf(stderr, "\nCodec2 - low bit rate speech codec - Simulation Program\n" + "\thttp://rowetel.com/codec2.html\n\n" + "usage: %s [OPTIONS] <InputFile>\n\n" + "Options:\n" + "\t-o <OutputFile>\n", argv[0]); + for(i=0; i<num_opts-1; i++) { + if(long_options[i].has_arg == no_argument) { + option_parameters=""; + } else if (strcmp("lpc", long_options[i].name) == 0) { + option_parameters = " <Order>"; + } else if (strcmp("lspdt_mode", long_options[i].name) == 0) { + option_parameters = " <all|high|low>"; + } else if (strcmp("hand_voicing", long_options[i].name) == 0) { + option_parameters = " <VoicingFile>"; + } else if (strcmp("dump_pitch_e", long_options[i].name) == 0) { + option_parameters = " <Dump File>"; + } else if (strcmp("rate", long_options[i].name) == 0) { + option_parameters = " <4800|2400|1400|1200>"; + } else if (strcmp("dump", long_options[i].name) == 0) { + option_parameters = " <DumpFilePrefix>"; + } else { + option_parameters = " <UNDOCUMENTED parameter>"; + } + fprintf(stderr, "\t--%s%s\n", long_options[i].name, option_parameters); + } + exit(1); +} diff --git a/gr-vocoder/lib/codec2/codebook/dlsp1.txt b/gr-vocoder/lib/codec2/codebook/dlsp1.txt index d126be7714..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp1.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp1.txt @@ -1,4 +1,12 @@ -1 16 +1 32 +25 +50 +75 +100 +125 +150 +175 +200 225 250 275 @@ -15,3 +23,13 @@ 550 575 600 +625 +650 +675 +700 +725 +750 +775 +800 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp10.txt b/gr-vocoder/lib/codec2/codebook/dlsp10.txt index dea9dd9d84..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp10.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp10.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +225 +250 +275 300 +325 +350 +375 +400 425 +450 +475 +500 +525 550 +575 +600 +625 +650 675 +700 +725 +750 +775 800 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp2.txt b/gr-vocoder/lib/codec2/codebook/dlsp2.txt index 234bf20671..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp2.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp2.txt @@ -1,4 +1,4 @@ -1 16 +1 32 25 50 75 @@ -15,3 +15,21 @@ 350 375 400 +425 +450 +475 +500 +525 +550 +575 +600 +625 +650 +675 +700 +725 +750 +775 +800 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp3.txt b/gr-vocoder/lib/codec2/codebook/dlsp3.txt index b2ee06da46..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp3.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp3.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 75 100 -120 +125 150 +175 +200 +225 250 +275 +300 +325 350 +375 +400 +425 450 +475 +500 +525 +550 +575 +600 +625 +650 +675 +700 +725 +750 +775 +800 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp4.txt b/gr-vocoder/lib/codec2/codebook/dlsp4.txt index dea9dd9d84..4a5e9902a4 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp4.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp4.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +250 300 -425 +350 +400 +450 +500 550 -675 +600 +650 +700 +750 800 +850 +900 +950 +1000 +1050 +1100 +1150 +1200 +1250 +1300 +1350 +1400 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp5.txt b/gr-vocoder/lib/codec2/codebook/dlsp5.txt index dea9dd9d84..4a5e9902a4 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp5.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp5.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +250 300 -425 +350 +400 +450 +500 550 -675 +600 +650 +700 +750 800 +850 +900 +950 +1000 +1050 +1100 +1150 +1200 +1250 +1300 +1350 +1400 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp6.txt b/gr-vocoder/lib/codec2/codebook/dlsp6.txt index dea9dd9d84..4a5e9902a4 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp6.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp6.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +250 300 -425 +350 +400 +450 +500 550 -675 +600 +650 +700 +750 800 +850 +900 +950 +1000 +1050 +1100 +1150 +1200 +1250 +1300 +1350 +1400 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp7.txt b/gr-vocoder/lib/codec2/codebook/dlsp7.txt index dea9dd9d84..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp7.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp7.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +225 +250 +275 300 +325 +350 +375 +400 425 +450 +475 +500 +525 550 +575 +600 +625 +650 675 +700 +725 +750 +775 800 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp8.txt b/gr-vocoder/lib/codec2/codebook/dlsp8.txt index dea9dd9d84..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp8.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp8.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +225 +250 +275 300 +325 +350 +375 +400 425 +450 +475 +500 +525 550 +575 +600 +625 +650 675 +700 +725 +750 +775 800 + + diff --git a/gr-vocoder/lib/codec2/codebook/dlsp9.txt b/gr-vocoder/lib/codec2/codebook/dlsp9.txt index dea9dd9d84..058d048d3c 100644 --- a/gr-vocoder/lib/codec2/codebook/dlsp9.txt +++ b/gr-vocoder/lib/codec2/codebook/dlsp9.txt @@ -1,9 +1,35 @@ -1 8 +1 32 +25 50 +75 100 +125 +150 +175 200 +225 +250 +275 300 +325 +350 +375 +400 425 +450 +475 +500 +525 550 +575 +600 +625 +650 675 +700 +725 +750 +775 800 + + diff --git a/gr-vocoder/lib/codec2/codebook/gecb.txt b/gr-vocoder/lib/codec2/codebook/gecb.txt new file mode 100644 index 0000000000..bd3bb08a4a --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/gecb.txt @@ -0,0 +1,257 @@ +2 256 +2.709998 12.018395 +0.046750 -2.738813 +0.120993 8.388947 +-1.580275 -0.892307 +1.193065 -1.915609 +0.187101 -3.276788 +0.332251 -7.664550 +-1.479436 31.246122 +1.527612 27.709463 +-0.524379 5.250122 +0.553330 7.438797 +-0.843451 -1.952987 +2.263885 8.610286 +0.143143 2.365493 +0.616506 1.284268 +-1.711327 22.096672 +1.008128 17.396519 +-0.106718 1.418905 +-0.136246 14.273605 +-1.709087 -20.531881 +1.657866 -3.391068 +0.138049 -4.957845 +0.536729 -1.943748 +0.196307 36.851948 +1.272479 22.556494 +-0.670219 -1.906045 +0.382092 6.401132 +-0.756911 -4.901017 +1.829313 4.613800 +0.318794 0.736830 +0.612815 -2.075045 +-0.410151 24.787077 +1.776016 13.190924 +0.106457 -0.104492 +0.192206 10.183844 +-1.824423 -7.715654 +0.931346 4.348355 +0.308813 -4.086001 +0.397143 -11.808859 +-0.048715 41.227314 +0.877342 35.850311 +-0.759794 0.476634 +0.978593 7.674673 +-1.195056 3.038826 +2.639894 -3.411063 +0.191127 3.603507 +0.402932 1.084298 +-2.152022 18.107616 +1.546802 8.322713 +-0.143089 -4.075922 +-0.150142 5.866741 +-1.408444 -3.250696 +1.566148 -10.413164 +0.178171 -10.226697 +0.362164 -0.028556 +-0.070125 24.390722 +0.594752 17.482765 +-0.286980 -6.904069 +0.464818 10.205451 +-1.006841 -14.357209 +2.329569 -3.691613 +0.335745 2.407139 +1.019658 -3.155647 +-1.259455 7.991899 +2.383695 19.680567 +-0.094947 -2.413742 +0.209330 6.664768 +-2.221034 1.379860 +1.292387 2.046333 +0.243626 -0.890741 +0.428773 -7.193658 +-1.113744 41.341354 +2.609799 31.140514 +-0.446468 2.534188 +0.490104 4.627575 +-1.117226 -3.241744 +1.791562 8.414926 +0.156012 0.183336 +0.532447 3.154545 +-0.764484 18.513958 +0.952395 11.771298 +-0.332567 0.346987 +0.202165 14.716752 +-2.129240 -15.558954 +1.353583 -1.926790 +-0.010963 -16.336386 +0.399053 -2.790569 +0.750657 31.148336 +0.655743 24.481859 +-0.453210 -0.735879 +0.286900 6.546703 +-0.715673 -12.357815 +1.548488 3.872171 +0.271874 0.802339 +0.502073 -4.854850 +-0.497037 17.761904 +1.191161 13.954446 +0.015630 1.331566 +0.341867 8.935369 +-2.316009 -5.395058 +0.758610 1.964505 +0.241320 -3.237686 +0.267151 -11.234388 +-0.273126 32.624771 +1.753523 40.431995 +-0.784011 3.045757 +0.705987 5.661178 +-1.386400 1.353557 +2.376458 1.674851 +0.242973 4.732178 +0.491227 0.354061 +-1.606762 8.658955 +1.167111 5.987103 +-0.137601 -12.041750 +-0.251375 10.397204 +-1.431514 -8.904108 +0.988280 -13.208963 +0.261484 -6.354970 +0.395932 -0.702529 +0.283704 26.899563 +0.420959 15.441778 +-0.355804 -13.727784 +0.527372 12.398515 +-1.169559 -15.998457 +1.906688 -5.816055 +0.354492 3.851572 +0.825760 -4.162642 +-0.490190 13.057229 +2.255773 13.526449 +-0.004956 -3.237127 +0.026709 7.866448 +-1.810372 -0.451183 +1.083827 -0.183620 +0.135836 -2.266582 +0.375812 -5.512248 +-1.966443 38.682854 +1.977988 24.565481 +-0.704656 6.358810 +0.480786 7.051749 +-0.976417 -2.422727 +2.502148 6.759346 +0.083588 3.258795 +0.543629 0.910013 +-1.231959 23.091507 +0.785492 14.807000 +-0.213554 1.688002 +0.004748 18.171820 +-1.547192 -16.116837 +1.501045 -3.281141 +0.080133 -4.634724 +0.476592 -2.180929 +0.442470 40.303989 +1.072766 27.592009 +-0.594738 -4.166807 +0.422480 7.616091 +-0.927521 -7.274406 +1.991623 1.296359 +0.291307 2.398781 +0.721081 -1.950625 +-0.804256 24.929474 +1.648388 19.119692 +0.060852 -0.590639 +0.266085 9.103249 +-1.957399 -2.884607 +1.116929 2.672397 +0.354580 -2.748541 +0.330733 -14.156131 +-0.527851 39.575626 +0.991152 43.194984 +-0.589619 1.269186 +0.787401 8.730713 +-1.013800 1.025075 +2.825403 1.895381 +0.240890 2.745566 +0.427195 2.544456 +-1.953109 12.243958 +1.448616 12.060747 +-0.210492 -3.379058 +-0.056713 10.204020 +-1.652370 -5.102737 +1.294748 -12.270802 +0.111608 -8.675921 +0.326634 -1.167627 +0.021781 31.125782 +0.455335 21.468430 +-0.375440 -3.371207 +0.393620 11.301987 +-0.851456 -19.414892 +2.107030 -2.228865 +0.373233 1.924056 +0.884438 -1.720581 +-0.975127 9.840128 +2.003303 17.395407 +-0.036915 -1.111372 +0.148456 5.399970 +-1.914412 4.773819 +1.447907 0.537122 +0.194979 -1.038179 +0.495771 -9.955025 +-1.058987 32.947052 +2.011222 32.454418 +-0.309650 4.719106 +0.436082 4.635524 +-1.237105 -1.254284 +2.022740 9.428345 +0.190342 1.460767 +0.479017 2.484788 +-1.078483 16.221748 +1.207642 9.654212 +-0.258087 -1.672358 +0.071852 13.415978 +-1.877228 -16.072031 +1.289568 -4.871185 +0.067713 -13.442700 +0.435551 -4.165503 +0.466140 30.589535 +0.904895 21.597990 +-0.518369 -2.532048 +0.337363 5.637264 +-0.554975 -17.400511 +1.691879 1.145742 +0.227934 0.889297 +0.587303 -5.729732 +-0.262133 18.666620 +1.395048 17.002878 +-0.019090 4.308379 +0.304235 12.669943 +-2.074059 -6.460845 +0.920546 1.212957 +0.284927 -1.785466 +0.209724 -16.023964 +-0.636067 31.576820 +1.349887 34.677502 +-0.971625 5.300859 +0.590249 4.449709 +-1.567867 3.602385 +2.145497 4.516663 +0.296022 4.120170 +0.445299 0.868772 +-1.441931 14.128431 +1.355752 6.007401 +-0.012814 -7.496573 +-0.430000 8.500124 +-1.204693 -7.113256 +1.101018 -6.836818 +0.196463 -6.234002 +0.436747 -1.129788 +0.141052 22.854876 +0.290821 18.811443 +-0.529536 -7.732510 +0.634280 10.789847 +-1.334721 -20.325773 +1.815645 -1.903316 +0.394778 3.797577 +0.732682 -8.183819 +-0.741244 11.768337 diff --git a/gr-vocoder/lib/codec2/codebook/lsp45678910.txt b/gr-vocoder/lib/codec2/codebook/lsp45678910.txt new file mode 100644 index 0000000000..291d3cdbce --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lsp45678910.txt @@ -0,0 +1,4097 @@ +6 4096 +1.081234 1.578844 1.855572 1.937313 2.532441 2.649806 +1.062804 1.450009 1.839560 1.956503 2.488847 2.653463 +1.101587 1.361019 1.833584 1.932414 2.505176 2.629812 +1.079058 1.376855 1.872688 1.955078 2.541337 2.633780 +1.095536 1.631036 1.866273 2.066987 2.506661 2.570431 +1.093059 1.561358 1.772473 2.123863 2.547475 2.618258 +1.093649 1.500206 1.786047 2.077115 2.483767 2.572542 +1.035022 1.485983 1.678652 2.079363 2.402344 2.513315 +1.231720 1.630566 1.849906 2.023447 2.467212 2.571610 +1.206362 1.478193 1.855647 2.009197 2.437429 2.552382 +1.204249 1.495756 1.846404 2.039977 2.500628 2.592437 +1.272025 1.438353 1.854503 2.038713 2.518717 2.620094 +1.298912 1.483356 1.838869 1.983659 2.488374 2.597006 +1.385591 1.500184 1.819431 1.981705 2.505537 2.612529 +1.413670 1.566546 1.767180 1.994490 2.569613 2.625244 +1.469053 1.626083 1.751768 2.041187 2.608951 2.658775 +1.489505 1.617638 1.689177 2.053852 2.662243 2.705533 +1.431122 1.535578 1.647319 1.810924 2.575767 2.692196 +1.411673 1.606174 1.730361 1.969368 2.628110 2.691849 +1.341020 1.639970 2.197392 2.281319 2.449714 2.625998 +1.319877 1.674826 2.101177 2.281732 2.499782 2.611482 +1.274620 1.610124 1.901436 2.235657 2.518178 2.628876 +1.172210 1.365637 1.784703 1.904448 2.538076 2.646190 +1.096161 1.350109 1.754990 1.869673 2.486568 2.605496 +1.036538 1.326195 1.729890 1.862116 2.461192 2.575454 +1.016529 1.277247 1.688801 1.808376 2.462981 2.576244 +0.968031 1.329007 1.716412 1.821357 2.481150 2.561950 +0.940641 1.283342 1.767876 1.860537 2.503139 2.594903 +0.926995 1.243331 1.738909 1.901001 2.449501 2.557636 +0.839883 1.237117 1.702150 1.812616 2.421388 2.492978 +0.924474 1.188075 1.757524 1.824899 2.455944 2.611065 +0.964230 1.207274 1.666224 1.876812 2.507149 2.580412 +0.989772 1.189729 1.693447 1.807142 2.445712 2.561953 +0.919183 1.203118 1.673832 1.772614 2.385797 2.511668 +0.978552 1.175420 1.613855 1.726871 2.328959 2.516699 +1.014543 1.254251 1.587284 1.756626 2.403061 2.510828 +1.096718 1.231168 1.557405 1.843944 2.463584 2.555458 +1.168771 1.351177 1.613931 1.831029 2.476269 2.581218 +1.176515 1.264150 1.564916 1.760486 2.483522 2.581045 +1.017969 1.249828 1.424493 1.593545 2.458340 2.525030 +1.053988 1.216029 1.517421 1.851941 2.342751 2.502327 +0.908986 1.250795 1.593917 1.887100 2.373089 2.530129 +0.993871 1.164018 1.616620 1.775732 2.569459 2.658570 +1.102483 1.386153 1.573681 1.785642 2.317931 2.508557 +1.207240 1.390831 1.551049 1.850614 2.335983 2.494330 +0.905032 1.416478 1.580046 1.841825 2.503807 2.601603 +0.795890 1.107933 1.597705 2.015496 2.402148 2.534611 +0.732401 1.158610 1.557468 1.938003 2.626415 2.705430 +0.859670 1.129062 1.671859 1.953992 2.514790 2.615870 +0.921647 1.245355 1.683753 1.894457 2.599645 2.716564 +0.845409 1.194759 1.767314 1.844514 2.589767 2.716944 +0.977678 1.141401 1.667109 1.923833 2.632008 2.689070 +0.951137 1.122551 1.714183 1.885895 2.535763 2.672112 +1.029949 1.159554 1.739443 1.928325 2.488185 2.623518 +0.925634 1.225929 1.751801 1.970749 2.532895 2.621066 +1.012300 1.211427 1.793946 1.885857 2.467267 2.572492 +0.993978 1.137467 1.743472 1.840886 2.390082 2.566385 +0.989822 1.173068 1.687559 1.948929 2.325527 2.473423 +0.955854 1.237231 1.807406 2.116766 2.391031 2.502779 +1.103361 1.357985 1.852236 2.097091 2.392749 2.553242 +1.128873 1.440897 1.927907 2.176697 2.407985 2.544276 +1.316127 1.575436 1.964565 2.158944 2.485840 2.576132 +1.469605 1.772101 1.954837 2.164070 2.399616 2.481917 +1.506520 1.754882 2.018413 2.249491 2.486272 2.607615 +1.524190 1.776451 2.054579 2.275694 2.584977 2.669083 +1.518000 1.850281 2.026435 2.301875 2.577528 2.669180 +1.422050 1.788979 1.967476 2.184773 2.596851 2.699678 +1.208408 1.434703 1.923623 2.003769 2.602930 2.685007 +1.221170 1.436565 1.879969 2.033402 2.498146 2.695421 +1.217714 1.375982 1.908609 1.973031 2.480559 2.645396 +1.200348 1.412239 1.863276 2.054536 2.409232 2.646327 +1.439453 1.675933 2.064707 2.273226 2.606450 2.696215 +1.547568 1.956021 2.083785 2.387077 2.634316 2.711216 +1.745365 1.995260 2.176270 2.409488 2.632251 2.707416 +1.819289 1.982164 2.210166 2.452194 2.603770 2.664517 +1.669555 1.940179 2.100875 2.386942 2.530819 2.630866 +1.597684 1.945913 2.072836 2.338891 2.544245 2.608247 +1.656152 1.888690 1.984550 2.301133 2.510775 2.586360 +1.618800 1.898863 2.024738 2.291312 2.440530 2.560289 +1.481284 1.826210 1.971921 2.192909 2.417020 2.530293 +1.318733 1.581540 1.845445 2.163997 2.389227 2.505418 +1.341326 1.565852 1.802875 2.218482 2.430769 2.545834 +1.318506 1.412657 1.677620 2.182351 2.372753 2.476532 +1.243720 1.456674 1.665712 2.126711 2.332874 2.438449 +1.152502 1.458855 1.582937 2.037521 2.342102 2.428296 +1.025383 1.407599 1.551528 1.846789 2.282863 2.385436 +0.876560 1.384326 1.582900 1.741935 2.239923 2.338453 +0.953781 1.441879 1.592404 1.764174 2.294091 2.474201 +0.899968 1.454031 1.634363 1.724312 2.353403 2.597502 +0.784159 1.423933 1.737258 1.855960 2.390032 2.614540 +0.802442 1.397066 1.658548 1.816788 2.429390 2.500099 +0.863071 1.318492 1.646022 1.812971 2.398098 2.503855 +0.896870 1.306239 1.671592 1.902175 2.466526 2.601523 +0.999503 1.304292 1.708420 1.899036 2.512342 2.655191 +1.045277 1.266302 1.669631 1.846323 2.517066 2.637484 +1.038456 1.158529 1.643778 1.865279 2.583201 2.658938 +1.026317 1.219306 1.768348 1.840920 2.538168 2.673329 +1.080965 1.215431 1.730192 1.836927 2.236858 2.608870 +1.101801 1.431508 1.752078 1.918964 2.091244 2.538958 +1.178729 1.297314 1.724099 1.850753 2.310291 2.621525 +1.151182 1.239683 1.754792 1.850524 2.539101 2.705992 +1.202697 1.300604 1.763340 1.867428 2.470717 2.664655 +1.261122 1.368681 1.753282 1.846646 2.461515 2.652599 +1.263075 1.364289 1.797670 1.876939 2.543725 2.660224 +1.320149 1.415925 1.809830 1.903217 2.515554 2.648236 +1.339872 1.459354 1.806677 1.924576 2.491477 2.587047 +1.355170 1.451772 1.763405 1.944161 2.472633 2.561167 +1.327925 1.428910 1.704448 1.914816 2.397366 2.503472 +1.307600 1.415352 1.616295 1.840793 2.322166 2.470994 +1.248247 1.349207 1.617615 1.772735 2.250680 2.486533 +1.096572 1.355681 1.626115 1.941988 2.313846 2.498213 +1.012526 1.342839 1.647854 1.907164 2.435934 2.533191 +0.944393 1.399280 1.642998 1.931993 2.331977 2.489908 +0.883306 1.402338 1.706359 2.025366 2.373713 2.543710 +0.829559 1.235771 1.712746 2.184853 2.386736 2.544183 +0.923799 1.513109 1.703086 2.105291 2.476476 2.555162 +0.772688 1.443301 1.656120 2.053011 2.450442 2.532517 +0.776285 1.403196 1.734016 1.935257 2.464085 2.566799 +0.782396 1.418811 1.758875 1.973225 2.548330 2.610298 +0.789572 1.411082 1.771533 2.060410 2.540262 2.631254 +0.774326 1.288019 1.837269 1.960951 2.512420 2.581626 +0.811751 1.274027 1.810006 1.885738 2.565463 2.639219 +0.844982 1.320831 1.873915 1.944600 2.561048 2.661720 +0.881256 1.695357 1.906981 2.078886 2.618546 2.678654 +1.099890 1.727818 1.971319 2.153135 2.509688 2.602947 +1.173850 1.685437 1.917457 2.147432 2.383055 2.567035 +1.101548 1.543219 1.820605 2.055324 2.338724 2.585028 +0.975012 1.379716 1.776625 2.033293 2.194151 2.518224 +0.967054 1.082459 1.618973 2.077928 2.206837 2.370886 +1.009607 1.120613 1.534181 2.088528 2.282936 2.420584 +0.899159 1.208523 1.423691 1.970324 2.287269 2.498904 +0.879682 1.314480 1.479489 1.689360 2.209743 2.285765 +1.033473 1.243843 1.473137 1.667992 2.159422 2.255044 +1.048412 1.255890 1.536997 1.820047 2.142252 2.313751 +1.048246 1.189264 1.705109 1.835993 2.105450 2.372062 +1.034320 1.138878 1.514616 1.829657 2.170447 2.425608 +1.103878 1.217645 1.622150 1.805848 2.027526 2.376811 +1.087235 1.195012 1.559018 1.895036 2.250122 2.379205 +1.130013 1.293868 1.692397 1.858880 2.197201 2.349063 +1.162892 1.304601 1.691021 1.969323 2.268614 2.430288 +1.151808 1.257932 1.673832 1.902017 2.189155 2.458708 +1.168445 1.271828 1.557328 2.084152 2.308031 2.420367 +1.235095 1.340187 1.656794 2.095155 2.283187 2.409638 +1.252394 1.355363 1.609848 2.085193 2.332714 2.488870 +1.226314 1.343994 1.673049 2.215533 2.459996 2.546921 +1.408182 1.566449 1.701931 2.155097 2.540243 2.588591 +1.303998 1.548995 1.653578 2.128738 2.589470 2.633320 +1.312529 1.488936 1.690548 1.982880 2.558390 2.622521 +1.303590 1.485664 1.772996 1.991417 2.555629 2.650059 +1.257202 1.528917 1.880489 2.045674 2.400087 2.567493 +1.294719 1.634324 1.911539 2.046657 2.438083 2.611133 +1.328444 1.716065 1.850301 2.021260 2.507052 2.612864 +1.138077 1.269039 1.792588 1.898148 2.530410 2.653563 +1.024794 1.145542 1.688222 1.812928 2.425037 2.650928 +1.056656 1.178042 1.590336 1.747349 2.368449 2.618711 +0.994299 1.110839 1.632651 1.730538 2.337688 2.550296 +0.960030 1.103482 1.632800 1.745079 2.197252 2.530535 +0.952099 1.078914 1.704160 1.837306 2.319065 2.544307 +0.901034 1.074801 1.653662 1.788590 2.393831 2.533117 +0.970595 1.130054 1.568353 1.820966 2.445105 2.563373 +0.883200 1.029140 1.480583 1.884365 2.321620 2.470715 +0.817959 0.941844 1.410138 1.540709 2.174043 2.482774 +0.772028 0.888033 1.490117 1.717092 2.324349 2.560462 +0.874200 1.020101 1.571479 1.746811 2.437393 2.561332 +0.827282 1.010026 1.605382 1.750680 2.261846 2.481604 +0.790605 1.149000 1.653820 1.781055 2.358642 2.491606 +0.746581 0.961080 1.604908 1.879005 2.319270 2.551585 +0.845418 0.969530 1.696169 1.890927 2.301880 2.621489 +0.826083 1.016050 1.658604 1.852554 2.435884 2.572744 +0.804260 0.948999 1.684490 2.103337 2.475054 2.575853 +0.837016 1.029999 1.676991 1.796645 2.498023 2.631032 +0.779629 0.917041 1.607073 1.868904 2.459568 2.628902 +0.802981 0.922379 1.556141 1.967845 2.595450 2.692512 +0.821239 0.952349 1.585249 2.095797 2.593711 2.655934 +0.819528 1.109552 1.526845 1.767514 2.637798 2.710511 +0.846222 1.055717 1.707281 1.838626 2.113999 2.501403 +0.956553 1.439848 1.724902 1.939820 2.145194 2.431913 +1.334292 1.551594 1.721399 2.019173 2.178003 2.329439 +1.247359 1.571459 1.834521 2.114156 2.268206 2.489811 +1.223145 1.573420 1.846247 2.016089 2.219280 2.457849 +1.239932 1.537791 1.822800 2.046476 2.444455 2.578055 +1.299681 1.557742 1.798304 2.080692 2.393370 2.575201 +1.273117 1.474131 1.814869 2.014907 2.405011 2.602918 +1.229029 1.448502 1.757153 2.050565 2.417160 2.594614 +1.206296 1.515099 1.788958 2.042150 2.368561 2.585804 +1.158903 1.544803 1.861448 2.066653 2.405246 2.590991 +1.203257 1.479859 1.833516 2.070616 2.431802 2.585701 +1.170767 1.555780 1.826674 2.077078 2.467476 2.619408 +1.116279 1.593527 1.824249 2.160817 2.427806 2.600491 +1.250314 1.617299 1.962648 2.152242 2.531239 2.631433 +1.352996 1.645245 2.070194 2.180379 2.612026 2.688774 +1.460334 1.917189 2.086815 2.314592 2.641184 2.723059 +1.557095 1.916613 2.056898 2.263201 2.640329 2.702797 +1.410674 1.903388 2.077833 2.222944 2.615402 2.694117 +1.340491 1.804040 2.040016 2.149565 2.607705 2.678152 +1.090681 1.321064 1.862736 1.983775 2.475855 2.592436 +1.002459 1.265507 1.813017 1.904336 2.499258 2.626541 +1.051386 1.161286 1.832534 1.955080 2.502338 2.624753 +0.942516 1.064243 1.669560 1.977253 2.464181 2.598328 +0.869608 0.984141 1.454614 1.956177 2.507893 2.617868 +0.972489 1.135467 1.529146 1.729979 2.411574 2.571077 +1.051275 1.149410 1.547524 1.827149 2.511333 2.617618 +1.079744 1.191206 1.539363 1.944728 2.545236 2.632156 +1.182063 1.260030 1.596098 2.084659 2.511859 2.579406 +1.172004 1.352761 1.462749 2.015059 2.625356 2.679374 +1.200545 1.322975 1.515601 1.769202 2.523140 2.666825 +1.228092 1.307135 1.734031 1.914746 2.244815 2.562025 +1.176188 1.321661 1.782310 1.882580 2.271364 2.521450 +1.150025 1.486223 1.774146 1.970935 2.385075 2.612636 +1.103163 1.455003 1.720622 1.899593 2.356715 2.591383 +1.070467 1.386313 1.746928 1.891984 2.367512 2.543572 +0.953610 1.176163 1.643545 1.919980 2.372057 2.572461 +1.052319 1.405171 1.688954 1.831668 2.542879 2.632479 +0.996802 1.441427 1.684462 1.821948 2.595992 2.658845 +1.026550 1.334938 1.740944 1.840382 2.571653 2.678967 +1.108319 1.200840 1.706127 1.999085 2.514665 2.648206 +1.133324 1.219468 1.747774 2.013077 2.406643 2.640363 +1.142143 1.218723 1.814638 1.951061 2.430067 2.666180 +1.081563 1.207089 1.846455 1.946284 2.339144 2.612659 +1.146374 1.238625 1.874251 1.968098 2.427377 2.595630 +1.069408 1.393128 1.859759 1.941816 2.374471 2.538181 +1.060221 1.402928 1.784643 1.909954 2.080852 2.375424 +0.893759 1.225333 1.741426 1.895488 2.062213 2.441777 +0.911307 1.301394 1.651487 1.798169 1.996879 2.208655 +1.102905 1.503307 1.707775 1.808533 1.958631 2.311679 +1.149446 1.328058 1.738279 1.904609 2.061868 2.257965 +1.121345 1.230563 1.748776 1.950661 2.086466 2.389286 +0.948970 1.101893 1.676635 1.875393 2.016817 2.296681 +1.035082 1.162231 1.641377 1.952709 2.100948 2.358717 +0.994183 1.114307 1.547601 1.773728 1.966081 2.336299 +1.025110 1.139705 1.585236 1.912371 2.102465 2.482426 +0.955352 1.062216 1.659060 1.848407 2.043281 2.487426 +1.049103 1.120549 1.446982 1.949018 2.026898 2.560590 +1.012432 1.138276 1.367936 2.008468 2.189441 2.422416 +1.082028 1.234911 1.351755 1.827170 2.173158 2.300241 +1.094359 1.235138 1.416416 1.922593 2.128232 2.419413 +1.034512 1.151307 1.492358 1.980846 2.149036 2.365312 +1.013088 1.154539 1.459958 1.943044 2.281758 2.397269 +0.987103 1.274347 1.561873 1.917460 2.334292 2.495651 +0.989791 1.289172 1.623138 1.982329 2.345033 2.548052 +1.042013 1.225970 1.610016 1.974800 2.406311 2.537036 +1.019690 1.323725 1.679076 1.983690 2.443023 2.561932 +1.030978 1.249914 1.753285 1.970302 2.442750 2.577102 +1.078647 1.281367 1.821676 2.046994 2.512487 2.614303 +1.042503 1.318276 1.817538 1.977740 2.538774 2.643473 +1.033751 1.323431 1.885960 1.993635 2.587127 2.648293 +1.084158 1.434121 1.899660 1.974483 2.661669 2.717102 +1.095790 1.481301 1.916550 1.970409 2.671232 2.730973 +1.147960 1.553068 1.884541 1.960664 2.501839 2.667876 +1.137776 1.498910 1.962620 2.047239 2.537310 2.642351 +1.108862 1.435492 1.955490 2.195866 2.514284 2.601530 +1.191071 1.557850 1.984542 2.270790 2.541878 2.642064 +1.110737 1.553081 1.978127 2.211052 2.613375 2.706641 +1.114093 1.728016 1.975042 2.124483 2.602927 2.681942 +1.148485 1.627087 1.968135 2.073898 2.607358 2.686667 +1.109004 1.450655 1.961102 2.058609 2.611646 2.694610 +1.095904 1.318763 1.866640 2.096294 2.574677 2.658840 +1.116558 1.367968 1.922533 2.016505 2.549444 2.646230 +1.129468 1.529113 1.942204 2.003339 2.527872 2.699919 +1.139050 1.679536 1.945866 2.032922 2.537427 2.642172 +1.219207 1.599421 1.929600 2.011091 2.539104 2.705280 +1.233969 1.556201 1.930999 2.084786 2.578580 2.675834 +1.234430 1.653741 2.033213 2.256759 2.637546 2.699663 +1.255288 1.475044 2.022543 2.289234 2.587690 2.703947 +1.253389 1.472198 1.956397 2.211186 2.574243 2.676099 +1.126854 1.587210 1.950824 2.031487 2.416846 2.614459 +1.007062 1.608304 1.896229 1.986335 2.223017 2.524028 +1.067280 1.729449 1.931889 2.045329 2.164850 2.400910 +0.946660 1.699777 1.870624 1.981832 2.135670 2.447688 +1.002686 1.728563 1.939905 2.072520 2.274792 2.467485 +1.148787 1.600550 2.003063 2.128026 2.409105 2.506525 +1.191365 1.359514 1.908437 2.116985 2.369079 2.529393 +1.229740 1.316359 1.901465 2.001169 2.368350 2.575701 +1.167453 1.284078 1.851548 2.056283 2.446292 2.573763 +1.177049 1.282978 1.796076 2.014566 2.409896 2.524428 +1.166550 1.281729 1.804132 1.938592 2.383050 2.543803 +1.144710 1.266197 1.755782 1.865513 2.354119 2.575142 +1.168465 1.283561 1.695054 1.817537 2.302788 2.529561 +1.093474 1.316111 1.625831 1.791050 2.303314 2.408563 +1.072994 1.218877 1.586912 1.725308 2.219203 2.343524 +0.946241 1.172838 1.426290 1.551682 2.192575 2.321727 +1.001802 1.174980 1.507444 1.697862 2.240802 2.478241 +0.992564 1.257780 1.429092 1.819825 2.234153 2.434915 +0.933586 1.255559 1.372464 1.686266 2.265977 2.349467 +0.987914 1.162881 1.404420 1.563483 2.227668 2.485371 +1.058576 1.185833 1.325383 1.445585 2.164512 2.455141 +1.042271 1.149610 1.389036 1.473828 1.906671 2.390132 +0.966952 1.075537 1.288155 1.405105 2.061861 2.451990 +0.901530 1.194476 1.354732 1.705750 2.325032 2.434812 +1.038418 1.292428 1.527305 1.909844 2.230333 2.465135 +1.336010 1.441693 1.849134 2.208029 2.414400 2.532513 +1.436224 1.645653 2.008636 2.198160 2.502278 2.601413 +1.424341 1.684427 1.929812 2.122504 2.512280 2.604860 +1.452203 1.722988 1.962207 2.156659 2.484102 2.584594 +1.481999 1.735238 1.971190 2.222801 2.512305 2.623621 +1.392556 1.721267 1.940304 2.174966 2.488944 2.601854 +1.243347 1.558461 1.809822 1.990890 2.381971 2.537485 +1.199294 1.421504 1.763108 1.990880 2.358918 2.489556 +1.217773 1.348784 1.714665 1.916837 2.379728 2.456961 +1.219523 1.326854 1.719656 1.838075 2.299329 2.435406 +1.263073 1.353656 1.787228 1.918973 2.320389 2.448246 +1.270962 1.373799 1.718185 1.857935 2.366922 2.481748 +1.284351 1.368069 1.793907 1.895081 2.356790 2.524604 +1.244789 1.353657 1.782947 1.928688 2.225716 2.379949 +1.269283 1.368726 1.719184 1.909677 2.267163 2.491540 +1.249305 1.338194 1.799918 1.917097 2.274691 2.533224 +1.179498 1.259046 1.802972 1.927327 2.228930 2.503637 +1.140961 1.245902 1.708660 1.923794 2.243465 2.557345 +1.063955 1.209030 1.737289 1.945349 2.338697 2.573092 +1.003475 1.109161 1.745131 1.902188 2.308443 2.601614 +0.937618 1.077537 1.747804 1.869648 2.205055 2.570449 +0.885099 1.192451 1.790545 1.876157 2.360305 2.598108 +0.803485 0.966415 1.768458 1.928742 2.196723 2.530460 +0.797205 1.120717 1.776585 1.878573 2.370357 2.614341 +0.831514 1.059080 1.808800 1.905483 2.448208 2.573050 +0.806597 0.967446 1.829385 1.963682 2.358632 2.653242 +0.699378 0.851831 1.739446 1.933943 2.516377 2.655249 +0.739203 1.033985 1.902113 2.010327 2.494149 2.629822 +0.945605 1.079706 1.796352 2.039543 2.581863 2.699784 +0.843512 1.304861 1.835452 2.036832 2.600217 2.677826 +0.970152 1.414374 1.854051 1.957787 2.596045 2.665425 +1.067282 1.438542 1.888429 2.067094 2.531016 2.643177 +1.117619 1.563112 1.886324 2.218866 2.530223 2.624080 +1.209656 1.626913 1.943700 2.187427 2.555090 2.658675 +1.338891 1.812879 2.030890 2.305204 2.569275 2.661165 +1.303367 1.840104 2.035985 2.286745 2.614227 2.713359 +1.193428 1.727354 1.926203 2.184400 2.574784 2.631812 +1.063515 1.717188 1.903657 2.119051 2.444811 2.497667 +1.062175 1.188948 1.810480 2.044978 2.322378 2.578780 +1.073201 1.177557 1.654731 2.023264 2.200369 2.442874 +1.027815 1.165415 1.669466 1.859614 2.202142 2.462466 +1.035584 1.148236 1.604900 1.872549 2.257851 2.551682 +1.007205 1.131087 1.579146 1.969788 2.331637 2.507912 +0.908594 1.005601 1.463269 2.072372 2.304356 2.407363 +0.981614 1.126428 1.280565 1.886853 2.101922 2.487836 +1.006764 1.132557 1.253088 1.718315 2.189249 2.436605 +0.899830 1.156538 1.260748 1.696712 2.116655 2.228297 +0.896996 1.246551 1.436874 1.645194 2.073642 2.149130 +0.965481 1.069671 1.446489 1.949492 2.091582 2.298331 +0.898113 1.058765 1.617556 1.941551 2.113568 2.374743 +0.769481 1.159379 1.597415 1.959851 2.283842 2.418197 +0.908091 1.305340 1.473570 1.862549 2.164147 2.331091 +0.924282 1.334689 1.563201 2.043541 2.406015 2.515756 +0.972939 1.381971 1.549985 2.021238 2.268488 2.419332 +1.032229 1.484031 1.620031 1.952234 2.267322 2.486440 +1.005234 1.354692 1.620203 1.777917 2.223067 2.497574 +1.072742 1.245035 1.661666 1.819389 2.260496 2.468700 +1.134470 1.250480 1.737034 1.868971 2.303204 2.466426 +1.145935 1.293264 1.728505 1.950979 2.350982 2.504021 +1.226356 1.329795 1.750777 1.982144 2.347843 2.553027 +1.234801 1.328107 1.696728 2.060564 2.437310 2.535600 +1.247128 1.360496 1.742955 1.961348 2.474080 2.668447 +1.234736 1.329837 1.688634 1.913331 2.442940 2.627695 +1.230430 1.326635 1.697588 1.806044 2.381473 2.618535 +1.188567 1.273079 1.708983 1.969001 2.340683 2.588959 +1.204284 1.331218 1.835523 2.141256 2.463226 2.583492 +1.202374 1.397220 1.863749 2.155165 2.599733 2.681191 +1.217581 1.333297 1.763898 1.994983 2.601835 2.684817 +1.272368 1.364451 1.776352 1.952098 2.563424 2.676170 +1.330173 1.434654 1.825090 1.938032 2.579405 2.666102 +1.383550 1.514770 1.774712 2.134998 2.528583 2.614711 +1.488234 1.631245 1.795942 2.180588 2.497787 2.585930 +1.497854 1.598429 1.760395 1.985719 2.538066 2.622220 +1.446514 1.555686 1.675484 1.899620 2.547070 2.637129 +1.420188 1.651758 1.888119 2.201558 2.498716 2.624372 +1.524851 1.748918 1.939479 2.132594 2.426619 2.604303 +1.588214 1.786968 1.965710 2.123251 2.417433 2.579888 +1.603052 1.805249 1.932723 2.088062 2.490882 2.628467 +1.521714 1.853040 1.968163 2.198421 2.530921 2.597229 +1.496309 1.785807 2.001979 2.206169 2.574155 2.645280 +1.405201 1.500557 1.908673 2.179223 2.543732 2.645774 +1.369555 1.501308 1.848796 2.089859 2.551118 2.643621 +1.395377 1.488644 1.872404 2.028116 2.530256 2.599192 +1.354582 1.508972 1.848875 1.976677 2.504926 2.579355 +1.325752 1.411326 1.837129 1.970792 2.502717 2.584831 +1.264497 1.390436 1.764758 2.087338 2.519279 2.625037 +1.280904 1.355652 1.790288 1.995707 2.502567 2.587359 +1.267443 1.360843 1.858033 2.035632 2.509375 2.584870 +1.238902 1.487541 1.786660 2.080354 2.480913 2.582137 +1.228708 1.441140 1.715963 1.893335 2.507070 2.565131 +1.167347 1.397307 1.672051 1.923535 2.438392 2.523520 +1.169232 1.356809 1.567433 1.950379 2.378945 2.468006 +1.240244 1.470896 1.629735 2.024684 2.376716 2.454875 +1.370859 1.665288 1.831505 2.176433 2.486403 2.586565 +1.513368 1.657039 1.965014 2.298013 2.532148 2.623007 +1.446940 1.612676 1.929087 2.232303 2.466210 2.565149 +1.430659 1.664527 1.882163 2.234579 2.421664 2.527294 +1.511551 1.658934 1.944043 2.198499 2.451946 2.588348 +1.539441 1.741360 2.111062 2.229922 2.438935 2.615056 +1.510948 1.846893 2.061790 2.202452 2.484110 2.572628 +1.366393 1.611652 2.079365 2.260070 2.467062 2.588032 +1.383579 1.641339 1.997349 2.226153 2.491435 2.611630 +1.381458 1.706898 1.963061 2.125553 2.596797 2.681115 +1.360033 1.558255 1.949661 2.054826 2.599573 2.714554 +1.379339 1.491775 1.925897 2.046337 2.539371 2.696047 +1.313275 1.469403 1.863111 2.141749 2.553959 2.668104 +1.201520 1.563000 1.925029 2.093014 2.476606 2.614413 +0.965563 1.662126 1.836100 2.071866 2.530046 2.578446 +0.976435 1.635119 1.844726 2.005117 2.553083 2.614153 +1.098159 1.549476 1.826426 1.907908 2.490671 2.625630 +0.971599 1.431927 1.818186 1.923193 2.493841 2.568117 +0.881008 1.272866 1.901429 1.959221 2.513674 2.596017 +0.915929 1.478770 1.955701 2.082549 2.494350 2.585776 +1.008177 1.579393 1.898198 2.139172 2.477629 2.551209 +0.937399 1.507567 1.803910 1.922590 2.546047 2.637297 +0.848413 1.358228 1.783925 1.906229 2.477012 2.588525 +0.863404 1.488629 1.835502 1.930032 2.465498 2.545317 +0.844376 1.622282 1.826798 2.048364 2.490552 2.545809 +0.869731 1.705034 1.854703 2.111605 2.517014 2.593453 +0.862235 1.623015 1.899372 2.028710 2.527844 2.574800 +0.931658 1.576339 1.853614 1.975118 2.542237 2.614786 +0.848799 1.588406 1.847097 1.955899 2.534073 2.584561 +0.737814 1.457219 1.829993 1.966203 2.501271 2.579455 +0.786199 1.100080 1.860369 1.964282 2.419364 2.566134 +0.728962 1.040841 1.773818 1.963733 2.356948 2.578866 +0.733093 1.147783 1.789774 1.909293 2.349819 2.481103 +0.785959 1.280236 1.730487 1.926696 2.346913 2.422480 +0.784924 1.446821 1.669690 1.935370 2.368317 2.459601 +0.758523 1.466915 1.805902 1.946588 2.352213 2.426335 +0.767907 1.544295 1.768171 2.003937 2.239037 2.386192 +0.896374 1.562074 1.716926 1.903301 2.308243 2.430582 +0.834530 1.504812 1.737424 1.917731 2.409279 2.493291 +0.896027 1.406949 1.730026 1.903326 2.431247 2.539722 +1.039666 1.364116 1.806278 1.948174 2.440690 2.557972 +1.093454 1.412357 1.833723 1.940104 2.489654 2.564450 +1.190180 1.386167 1.848700 1.956202 2.481553 2.580885 +1.243158 1.350416 1.811797 1.893593 2.467576 2.613520 +1.221986 1.308711 1.815913 1.911989 2.417533 2.600995 +1.228372 1.343619 1.763163 1.872602 2.394885 2.582719 +1.278387 1.389710 1.738500 1.870267 2.420854 2.532852 +1.211636 1.401793 1.710146 1.811019 2.363826 2.482240 +1.161497 1.400684 1.766674 1.891745 2.392605 2.495922 +1.114937 1.405487 1.718336 1.927418 2.356818 2.468335 +1.074680 1.452959 1.668715 1.898094 2.336526 2.443457 +1.006705 1.356254 1.629477 1.848470 2.313894 2.426320 +0.966452 1.457923 1.654693 1.906386 2.320056 2.418339 +0.939007 1.519988 1.667014 1.989416 2.390669 2.488951 +0.946840 1.483985 1.701087 2.105572 2.391444 2.490066 +0.909129 1.501060 1.665371 2.004939 2.256700 2.389841 +0.958919 1.390613 1.680082 2.107156 2.297251 2.440839 +1.462160 1.588562 1.808539 2.109890 2.264826 2.417467 +1.301642 1.673806 1.892518 2.168109 2.477558 2.561621 +1.152769 1.529326 1.783781 2.014354 2.446614 2.560929 +1.128698 1.493018 1.748156 1.930275 2.530674 2.621591 +1.164356 1.496855 1.767664 1.871136 2.607250 2.684794 +1.122714 1.380513 1.762236 1.875604 2.441522 2.732814 +1.173906 1.545927 1.843801 1.933791 2.123448 2.629011 +1.155439 1.465806 1.793876 1.928550 2.168553 2.609610 +1.147812 1.484543 1.816424 1.908762 2.262620 2.704081 +1.185870 1.393524 1.811853 1.881115 2.544291 2.735905 +1.153304 1.451135 1.855404 1.888619 2.603314 2.738077 +1.208854 1.582363 1.784858 1.880089 2.596481 2.727884 +1.194841 1.542896 1.919056 2.023145 2.551891 2.634186 +1.230327 1.492063 1.937225 2.133605 2.615726 2.690226 +1.258764 1.581307 1.980070 2.138762 2.599037 2.691033 +1.220691 1.572961 1.917212 2.177536 2.599585 2.702012 +1.258143 1.556630 1.871736 2.132633 2.585514 2.673307 +1.233770 1.598238 1.849957 2.013674 2.542859 2.634481 +1.269759 1.560794 1.865225 2.076328 2.521082 2.617443 +1.116561 1.680882 1.781694 1.920497 2.592211 2.675845 +1.048209 1.662996 1.817400 1.915170 2.484585 2.623077 +0.954241 1.619674 1.813457 1.881694 2.550667 2.631971 +0.964363 1.579747 1.728712 1.862126 2.567566 2.636332 +1.296922 1.646884 1.889259 2.069271 2.320227 2.481389 +1.232775 1.619596 1.955470 2.066559 2.335277 2.456514 +1.238971 1.351788 1.877566 2.166413 2.317967 2.474389 +1.180292 1.388353 1.607451 1.950835 2.210855 2.477718 +1.124001 1.423538 1.617323 1.826801 2.206068 2.444078 +1.147794 1.487048 1.627974 1.926015 2.278418 2.486526 +1.092654 1.499725 1.623041 1.880156 2.411660 2.648649 +1.115294 1.468690 1.607626 1.814459 2.356904 2.576088 +1.176045 1.424631 1.614229 1.966337 2.352676 2.570354 +1.211051 1.467429 1.617777 1.851487 2.389770 2.591860 +1.287681 1.464858 1.633790 1.856231 2.349748 2.565320 +1.298585 1.495223 1.639003 1.942642 2.415390 2.518116 +1.309890 1.431142 1.757192 1.977209 2.414871 2.520878 +1.392241 1.477414 1.811303 1.909687 2.440417 2.573891 +1.414942 1.515382 1.858997 2.127937 2.490674 2.635418 +1.490435 1.565967 1.952412 2.049065 2.499936 2.600180 +1.485068 1.734116 1.997368 2.089376 2.524766 2.608159 +1.507131 1.787198 2.048100 2.128356 2.533629 2.624653 +1.485217 1.772591 2.048100 2.144373 2.595743 2.679785 +1.560042 1.744521 2.076144 2.156837 2.615057 2.698771 +1.506276 1.855445 2.064190 2.144534 2.585665 2.687788 +1.592877 1.903451 2.084530 2.163395 2.496904 2.633589 +1.609454 1.870860 2.119821 2.186594 2.599505 2.697819 +1.594779 1.855348 2.025620 2.142545 2.572299 2.637841 +1.527194 1.714086 2.076267 2.185169 2.526549 2.631137 +1.518012 1.628010 2.039263 2.134528 2.453843 2.576361 +1.531312 1.678082 2.035179 2.146889 2.504859 2.584171 +1.508627 1.632606 1.965140 2.148678 2.496640 2.592746 +1.499896 1.599423 1.913687 2.036860 2.450192 2.538166 +1.481158 1.583812 1.884461 2.013870 2.359497 2.481100 +1.475736 1.569698 1.799993 1.916182 2.329218 2.535901 +1.498641 1.623604 1.792824 1.945217 2.358627 2.490727 +1.431128 1.574627 1.743263 2.006116 2.347765 2.508896 +1.427064 1.536583 1.790690 1.943028 2.344465 2.452652 +1.436838 1.542023 1.758917 1.925622 2.242913 2.416844 +1.419788 1.509038 1.863320 1.995399 2.275792 2.424732 +1.424396 1.510477 1.882887 2.179017 2.304708 2.455667 +1.366051 1.461194 1.935323 2.147551 2.263420 2.465785 +1.407395 1.564972 1.981125 2.103440 2.445291 2.565104 +1.597013 1.877015 2.068503 2.270312 2.499356 2.604888 +1.484981 1.818125 2.149815 2.337593 2.504753 2.589439 +1.487878 1.937181 2.118271 2.308368 2.511781 2.604626 +1.682297 1.977033 2.192290 2.373676 2.522931 2.611282 +1.749459 1.905682 2.218271 2.352013 2.574227 2.681484 +1.676221 1.936512 2.237179 2.343782 2.535908 2.661271 +1.723362 1.989915 2.271236 2.413144 2.550828 2.649366 +1.756006 1.996913 2.312656 2.461484 2.625420 2.708736 +1.499770 1.763295 2.158871 2.346879 2.592716 2.682851 +1.747521 1.927133 2.248936 2.410841 2.604121 2.690881 +1.670354 1.938258 2.247669 2.447135 2.657540 2.730040 +1.669237 1.959610 2.179318 2.440527 2.588429 2.640800 +1.780231 2.015138 2.164810 2.399021 2.581913 2.646942 +1.739561 1.967219 2.065694 2.364479 2.589977 2.649441 +1.605008 1.875105 2.018901 2.227404 2.541181 2.603541 +1.511246 1.892601 2.027827 2.148110 2.520001 2.608199 +1.363362 1.568768 1.910845 2.057695 2.463506 2.558819 +1.338497 1.483825 1.883695 2.067074 2.448950 2.577904 +1.369193 1.437863 1.845222 2.078464 2.428504 2.615891 +1.377698 1.498294 1.867666 2.164965 2.492547 2.570908 +1.408098 1.487760 1.872414 2.097948 2.447272 2.551716 +1.402363 1.531952 1.897693 2.126667 2.419162 2.551442 +1.456496 1.554631 1.841067 2.095807 2.421290 2.561761 +1.434931 1.529146 1.795336 2.163704 2.446465 2.530309 +1.391108 1.495499 1.869679 2.161228 2.381406 2.532017 +1.388934 1.534466 1.797003 2.102941 2.398508 2.521270 +1.358571 1.471303 1.760049 2.100883 2.350197 2.546548 +1.276599 1.519215 1.779419 2.095819 2.442938 2.665941 +1.206661 1.457865 1.760464 2.244280 2.495881 2.644848 +1.214611 1.460274 1.979019 2.239454 2.398324 2.634473 +1.275473 1.473470 1.878570 2.203117 2.475028 2.687851 +1.291712 1.399288 1.813807 2.194118 2.502758 2.614888 +1.260058 1.397998 1.924890 2.186721 2.511667 2.644548 +1.210634 1.326713 1.897594 2.107441 2.460079 2.711722 +1.202657 1.319235 1.892634 2.079859 2.379418 2.679891 +0.967019 1.105970 1.761322 2.107426 2.328428 2.593155 +0.947746 1.035797 1.393730 2.061233 2.300744 2.668280 +0.996167 1.215029 1.378995 1.861982 2.329665 2.605022 +1.008823 1.198481 1.313837 1.693525 2.360746 2.604824 +1.054057 1.218510 1.368106 1.738006 2.174906 2.546071 +1.021568 1.133991 1.369174 1.935639 2.267798 2.544415 +1.033742 1.227769 1.451289 2.005917 2.412620 2.595031 +1.065155 1.168636 1.530185 2.061499 2.410743 2.485478 +1.121227 1.281283 1.432233 1.909928 2.202734 2.509308 +1.170032 1.306041 1.494945 1.981910 2.202815 2.351735 +1.152630 1.266186 1.620999 2.057673 2.214453 2.381642 +1.228128 1.313272 1.751468 2.118469 2.263417 2.453888 +1.307832 1.398650 1.799753 2.125735 2.260615 2.451800 +1.360104 1.477444 1.835740 2.121870 2.291563 2.499791 +1.398477 1.492966 1.806519 2.107140 2.241410 2.434146 +1.351212 1.462506 1.726393 2.122387 2.285789 2.421844 +1.297203 1.498868 1.766246 2.157839 2.376714 2.497158 +1.377349 1.518971 1.803789 2.191150 2.356374 2.478897 +1.289165 1.553241 1.674591 2.112634 2.403345 2.473877 +1.188972 1.700336 1.834324 2.055585 2.599531 2.700414 +1.077038 1.667666 1.902189 2.045693 2.602910 2.700056 +1.072057 1.272462 1.843743 1.901183 2.586254 2.720558 +1.084385 1.392072 1.823558 1.901299 2.589426 2.680029 +1.106319 1.441363 1.766145 1.853724 2.549356 2.627414 +1.094566 1.550024 1.771922 1.870952 2.559682 2.628051 +1.041899 1.598552 1.813702 1.928485 2.545630 2.671501 +1.090204 1.610510 1.812559 2.019257 2.556321 2.608793 +1.016528 1.626657 1.742411 2.041925 2.541538 2.602247 +1.075570 1.647752 1.870667 2.073970 2.574597 2.628798 +1.126656 1.586213 1.792572 1.982408 2.629180 2.725561 +1.027776 1.542665 1.831396 1.956878 2.603010 2.668523 +1.111897 1.543416 1.861469 1.942917 2.621957 2.672864 +1.080512 1.583194 1.857304 1.958456 2.633597 2.695142 +1.132239 1.449156 1.884949 1.977000 2.607850 2.709420 +1.232769 1.612605 1.960435 2.071693 2.644678 2.727118 +1.325014 1.779901 1.967304 2.113871 2.547837 2.668723 +1.404585 1.644448 2.058088 2.257112 2.519116 2.634613 +1.413485 1.609401 2.002521 2.184102 2.587532 2.696153 +1.354020 1.593877 2.014439 2.122204 2.617254 2.721812 +1.373822 1.656758 1.992185 2.189875 2.548725 2.702514 +1.421181 1.611084 1.958071 2.123616 2.569835 2.648136 +1.379179 1.620195 1.922636 2.093948 2.550690 2.641857 +1.367726 1.656675 1.838447 1.992123 2.596226 2.654039 +1.394553 1.750623 1.872269 2.038430 2.553215 2.623595 +1.464021 1.741591 1.912988 2.150261 2.565594 2.648823 +1.461132 1.809059 1.954612 2.209898 2.570276 2.642519 +1.434520 1.770834 1.904022 2.217315 2.631183 2.686995 +1.375527 1.631662 1.885996 2.086587 2.600503 2.671257 +1.339213 1.568724 1.817375 2.085568 2.591336 2.666455 +1.504403 1.779590 2.057141 2.272445 2.534600 2.634655 +1.474504 1.746318 2.044711 2.137376 2.474545 2.630529 +1.557045 1.755017 2.039661 2.080935 2.661339 2.741743 +1.573452 1.715361 2.056726 2.098368 2.691640 2.743685 +1.511431 1.831887 1.991585 2.156042 2.624346 2.709519 +1.501907 1.714027 2.012931 2.079434 2.554662 2.690409 +1.547183 1.671908 1.977966 2.104057 2.507158 2.614807 +1.563264 1.635971 1.990128 2.123718 2.563823 2.633190 +1.587772 1.697791 2.007538 2.127360 2.588839 2.656541 +1.618303 1.722230 2.008488 2.131284 2.618167 2.687641 +1.580078 1.684932 2.000646 2.087829 2.613984 2.687671 +1.572775 1.736323 1.961536 2.144351 2.641248 2.687943 +1.538985 1.652845 1.952108 2.156038 2.639302 2.685734 +1.537130 1.622797 1.963527 2.075940 2.612204 2.679327 +1.537449 1.633250 1.986524 2.075675 2.542791 2.643796 +1.543228 1.772021 2.053914 2.142473 2.536411 2.690489 +1.621800 1.829997 2.052741 2.210858 2.583215 2.665837 +1.609565 1.935324 2.146682 2.393315 2.597212 2.670556 +1.560818 1.935543 2.191435 2.444376 2.609921 2.692602 +1.704277 1.874585 2.010256 2.380095 2.528658 2.604802 +1.624784 1.837785 1.925361 2.193011 2.497168 2.569432 +1.556125 1.832653 1.986935 2.189317 2.453204 2.531630 +1.347428 1.669666 1.943932 2.108052 2.506631 2.608423 +1.278409 1.497251 1.838413 2.073920 2.454553 2.592324 +1.271049 1.415120 1.758107 2.232460 2.422770 2.554672 +1.260337 1.356714 1.913167 2.225895 2.380602 2.557250 +1.223099 1.307974 1.784088 2.207517 2.362875 2.487786 +1.249454 1.538164 1.716600 1.998319 2.362110 2.465531 +1.208014 1.503064 1.761303 1.917077 2.448048 2.525133 +1.151848 1.461146 1.783945 1.946886 2.452561 2.556307 +1.165555 1.347773 1.799946 1.920752 2.437876 2.546954 +1.109788 1.310449 1.815889 1.923381 2.427304 2.602804 +1.091990 1.233639 1.789609 1.925036 2.467804 2.611170 +1.052323 1.194748 1.809895 1.914231 2.390180 2.556318 +1.032267 1.189488 1.775623 1.889690 2.393248 2.640830 +0.992854 1.169627 1.814159 1.912252 2.320268 2.634324 +1.054415 1.177746 1.762755 1.907196 2.266178 2.516301 +1.029545 1.167365 1.780060 1.973540 2.227843 2.613887 +1.067777 1.184807 1.741322 1.919129 2.121959 2.500789 +1.167843 1.263051 1.778629 1.900717 2.150811 2.568660 +1.247027 1.323672 1.811046 1.934590 2.184022 2.674617 +1.331781 1.426137 1.785144 1.966030 2.114558 2.541825 +1.360900 1.444142 1.862535 1.949748 2.426744 2.646105 +1.408538 1.451788 1.866918 2.014230 2.478842 2.705911 +1.405554 1.483551 1.874980 1.960293 2.502764 2.662540 +1.442367 1.544656 1.883354 1.987590 2.562980 2.647761 +1.480719 1.536202 1.881818 2.018874 2.582349 2.661791 +1.513078 1.583246 1.895764 1.987154 2.586166 2.676009 +1.497760 1.602088 1.831006 1.985404 2.564090 2.643635 +1.497065 1.564915 1.844643 1.957697 2.539930 2.677163 +1.468106 1.523747 1.865842 1.940079 2.607970 2.684862 +1.468104 1.564389 1.858916 1.982405 2.606481 2.709686 +1.422735 1.519196 1.806791 1.891590 2.614823 2.703893 +1.396871 1.476698 1.776404 2.013253 2.607847 2.665988 +1.391532 1.504565 1.830535 2.081544 2.611020 2.720808 +1.372885 1.645062 1.833360 2.015761 2.631341 2.701342 +1.331289 1.747404 1.897953 2.146510 2.586685 2.658273 +1.503178 1.734690 1.914996 2.282089 2.598389 2.679187 +1.465242 1.711762 2.025166 2.284078 2.653659 2.717393 +1.423402 1.768761 2.084406 2.277880 2.636443 2.711524 +1.423821 1.724472 2.032594 2.300309 2.603340 2.686111 +1.433184 1.818868 2.053883 2.409241 2.628605 2.699461 +1.509846 1.793493 2.052637 2.357768 2.644126 2.718058 +1.575730 1.851530 2.032958 2.374899 2.583530 2.662235 +1.501264 1.780829 1.998554 2.329265 2.505605 2.606743 +1.460060 1.763209 1.912334 2.214416 2.494328 2.577616 +1.444041 1.657674 1.895357 2.148549 2.478458 2.595455 +1.454287 1.619858 1.935887 2.189754 2.478831 2.594880 +1.377243 1.642180 1.919668 2.142842 2.421514 2.541038 +1.051059 1.421021 1.830399 2.021216 2.373690 2.548829 +0.964571 1.071641 1.394899 2.151202 2.371776 2.464951 +0.966306 1.181025 1.302213 2.014819 2.375093 2.435135 +0.895560 1.207845 1.335308 1.823923 2.239924 2.363100 +1.006776 1.203093 1.317821 1.873977 2.336638 2.408782 +1.054129 1.225595 1.379006 2.024687 2.333311 2.421550 +1.090202 1.224770 1.409674 2.013195 2.245364 2.353229 +1.076475 1.203972 1.563890 2.033954 2.203362 2.369101 +1.127967 1.249133 1.664693 2.080426 2.256625 2.469541 +1.202013 1.429684 1.793680 2.080715 2.339984 2.460053 +1.517223 1.673904 1.927925 2.203642 2.386760 2.520143 +1.586618 1.786240 2.041674 2.198999 2.416371 2.581194 +1.593300 1.808548 2.148779 2.250278 2.372090 2.532412 +1.657294 1.783458 2.150393 2.258130 2.453915 2.616209 +1.571489 1.792659 2.117652 2.350385 2.577192 2.666949 +1.301994 1.729750 1.974424 2.093250 2.593899 2.663024 +1.100218 1.563399 1.919910 2.059220 2.562974 2.637757 +1.025074 1.540738 1.811898 2.057911 2.491877 2.603248 +1.015309 1.473504 1.802588 2.013084 2.436758 2.605319 +1.022065 1.158479 1.689786 2.183529 2.383778 2.492374 +1.212476 1.453108 1.823947 2.061442 2.396186 2.536578 +1.126243 1.452934 1.809587 2.071074 2.408943 2.549557 +0.880332 1.324785 1.621337 1.967251 2.313156 2.426927 +0.749583 1.358409 1.575073 1.870590 2.279227 2.377431 +0.901917 1.290215 1.674425 1.954410 2.233361 2.391524 +0.850971 1.252102 1.657646 1.816460 2.183885 2.328806 +0.881480 1.284101 1.698159 1.844661 2.341820 2.440909 +0.874499 1.182682 1.709489 1.917452 2.365966 2.499649 +0.833751 1.231132 1.803319 1.918020 2.459092 2.546881 +0.850970 1.127086 1.772073 1.855222 2.487580 2.582865 +0.881650 1.114802 1.820703 1.959079 2.521753 2.598731 +0.803558 1.150285 1.798477 1.952675 2.538917 2.634898 +0.867833 0.990496 1.832275 1.929767 2.547660 2.681084 +0.865057 1.067437 1.773263 1.860188 2.558331 2.702216 +0.832529 0.985960 1.756367 1.862925 2.438281 2.623782 +0.850804 1.060553 1.892217 1.984007 2.483774 2.661123 +0.873803 1.041984 1.746198 1.932438 2.338221 2.554585 +0.958594 1.103471 1.836438 1.936783 2.393758 2.573200 +1.014831 1.140873 1.825933 2.013713 2.401490 2.609423 +1.075369 1.457644 1.900463 2.033493 2.314190 2.490949 +1.201715 1.736170 1.914076 2.066503 2.386907 2.476963 +1.215217 1.873613 2.065903 2.182990 2.374981 2.489555 +1.620207 1.851261 2.111542 2.342798 2.527494 2.633887 +1.683879 1.860372 2.126009 2.404344 2.562983 2.636158 +1.703817 1.934383 2.133673 2.393214 2.601932 2.682469 +1.526877 1.900128 2.151100 2.361638 2.575171 2.658979 +1.587253 1.881390 2.129945 2.267860 2.577863 2.657840 +1.539163 1.871344 2.190283 2.360385 2.624615 2.705636 +1.625747 1.862181 2.120094 2.339463 2.592159 2.682142 +1.679527 1.920689 2.161166 2.317106 2.648896 2.712106 +1.635199 1.922826 2.174839 2.407399 2.630046 2.709271 +1.454186 1.975699 2.151850 2.371342 2.609179 2.685790 +1.672439 2.011404 2.183017 2.463917 2.652956 2.711525 +1.612105 1.987481 2.102582 2.293346 2.616125 2.670264 +1.528075 1.895073 2.053582 2.232503 2.544912 2.624122 +1.420355 1.683500 1.963431 2.159418 2.536725 2.620131 +1.456320 1.693132 1.969234 2.164744 2.587162 2.677588 +1.481106 1.637541 1.992642 2.178479 2.548138 2.632755 +1.488517 1.591174 2.016501 2.123324 2.528663 2.614918 +1.477429 1.651519 1.962894 2.102183 2.543300 2.618840 +1.473856 1.622302 1.992230 2.080352 2.572688 2.644430 +1.478216 1.633404 1.931202 2.064133 2.552282 2.629338 +1.452477 1.676763 1.945911 2.084750 2.600973 2.668889 +1.411560 1.706182 1.890249 2.169616 2.567319 2.650155 +1.383398 1.664625 1.803260 2.108612 2.595771 2.646221 +1.434597 1.645007 1.871751 2.115488 2.528958 2.660256 +1.444542 1.581834 1.898636 2.094074 2.528453 2.631504 +1.465558 1.562000 1.841423 2.051601 2.559944 2.632318 +1.499287 1.581053 1.857454 2.098994 2.511597 2.604341 +1.528680 1.651347 1.871308 2.071232 2.562548 2.622460 +1.514467 1.633477 1.778604 2.123502 2.606102 2.662390 +1.301476 1.683914 1.796063 2.170750 2.644952 2.691777 +1.154424 1.626935 1.749221 1.996410 2.579238 2.652899 +1.117912 1.569269 1.795380 1.885300 2.376717 2.739725 +1.251786 1.625672 1.839263 1.991314 2.350120 2.655047 +1.412131 1.694235 1.839362 1.998399 2.445222 2.739684 +1.370157 1.687258 1.879731 2.006454 2.329014 2.632962 +1.174780 1.729049 1.887372 2.013905 2.259388 2.557737 +1.317917 1.737041 1.878083 1.979313 2.175363 2.634863 +1.140130 1.586450 1.932219 2.027711 2.236840 2.484950 +1.100136 1.600099 1.851286 1.972375 2.604826 2.649449 +1.111969 1.525982 1.842706 2.011491 2.601600 2.669393 +1.080825 1.492576 1.810233 1.965312 2.556725 2.645171 +1.129345 1.635898 1.785176 2.137400 2.498003 2.572522 +1.003594 1.603010 1.722697 2.139397 2.431587 2.510996 +1.120169 1.425151 1.675683 2.050774 2.343247 2.460676 +1.328607 1.599151 1.873581 2.170450 2.470538 2.613529 +1.382087 1.595341 1.923462 2.082111 2.349552 2.510754 +1.466192 1.572864 1.870467 2.179996 2.346338 2.471868 +1.379765 1.633014 1.808273 2.166294 2.398723 2.492469 +1.305921 1.610021 1.856406 2.001543 2.390671 2.533908 +1.383086 1.586806 1.757224 1.934804 2.433540 2.587951 +1.307509 1.450943 1.675332 2.033940 2.244229 2.418123 +1.191501 1.484072 1.750272 2.096644 2.249380 2.504983 +1.241378 1.491790 1.776884 2.071735 2.367933 2.508071 +1.265701 1.459923 1.781754 2.009900 2.348578 2.516037 +1.279508 1.414652 1.795096 2.055938 2.395700 2.530542 +1.337338 1.445932 1.853009 2.075183 2.385984 2.535489 +1.288973 1.424709 1.797989 2.026295 2.299802 2.423713 +1.365284 1.471788 1.801705 1.937695 2.345304 2.466696 +1.353791 1.447746 1.736211 1.868886 2.274358 2.475584 +1.360863 1.449607 1.680466 1.802646 2.395536 2.513256 +1.388330 1.526246 1.673331 1.909867 2.385020 2.535430 +1.424428 1.544219 1.720205 1.936245 2.307968 2.491418 +1.448943 1.552009 1.797935 1.937520 2.406873 2.546121 +1.432034 1.521621 1.799322 2.021435 2.477329 2.571754 +1.463087 1.546282 1.834418 2.063488 2.489800 2.595267 +1.425467 1.556435 1.904716 2.110821 2.466374 2.587563 +1.384837 1.569415 1.925581 2.072374 2.561291 2.640537 +1.418492 1.539421 1.937535 2.014318 2.609201 2.676764 +1.397006 1.483285 1.936731 1.977746 2.595606 2.735850 +1.335615 1.441868 1.884738 1.994960 2.589628 2.695748 +1.357490 1.518997 1.871603 1.980199 2.629016 2.700305 +1.353558 1.524318 1.891083 1.963707 2.595814 2.679332 +1.295102 1.639282 1.907387 2.103139 2.583356 2.679778 +1.455545 1.667590 1.953202 2.240488 2.570672 2.673617 +1.460281 1.786653 1.997747 2.285131 2.582928 2.677618 +1.543121 1.729391 2.155674 2.280274 2.655577 2.744248 +1.434440 1.748782 2.042199 2.201295 2.606501 2.695862 +1.436079 1.747337 2.067838 2.253257 2.575944 2.679075 +1.470866 1.698245 2.083133 2.257574 2.565342 2.666191 +1.417419 1.693439 2.053193 2.243538 2.544836 2.632800 +1.412107 1.681588 2.081799 2.326098 2.472446 2.570581 +1.397226 1.764739 2.031556 2.297123 2.471645 2.575881 +1.466497 1.694305 2.005924 2.206325 2.534515 2.635757 +1.437113 1.746568 1.923838 2.127846 2.356631 2.464479 +1.324023 1.597918 1.757776 2.124352 2.347986 2.440470 +1.375387 1.626387 1.778068 2.068399 2.258938 2.397532 +1.379576 1.621789 1.857961 1.994277 2.306086 2.477213 +1.416412 1.648893 1.869117 2.098359 2.345397 2.475125 +1.426241 1.639197 1.925396 2.072677 2.448945 2.532546 +1.459052 1.615870 1.911170 2.125459 2.483704 2.592087 +1.459433 1.690704 1.852418 2.136068 2.529395 2.597199 +1.485144 1.578047 1.810569 2.150621 2.559043 2.618237 +1.529055 1.594664 1.738903 2.261216 2.595771 2.651620 +1.532488 1.585333 1.820935 2.229621 2.623157 2.658477 +1.374401 1.528078 1.848019 2.042459 2.458230 2.591088 +1.399870 1.597467 1.853082 2.096076 2.431604 2.556847 +1.457434 1.609510 1.930756 2.186100 2.392287 2.525064 +1.440508 1.607587 1.869980 2.158283 2.424280 2.555526 +1.376758 1.474791 1.750562 2.190623 2.406180 2.547123 +1.327713 1.454236 1.644635 2.110356 2.352447 2.455926 +1.302805 1.418954 1.609785 2.093121 2.263489 2.393252 +1.207712 1.379869 1.536412 2.059932 2.317302 2.455399 +1.154213 1.302966 1.499207 2.070378 2.322203 2.630828 +1.111474 1.224424 1.625635 2.176079 2.342546 2.606190 +0.945723 1.083298 1.625408 2.214532 2.389898 2.510077 +0.992344 1.116986 1.451917 2.008420 2.313589 2.437855 +1.117309 1.392988 1.713458 2.132315 2.276818 2.497613 +1.332868 1.580932 1.895512 2.129003 2.425104 2.576946 +1.322037 1.497740 1.819219 2.128645 2.443614 2.567952 +1.361937 1.547377 1.790968 2.062941 2.465318 2.546093 +1.252677 1.483878 1.758631 2.033450 2.416283 2.539220 +1.099384 1.344747 1.686531 2.016752 2.355863 2.530839 +1.126109 1.263617 1.649938 1.991544 2.309088 2.514895 +1.190621 1.289655 1.692709 2.009481 2.160091 2.417069 +1.174976 1.414314 1.797856 1.987597 2.278818 2.492762 +1.205354 1.482053 1.850760 2.025549 2.342281 2.523425 +1.248034 1.561185 1.852759 2.096445 2.428364 2.551865 +1.260728 1.601832 1.901052 2.131984 2.409850 2.565546 +1.265037 1.693841 2.000531 2.200039 2.503508 2.617708 +1.278843 1.738264 2.062020 2.289983 2.604440 2.678111 +1.339428 1.735918 2.050123 2.352408 2.597394 2.688219 +1.301064 1.708745 1.965976 2.286214 2.546707 2.653175 +1.278604 1.746157 1.950065 2.214767 2.605793 2.687616 +1.183771 1.523062 1.879119 2.004908 2.600314 2.690485 +1.186222 1.342133 1.817831 1.940077 2.504905 2.659254 +1.179389 1.243680 1.894260 1.979753 2.558019 2.721819 +1.175622 1.357037 1.853192 1.940810 2.646805 2.705660 +1.211124 1.369645 1.825254 1.913289 2.634717 2.712259 +1.169472 1.345149 1.764944 1.883669 2.591077 2.714522 +1.222090 1.389480 1.800177 1.935903 2.573766 2.702922 +1.287266 1.375911 1.878738 1.986045 2.625999 2.708468 +1.299711 1.389598 1.873905 1.942723 2.533485 2.691472 +1.271356 1.424203 1.849847 1.953565 2.555561 2.652372 +1.253571 1.448512 1.829531 1.919100 2.487837 2.630761 +1.223923 1.323017 1.841258 1.932730 2.226845 2.570717 +1.226170 1.321389 1.771794 1.948065 2.137880 2.563052 +1.316238 1.399466 1.789328 1.965570 2.132039 2.424710 +1.264391 1.363953 1.735531 2.005600 2.155844 2.418921 +1.214027 1.319779 1.662017 1.902948 2.064631 2.424833 +1.242602 1.342314 1.624757 1.929420 2.083549 2.318443 +1.241605 1.439119 1.646334 1.817919 1.997763 2.196632 +1.239348 1.336917 1.777062 2.028009 2.155853 2.328702 +1.178416 1.266326 1.802039 1.959820 2.145703 2.469513 +1.247702 1.328626 1.812686 1.992792 2.200638 2.499445 +1.270078 1.370907 1.882273 1.997225 2.254284 2.526050 +1.295553 1.376421 1.860437 2.076734 2.248998 2.567118 +1.304838 1.386085 1.832762 2.061619 2.219399 2.486348 +1.314313 1.381482 1.912831 2.017535 2.287746 2.576424 +1.275078 1.353772 1.858468 2.037031 2.362055 2.615420 +1.287115 1.366797 1.835524 1.961094 2.291985 2.562975 +1.256666 1.341161 1.798806 1.921264 2.333647 2.596913 +1.229284 1.337507 1.753982 1.942388 2.403549 2.602171 +1.224871 1.322981 1.792609 1.918908 2.363314 2.520583 +1.218452 1.321589 1.651493 1.884157 2.366537 2.521284 +1.193218 1.359120 1.632401 1.857625 2.322851 2.452708 +1.205474 1.368035 1.608030 1.815042 2.341851 2.574505 +1.061251 1.318432 1.545024 1.888740 2.401884 2.617020 +1.072522 1.365786 1.514127 1.893675 2.369617 2.474232 +1.111644 1.436790 1.606098 1.842456 2.382418 2.474111 +1.012061 1.316202 1.471593 1.799057 2.349432 2.455130 +1.089471 1.248571 1.572785 1.953061 2.298439 2.461784 +1.068360 1.195813 1.624024 2.111295 2.311476 2.419253 +1.147513 1.525224 1.724810 1.957167 2.387532 2.471314 +1.334336 1.568150 1.749039 1.962569 2.390633 2.484647 +1.298140 1.467881 1.814397 1.941570 2.384226 2.522176 +1.295007 1.418486 1.859466 1.962329 2.376315 2.521757 +1.335831 1.436636 1.858260 1.966332 2.446579 2.563483 +1.346492 1.477982 1.905644 1.998091 2.490052 2.584468 +1.407183 1.540763 1.879296 1.992980 2.487939 2.564009 +1.447665 1.628575 1.828196 2.053651 2.534046 2.605859 +1.524705 1.620051 1.837880 2.017915 2.592167 2.653373 +1.564584 1.647141 1.761178 2.024150 2.615248 2.656575 +1.529370 1.593981 1.683157 1.979831 2.601640 2.654391 +1.585075 1.652835 1.786770 2.031845 2.518000 2.620980 +1.588906 1.644232 1.813812 2.041481 2.610723 2.666049 +1.601362 1.686074 1.862952 2.127114 2.608859 2.655021 +1.640245 1.750920 1.921102 2.164412 2.547516 2.617193 +1.548602 1.638196 1.917398 2.092646 2.563829 2.615836 +1.515875 1.616955 1.844164 2.007026 2.528173 2.601071 +1.465872 1.572195 1.740969 2.011290 2.493415 2.581928 +1.411908 1.534275 1.669392 2.025507 2.419065 2.534991 +1.339405 1.524896 1.674545 2.018990 2.344004 2.443795 +1.300672 1.527060 1.673067 2.036189 2.269516 2.383792 +1.193083 1.476495 1.664464 1.933230 2.291004 2.414954 +1.192791 1.485591 1.649261 1.844048 2.295088 2.502001 +1.197824 1.364864 1.703691 1.827209 2.262766 2.499801 +1.138273 1.379249 1.658127 1.912486 2.389082 2.583381 +1.166597 1.357942 1.688915 1.942734 2.491527 2.589252 +1.170615 1.391547 1.721925 1.889510 2.506116 2.616390 +1.210959 1.452702 1.755617 1.844973 2.490062 2.624729 +1.212139 1.519716 1.785919 1.889270 2.551264 2.629492 +1.276001 1.664615 1.957757 2.249343 2.602286 2.677701 +1.400862 1.816183 1.994456 2.325956 2.651785 2.717305 +1.466054 1.834563 2.118572 2.372427 2.625377 2.704685 +1.578859 1.790938 2.136097 2.392831 2.638547 2.714022 +1.480700 1.816555 2.206450 2.432389 2.575887 2.645111 +1.617288 1.807665 2.241721 2.440067 2.567226 2.631745 +1.570100 1.785068 2.178210 2.348135 2.467045 2.556638 +1.579682 1.701535 2.005186 2.288766 2.434155 2.548589 +1.578691 1.674213 1.965474 2.199446 2.334867 2.479803 +1.640546 1.726915 1.991606 2.240338 2.400971 2.523628 +1.588532 1.709671 1.874418 2.160822 2.381523 2.517230 +1.447497 1.665484 1.900942 2.103382 2.397872 2.535571 +1.203022 1.599213 1.884283 2.032257 2.369015 2.504738 +1.146521 1.513193 1.880497 1.985787 2.407380 2.522482 +1.131266 1.435001 1.834092 2.111348 2.306550 2.531154 +1.176712 1.640343 1.870115 2.064938 2.313000 2.439124 +1.254490 1.590614 1.958487 2.200173 2.344272 2.479816 +1.243959 1.684492 2.016502 2.192945 2.451075 2.547334 +1.537310 1.763854 2.188639 2.371726 2.539927 2.648079 +1.646538 1.887574 2.280949 2.443446 2.593067 2.680775 +1.567456 1.876170 2.108713 2.427826 2.611726 2.691363 +1.341056 1.874127 2.114216 2.396197 2.621228 2.702770 +1.449196 1.837843 2.058401 2.307470 2.616907 2.689695 +1.313491 1.794349 1.961057 2.237499 2.597739 2.685191 +1.202175 1.706913 1.905104 2.139148 2.612890 2.693658 +1.080344 1.590487 1.846519 2.059279 2.631365 2.697376 +1.043219 1.601906 1.900346 2.141041 2.588352 2.662523 +0.984957 1.556146 1.841481 2.148769 2.577337 2.662952 +0.979403 1.553838 1.844172 2.052598 2.577754 2.641114 +0.947313 1.453890 1.836463 1.998780 2.566547 2.637546 +0.959460 1.441678 1.832870 2.106499 2.553643 2.630882 +0.951016 1.397882 1.793743 2.053066 2.492635 2.622573 +0.870727 1.369217 1.817794 2.107476 2.524230 2.627945 +0.902872 1.385159 1.754800 2.013432 2.536990 2.654823 +0.891101 1.362395 1.753579 1.878041 2.559805 2.662468 +0.835616 1.259326 1.757169 1.832338 2.486345 2.635682 +0.787419 1.132035 1.693975 1.776933 2.533180 2.616312 +0.791106 1.068132 1.697743 1.851598 2.571958 2.669553 +0.759951 1.112356 1.562357 1.855199 2.490682 2.601972 +0.792061 1.139999 1.724823 1.954458 2.608864 2.689684 +0.823952 1.270934 1.741090 2.077662 2.613199 2.669386 +0.736534 1.124969 1.743684 2.093250 2.579787 2.661721 +0.797043 1.051944 1.780229 2.240357 2.583476 2.662315 +0.923582 1.503155 1.776882 2.018470 2.613910 2.703042 +1.421538 1.735030 2.006889 2.210344 2.574319 2.670736 +1.350174 1.606122 1.963013 2.084969 2.478192 2.589945 +1.361799 1.656583 1.974082 2.173881 2.479634 2.612008 +1.319939 1.764454 2.027445 2.249293 2.529644 2.635744 +1.394028 1.664199 2.006309 2.246188 2.558094 2.671320 +1.385394 1.755426 2.080024 2.329874 2.630895 2.722673 +1.333690 1.669430 2.021492 2.250607 2.600265 2.689100 +1.341532 1.698164 1.975002 2.237112 2.560850 2.684376 +1.388610 1.785046 1.956888 2.281386 2.563576 2.643708 +1.345894 1.706236 1.842983 2.264164 2.606222 2.694785 +1.320329 1.694191 1.923363 2.218151 2.645478 2.750259 +1.332386 1.748388 2.014721 2.221780 2.602628 2.697461 +1.397603 1.715354 1.949721 2.236000 2.577802 2.661479 +1.618810 1.795968 2.016419 2.205191 2.506636 2.636829 +1.659811 1.735333 2.021086 2.175840 2.443378 2.641454 +1.539528 1.652064 1.946773 2.095081 2.446637 2.636547 +1.532272 1.592873 1.977822 2.053408 2.551491 2.674907 +1.509350 1.581109 2.004243 2.059379 2.524603 2.702937 +1.432533 1.504626 1.930707 2.042330 2.440661 2.690850 +1.194640 1.677037 2.023104 2.078391 2.446911 2.745852 +1.210373 1.824825 2.021515 2.139089 2.539931 2.659640 +1.276624 1.715436 1.952490 2.083815 2.473462 2.664346 +1.235656 1.548445 2.067341 2.118624 2.427438 2.727540 +1.283474 1.374296 1.963417 2.098418 2.474393 2.702856 +1.305021 1.394700 2.068003 2.139040 2.520168 2.706208 +1.284823 1.494312 2.055208 2.140334 2.602120 2.698828 +1.296593 1.587724 2.087205 2.156563 2.618559 2.718633 +1.252465 1.583350 2.108883 2.173872 2.600502 2.685035 +1.177439 1.612038 2.093884 2.155173 2.581066 2.695123 +1.132957 1.572991 2.135458 2.220598 2.615734 2.710569 +1.060318 1.542980 2.165747 2.230410 2.609442 2.697786 +0.993306 1.542205 2.170751 2.247209 2.631170 2.706892 +0.783750 1.568542 2.323323 2.398878 2.594196 2.690603 +0.866024 1.454427 2.113290 2.187039 2.662007 2.719943 +0.793002 1.437700 2.125666 2.225555 2.588880 2.664786 +0.863183 1.439828 2.031948 2.203948 2.586483 2.646886 +0.817301 1.443077 2.078742 2.356665 2.572146 2.635324 +0.840200 1.268198 1.973956 2.380693 2.546743 2.624124 +0.905910 1.472855 2.000805 2.420178 2.606009 2.662539 +0.885218 1.599132 2.063964 2.335379 2.688751 2.736255 +0.812099 1.480973 2.103159 2.193629 2.621360 2.702113 +0.727009 1.481278 2.088167 2.170556 2.575583 2.660557 +0.783755 1.482083 2.210773 2.281994 2.564635 2.658081 +0.810890 1.318001 2.156661 2.250146 2.565371 2.666169 +0.775372 1.352710 2.277457 2.371730 2.587244 2.655489 +0.765239 1.280609 2.227449 2.304899 2.577531 2.696870 +0.860727 1.309962 2.239215 2.358255 2.523746 2.681832 +0.828001 1.157509 2.157199 2.279201 2.554510 2.655379 +0.776568 1.131001 2.110470 2.282369 2.502240 2.634533 +0.662804 1.210648 2.214487 2.275268 2.480153 2.598167 +0.752595 1.172127 2.270252 2.354795 2.534373 2.613431 +0.769014 1.037539 2.239849 2.320190 2.523883 2.637275 +0.747299 1.036519 2.059875 2.380316 2.507719 2.677768 +0.818428 1.110448 2.132574 2.306792 2.442669 2.597844 +0.838124 1.256032 2.152521 2.304078 2.501081 2.591854 +0.842740 1.147341 2.045086 2.317073 2.459293 2.588472 +0.950977 1.150930 2.097644 2.290004 2.497415 2.643449 +0.932262 1.159756 1.945175 2.233748 2.538888 2.635754 +0.872640 1.294667 1.881084 2.112185 2.488729 2.612697 +0.953242 1.398337 1.906758 2.024454 2.396667 2.616332 +1.019160 1.447236 1.917323 2.023333 2.213019 2.528896 +0.980910 1.420444 1.857618 1.943436 2.294481 2.596120 +1.007917 1.474723 1.827586 1.921475 2.567362 2.643752 +1.057674 1.583820 1.862216 1.988312 2.507590 2.602780 +1.089480 1.610937 1.894205 2.067983 2.401427 2.589250 +1.155642 1.601524 1.853784 2.109924 2.266420 2.654880 +1.190394 1.403206 1.850320 2.129434 2.355479 2.599651 +1.165667 1.266234 1.847925 2.191760 2.352164 2.576809 +1.112543 1.237226 1.755553 2.196412 2.378413 2.515897 +1.093202 1.229320 1.630970 2.198491 2.394327 2.490062 +1.030916 1.160090 1.536996 2.150269 2.345755 2.526171 +1.090134 1.227459 1.470303 2.121663 2.325691 2.414263 +1.084185 1.353427 1.495774 2.165409 2.396637 2.501534 +1.128688 1.380138 1.551457 2.110309 2.296856 2.418999 +1.087172 1.454259 1.658795 2.020385 2.196298 2.381465 +1.039395 1.582193 1.728098 2.070179 2.301852 2.489432 +1.019025 1.646872 1.828918 2.125767 2.542468 2.624929 +1.017909 1.675444 2.009386 2.200627 2.432273 2.532754 +0.975365 1.568456 2.099629 2.243759 2.469669 2.558656 +1.045139 1.750545 2.091194 2.277034 2.473998 2.559636 +1.003490 1.670000 2.149872 2.216814 2.544142 2.591015 +0.972271 1.669349 2.066914 2.253461 2.528115 2.626794 +1.001400 1.910537 2.208899 2.322095 2.475052 2.594146 +1.106236 1.762398 2.170214 2.368326 2.532382 2.636954 +0.937567 1.570796 2.208314 2.312080 2.547601 2.604149 +0.984015 1.531648 2.154446 2.260403 2.519554 2.621365 +1.058045 1.589683 2.130473 2.238788 2.559220 2.636001 +1.126293 1.674296 2.142380 2.304378 2.581987 2.659797 +1.092169 1.547245 2.138847 2.246962 2.570924 2.653740 +1.164152 1.513575 2.120596 2.203037 2.555931 2.629117 +1.154436 1.451664 2.109876 2.193787 2.569383 2.668688 +1.171007 1.297549 2.105789 2.224294 2.529719 2.663245 +1.139370 1.343339 2.024942 2.161273 2.570054 2.662064 +1.214975 1.759488 2.013624 2.126711 2.350657 2.508933 +1.410441 1.787361 1.940449 2.082004 2.255781 2.406359 +1.192527 1.698280 1.956892 2.084836 2.235743 2.490643 +1.173627 1.448751 2.011122 2.145246 2.280142 2.534706 +1.172797 1.327177 1.938868 2.095910 2.247560 2.526844 +1.129709 1.376142 1.891533 1.985327 2.196351 2.582653 +1.195218 1.292910 1.887213 2.025135 2.200698 2.525594 +1.246281 1.338967 1.851654 2.072793 2.209074 2.457441 +1.244715 1.395538 1.916844 2.097048 2.296495 2.526646 +1.346432 1.453272 2.128410 2.313839 2.566271 2.666215 +1.392181 1.506569 2.060420 2.183828 2.523643 2.656421 +1.397671 1.478362 2.037869 2.140024 2.522879 2.634883 +1.405078 1.437969 2.064698 2.121678 2.484341 2.664086 +1.527970 1.731644 2.001400 2.182281 2.477459 2.609679 +1.602215 1.694049 2.065008 2.176143 2.567575 2.650751 +1.549243 1.668152 2.061940 2.136053 2.575954 2.678540 +1.590489 1.693208 1.921586 2.193585 2.522338 2.657822 +1.593120 1.715596 2.057856 2.172814 2.502009 2.607762 +1.508461 1.713948 2.053457 2.146855 2.383043 2.628673 +1.500942 1.577870 1.978516 2.080955 2.517866 2.640817 +1.503819 1.559203 1.933282 2.030596 2.516193 2.657495 +1.430951 1.506436 1.856364 2.014512 2.406913 2.583800 +1.394417 1.471155 1.914772 2.015327 2.414514 2.568928 +1.376718 1.476739 1.841743 1.961573 2.459621 2.552505 +1.304829 1.509257 1.807862 1.899025 2.532604 2.616563 +1.486241 1.646868 1.928992 2.176641 2.503384 2.645535 +1.477068 1.576408 1.937301 2.094449 2.468734 2.643633 +1.431493 1.551268 1.935807 2.027994 2.468760 2.605588 +1.427171 1.670820 1.944981 2.109944 2.482745 2.652433 +1.393190 1.649564 1.991075 2.070334 2.586450 2.667337 +1.406966 1.518528 1.967049 2.067755 2.501722 2.624107 +1.399129 1.487381 1.880327 1.972568 2.359193 2.604810 +1.419452 1.541906 1.920889 2.015257 2.416437 2.547537 +1.447736 1.626647 1.911603 2.037838 2.508304 2.609091 +1.507943 1.649223 1.954490 2.063843 2.515779 2.591471 +1.512511 1.697882 1.919266 2.077175 2.545774 2.631085 +1.577487 1.652922 1.969378 2.057105 2.533497 2.610477 +1.604710 1.687839 1.943635 2.030700 2.552461 2.659467 +1.634825 1.710086 1.943508 2.035741 2.553037 2.650522 +1.629110 1.721048 1.907265 2.020140 2.570097 2.652611 +1.653862 1.731013 1.917069 2.016503 2.551305 2.678978 +1.675623 1.740253 1.923108 1.995468 2.543890 2.693466 +1.704324 1.761003 1.892088 1.958603 2.520344 2.709583 +1.631746 1.698022 1.879765 1.974816 2.475043 2.688708 +1.563394 1.662351 1.863499 1.961656 2.492069 2.692141 +1.535271 1.621802 1.864516 2.016880 2.457202 2.701452 +1.463627 1.689995 1.942593 2.019493 2.516076 2.684085 +1.427161 1.545730 1.922601 1.983390 2.549083 2.724037 +1.387863 1.469421 1.874287 2.047091 2.486568 2.643007 +1.364743 1.462745 1.908513 2.076519 2.468769 2.627416 +1.421611 1.616670 2.074387 2.243630 2.604811 2.697119 +1.443567 1.802480 2.145890 2.311026 2.615127 2.704969 +1.402806 1.864810 2.209376 2.377972 2.654288 2.731440 +1.472673 1.860803 2.162882 2.447267 2.648421 2.719024 +1.518497 1.794725 2.075011 2.339205 2.552102 2.655931 +1.503597 1.758472 2.111549 2.304480 2.551002 2.643546 +1.466759 1.587712 2.046144 2.276602 2.546510 2.649906 +1.414608 1.499164 2.000686 2.080851 2.549084 2.654414 +1.324617 1.597419 1.961703 2.075259 2.518788 2.638260 +1.262448 1.666067 1.961546 2.098269 2.549101 2.630367 +1.220869 1.632115 1.947651 2.054954 2.515971 2.607563 +1.136650 1.569138 1.923253 2.011403 2.513979 2.612924 +1.058570 1.570577 1.921267 2.037973 2.484487 2.569497 +1.039823 1.492368 1.862383 2.113321 2.462634 2.586287 +1.291651 1.546687 1.888427 2.160338 2.444567 2.573682 +1.154151 1.629832 1.978719 2.114524 2.505413 2.616168 +1.018988 1.844229 2.003497 2.145640 2.430051 2.549664 +1.003639 1.900247 2.103968 2.200810 2.555267 2.678873 +1.007182 1.652528 2.033376 2.117896 2.534356 2.593837 +1.014065 1.625311 2.073565 2.163998 2.546138 2.611829 +1.009846 1.729007 2.001610 2.190071 2.554550 2.635426 +1.019489 1.599817 2.062920 2.180981 2.585351 2.651906 +1.042282 1.559849 2.061719 2.184907 2.608829 2.711272 +1.093985 1.606698 2.067049 2.179456 2.578115 2.647082 +1.117524 1.554503 2.010457 2.171257 2.524192 2.604614 +1.189148 1.687116 2.026818 2.220744 2.584656 2.673603 +1.184285 1.592927 2.011407 2.140558 2.575633 2.652764 +1.243271 1.544342 1.991354 2.103724 2.547726 2.633837 +1.249802 1.530059 1.930460 2.044509 2.489498 2.611045 +1.317227 1.550858 1.927474 2.019107 2.563575 2.632413 +1.300146 1.571198 1.817213 1.967321 2.572012 2.659755 +1.304786 1.459074 1.804350 1.873800 2.572345 2.677847 +1.272113 1.387927 1.710588 1.798443 2.519124 2.630967 +1.168824 1.271438 1.680467 1.847635 2.472587 2.636108 +1.127715 1.380423 1.702693 1.948341 2.254799 2.516590 +1.037344 1.362071 1.698870 1.943363 2.319984 2.576108 +0.912701 1.215239 1.774758 2.057933 2.407301 2.609739 +0.884045 1.283341 1.740086 2.012038 2.332329 2.530152 +0.859928 1.361393 1.787767 2.032428 2.439162 2.572497 +0.933575 1.497313 1.860114 2.007764 2.460777 2.636583 +0.980843 1.376674 1.808267 1.899302 2.551384 2.660680 +0.888314 1.390836 1.819063 1.938604 2.611726 2.713704 +0.839112 1.455052 1.864246 1.932569 2.561260 2.649480 +0.851738 1.633441 1.854938 2.065105 2.591532 2.637966 +0.927993 1.739190 1.882023 2.133201 2.585017 2.640778 +0.938681 1.795656 1.962111 2.138930 2.565233 2.627897 +0.939389 1.842127 2.021817 2.196345 2.611519 2.658322 +0.876668 1.922758 2.066598 2.238607 2.657831 2.709139 +0.928890 1.831807 2.053719 2.203623 2.653635 2.695408 +0.843177 1.785949 2.180039 2.258075 2.596807 2.669868 +0.904710 1.738574 2.045482 2.171335 2.659082 2.701770 +0.870576 1.672854 2.046684 2.160295 2.663395 2.706284 +0.863208 1.611276 2.039577 2.131986 2.662744 2.710206 +0.911587 1.521477 1.972249 2.117701 2.671514 2.736290 +0.857624 1.506231 1.927459 2.092066 2.599004 2.671353 +0.876724 1.386211 1.930102 2.020125 2.640246 2.715714 +0.822485 1.363083 1.951099 2.012089 2.546285 2.704224 +0.896312 1.299233 1.946153 2.039999 2.427568 2.660429 +0.993275 1.379765 2.001120 2.083441 2.476481 2.621083 +1.111974 1.369262 1.980570 2.050077 2.518420 2.654724 +1.168214 1.421156 1.929649 2.013732 2.513895 2.659462 +1.185532 1.477308 1.941700 2.021792 2.545835 2.636829 +1.134677 1.498395 1.996860 2.077054 2.487095 2.605961 +1.411729 1.500808 1.930565 2.251695 2.391409 2.514752 +1.387101 1.551631 1.939267 2.134432 2.390647 2.538102 +1.436468 1.601632 1.856306 2.001721 2.498428 2.579682 +1.490762 1.673865 1.865367 2.015258 2.490944 2.589599 +1.532290 1.665821 1.854110 1.987787 2.544314 2.634547 +1.563136 1.683249 1.819205 1.981344 2.592402 2.655991 +1.532691 1.642869 1.795089 1.955952 2.595574 2.688667 +1.506939 1.596868 1.724719 1.902522 2.497152 2.646767 +1.385229 1.553302 1.733776 1.993489 2.385677 2.620193 +1.191373 1.508094 1.914117 2.177183 2.460347 2.600638 +0.990202 1.268417 1.760300 1.988487 2.516663 2.661016 +1.004888 1.273030 1.919583 1.976961 2.621532 2.711155 +1.013289 1.479166 1.983769 2.021110 2.561293 2.681392 +1.094384 1.424205 1.985002 2.164791 2.592137 2.670975 +1.057765 1.377512 1.866113 2.165416 2.490671 2.623341 +1.001768 1.321304 1.902289 2.133880 2.499889 2.659347 +0.896048 1.414778 1.927546 2.127605 2.570653 2.658502 +0.862503 1.586972 1.946548 2.153624 2.615123 2.677873 +0.837783 1.700010 1.932982 2.209447 2.588567 2.687532 +0.901209 1.639772 1.999974 2.070577 2.515297 2.763152 +0.955829 1.601245 2.008965 2.112233 2.503888 2.592844 +0.939285 1.704094 2.027412 2.125922 2.430007 2.538916 +0.948268 1.700873 2.002768 2.088348 2.563468 2.622110 +0.959154 1.624274 2.005824 2.077760 2.577716 2.658733 +0.932538 1.593435 1.952831 2.044660 2.567978 2.644497 +0.933107 1.590563 1.945695 2.111900 2.534278 2.608873 +0.943808 1.649088 1.897019 2.104647 2.578170 2.689758 +1.003034 1.619161 1.930228 2.216721 2.582337 2.637890 +0.936810 1.692346 1.965525 2.118648 2.628517 2.684797 +0.973578 1.737821 1.975673 2.106344 2.658295 2.722445 +0.955324 1.750194 1.961437 2.075373 2.655612 2.731757 +0.994013 1.727390 1.946779 2.062413 2.643379 2.738490 +1.005363 1.693919 1.929868 2.100177 2.618754 2.684861 +0.967862 1.640078 1.930261 2.021548 2.639890 2.726662 +0.928258 1.579359 1.864413 1.973012 2.638908 2.717888 +1.058334 1.410591 1.870850 2.066023 2.451575 2.633697 +1.123046 1.486876 1.862969 2.086078 2.412975 2.591738 +1.177472 1.431539 1.849290 2.099756 2.423335 2.566135 +1.187028 1.443506 1.882075 1.983318 2.550673 2.639389 +1.267969 1.628389 1.932608 2.043278 2.552232 2.641727 +1.355546 1.701559 1.924241 2.034556 2.590180 2.660965 +1.472056 1.739983 1.914264 2.052330 2.573889 2.644926 +1.461490 1.790656 1.911310 2.057871 2.525599 2.587235 +1.542347 1.742399 1.901654 2.063063 2.499169 2.580661 +1.550813 1.642896 1.877392 1.995154 2.474361 2.561166 +1.625354 1.724756 1.899115 2.052586 2.447095 2.556852 +1.636703 1.742201 1.904488 2.155317 2.470314 2.569291 +1.608688 1.701026 1.957110 2.085583 2.465316 2.552203 +1.517569 1.685169 1.923050 2.028968 2.382899 2.503932 +1.215848 1.648126 1.842885 2.049966 2.393827 2.484346 +1.158500 1.452995 1.752665 1.859020 2.467269 2.575520 +1.128274 1.384146 1.801504 1.899178 2.472451 2.609988 +1.080623 1.414338 1.812493 1.916642 2.422686 2.620118 +1.104866 1.492913 1.854038 1.971940 2.444002 2.583583 +1.235805 1.437823 1.919484 2.042792 2.483999 2.617147 +1.167412 1.407601 1.774394 2.073573 2.390599 2.543323 +1.096565 1.317231 1.782210 2.013544 2.394372 2.571806 +1.104307 1.206800 1.718582 2.001006 2.351339 2.505639 +1.047321 1.316889 1.824322 2.050773 2.417158 2.531028 +1.087184 1.408401 1.843144 2.031666 2.440481 2.544264 +1.108521 1.394200 1.760026 2.005728 2.435035 2.552154 +1.121767 1.340590 1.749504 1.963633 2.493819 2.609645 +1.122415 1.452714 1.793131 2.030414 2.502133 2.593239 +1.026877 1.468099 1.745342 1.860466 2.483684 2.579747 +0.971670 1.244091 1.752977 1.837331 2.384716 2.625316 +0.917302 1.104410 1.674928 1.792426 2.336189 2.629469 +0.961560 1.088356 1.555776 1.663706 2.282322 2.579748 +0.919563 1.063279 1.573205 1.711100 2.422693 2.675976 +0.875889 1.022614 1.380839 1.829163 2.584656 2.667378 +0.763749 1.018806 1.506319 1.707976 2.471526 2.595865 +0.886944 1.031388 1.425057 1.710023 2.427922 2.576385 +0.890351 1.037652 1.443986 1.587883 2.520205 2.695833 +0.906256 1.035046 1.405613 1.523743 2.536532 2.596081 +0.929418 1.061071 1.157090 1.566597 2.528260 2.694068 +0.917396 1.106117 1.253042 1.389506 2.551566 2.709098 +0.910230 1.042070 1.162527 1.362129 2.393076 2.605349 +0.804288 1.059586 1.418081 1.530362 2.410566 2.663442 +0.907675 1.046288 1.392541 1.508232 2.495351 2.692340 +0.835212 1.126874 1.350498 1.463210 2.567735 2.694674 +0.770295 1.150701 1.428259 1.601173 2.610228 2.683669 +0.924536 1.075405 1.468526 1.669865 2.543683 2.693196 +0.972382 1.191757 1.544758 1.638670 2.535321 2.642972 +0.903877 1.101926 1.510782 1.602659 2.487038 2.638272 +0.881279 1.096901 1.554249 1.644297 2.424659 2.557575 +0.866115 1.118877 1.603042 1.702467 2.543898 2.649301 +0.906645 1.160248 1.672021 1.747258 2.517909 2.650863 +0.861085 1.205864 1.660991 1.847091 2.462741 2.632034 +0.837175 1.187776 1.806042 1.889495 2.508608 2.684557 +0.797709 1.178516 1.903177 2.021653 2.546180 2.690072 +0.802875 1.262753 1.923936 2.000576 2.568440 2.670106 +0.766638 1.320827 1.961021 2.058945 2.582312 2.646725 +0.811579 1.455194 2.011480 2.084784 2.548418 2.639933 +0.829770 1.484961 2.052714 2.127227 2.530640 2.608181 +0.799011 1.567454 2.155632 2.265108 2.573173 2.668504 +0.730379 1.358614 2.125791 2.194588 2.518703 2.605426 +0.720667 1.277836 2.042808 2.111923 2.592800 2.675300 +0.777663 1.163703 2.066790 2.179199 2.570004 2.675513 +0.839969 1.373176 2.185884 2.304679 2.509358 2.602576 +0.815752 1.915221 2.233635 2.288481 2.569983 2.628428 +1.191882 1.945689 2.175132 2.299053 2.523524 2.632041 +1.036281 1.742208 2.072713 2.141555 2.573194 2.641551 +1.042507 1.303046 2.012892 2.154612 2.530678 2.649182 +1.109942 1.204237 1.928687 2.058228 2.384097 2.639570 +1.187387 1.287703 1.954253 2.071260 2.382559 2.641811 +1.239189 1.327757 1.930550 2.015277 2.361685 2.627501 +1.292084 1.351985 1.938008 2.017320 2.411502 2.663432 +1.306236 1.382401 1.918450 2.038312 2.339392 2.637738 +1.330235 1.401641 1.873760 1.990443 2.185496 2.510909 +1.356391 1.459759 1.883388 1.980460 2.264547 2.541810 +1.347396 1.438637 1.891675 2.018006 2.302572 2.643809 +1.300877 1.390171 1.889271 1.972933 2.337515 2.605637 +1.318667 1.410121 1.895352 1.990366 2.384682 2.654040 +1.309274 1.425501 1.966145 2.021896 2.501117 2.698509 +1.293853 1.370923 1.908443 1.999149 2.465481 2.673998 +1.277395 1.382844 2.002299 2.066843 2.496853 2.664070 +1.245384 1.422441 2.002908 2.070718 2.556839 2.666388 +1.272587 1.491087 2.012301 2.129241 2.562307 2.657432 +1.265182 1.533940 2.020942 2.093088 2.498380 2.630954 +1.265700 1.477033 2.103009 2.196534 2.455284 2.619887 +1.288505 1.642454 2.093854 2.247833 2.561691 2.658788 +1.410258 1.828971 2.171872 2.374134 2.564587 2.653381 +1.353887 1.710043 2.209331 2.426043 2.629318 2.702189 +1.413615 1.766928 2.137724 2.434853 2.632060 2.702909 +1.459054 1.706939 2.135084 2.377030 2.626415 2.708945 +1.498018 1.687923 2.094822 2.342946 2.558778 2.665699 +1.413908 1.588267 2.086727 2.293084 2.513587 2.642131 +1.399998 1.553342 1.938772 2.183871 2.458665 2.610409 +1.373521 1.449791 1.880601 2.079841 2.298236 2.559768 +1.367538 1.440752 1.973770 2.086070 2.339106 2.621913 +1.368842 1.460821 2.006053 2.129789 2.391520 2.650517 +1.375993 1.496235 2.050052 2.130850 2.453915 2.698625 +1.340575 1.484156 2.084130 2.140940 2.549924 2.685428 +1.389975 1.553009 2.063781 2.147982 2.592260 2.703825 +1.247451 1.503376 2.044299 2.136485 2.344491 2.599169 +1.315110 1.540850 2.028329 2.116330 2.272535 2.431545 +1.298833 1.587487 2.071926 2.185875 2.335690 2.500779 +1.293658 1.562430 2.031101 2.149606 2.408168 2.517292 +1.357545 1.513305 1.998085 2.153047 2.450464 2.583804 +1.314414 1.517423 2.079463 2.179438 2.522288 2.616203 +1.237750 1.513563 2.052227 2.181066 2.539042 2.628158 +1.208558 1.486041 2.046503 2.194666 2.489982 2.636673 +1.196570 1.462494 2.073139 2.230856 2.547633 2.700603 +1.080935 1.459427 2.110500 2.217708 2.538133 2.678354 +1.094483 1.378608 2.167880 2.246181 2.567935 2.691322 +0.942435 1.463343 2.253533 2.330775 2.538479 2.626769 +0.828468 1.390170 2.152319 2.218028 2.545274 2.621490 +0.883311 1.334196 2.094816 2.191259 2.475576 2.573464 +0.863185 1.418682 2.080489 2.166381 2.556104 2.714086 +0.848520 1.391080 2.049319 2.134194 2.702541 2.780818 +0.826225 1.373582 2.037386 2.120576 2.736093 2.782594 +0.823246 1.343853 2.033890 2.111803 2.740872 2.787067 +0.833848 1.336791 2.045450 2.118012 2.699609 2.796181 +0.811654 1.321345 2.094991 2.178116 2.494230 2.649899 +0.947528 1.361146 2.127848 2.219008 2.511382 2.668194 +0.875759 1.251606 2.133422 2.241748 2.473825 2.662930 +0.933534 1.448444 2.139134 2.244510 2.486761 2.606936 +0.945109 1.280801 2.208944 2.335059 2.511318 2.614528 +0.956935 1.371241 2.107196 2.194521 2.403252 2.573030 +0.981000 1.251932 2.147964 2.266597 2.440418 2.624374 +1.061610 1.231691 2.076021 2.233401 2.438599 2.636988 +1.018874 1.354035 1.998033 2.260078 2.443139 2.554775 +1.080301 1.301891 2.034629 2.145600 2.415056 2.591218 +1.133867 1.359760 2.063950 2.164629 2.439392 2.628661 +1.125038 1.414128 1.997540 2.103717 2.392421 2.599578 +1.167273 1.393564 1.998177 2.076478 2.441776 2.643288 +1.198696 1.421193 1.967983 2.057020 2.432820 2.645067 +1.256230 1.378074 1.941853 2.019326 2.444584 2.608853 +1.295565 1.412154 1.932411 2.008349 2.430053 2.649016 +1.281347 1.464522 1.888236 2.006518 2.425280 2.635204 +1.270582 1.406704 1.901187 1.969293 2.470983 2.647901 +1.266697 1.372887 1.871811 1.957591 2.414971 2.648622 +1.194388 1.351744 1.888250 1.978092 2.400857 2.662660 +1.198872 1.299839 1.864283 1.963651 2.362794 2.619509 +1.126580 1.240104 1.902544 1.997646 2.331426 2.608634 +1.104618 1.214183 1.879788 2.014306 2.251659 2.573373 +1.024288 1.193207 1.868916 2.127876 2.376009 2.623451 +1.000362 1.230212 1.960304 2.075244 2.329353 2.584128 +0.977548 1.321985 1.988755 2.104256 2.381026 2.607919 +0.927608 1.447916 2.027888 2.123013 2.478479 2.585880 +0.887733 1.516534 2.046895 2.153890 2.480515 2.582006 +0.898681 1.564754 2.091528 2.179653 2.573940 2.676783 +0.974718 1.500859 2.081966 2.177780 2.532281 2.634995 +1.023818 1.390635 2.060590 2.142028 2.469386 2.636908 +1.106581 1.431053 1.977134 2.097146 2.471693 2.659120 +1.201259 1.485663 1.944652 2.112542 2.500250 2.665927 +1.285694 1.520657 1.911058 2.044248 2.487710 2.665801 +1.362495 1.534785 1.910552 1.990936 2.505705 2.661527 +1.434594 1.514838 1.934187 2.017407 2.501527 2.693875 +1.420840 1.519491 1.909348 1.986650 2.460403 2.688194 +1.404412 1.469806 1.964287 2.054233 2.366794 2.655269 +1.388287 1.466909 1.964052 2.058950 2.286531 2.604935 +1.367998 1.434810 1.857703 2.007116 2.196577 2.604187 +1.300836 1.380544 1.740254 2.046889 2.235228 2.521906 +1.231299 1.321604 1.867230 2.147627 2.354630 2.579138 +1.154924 1.255903 1.932323 2.164374 2.392832 2.605994 +1.098663 1.202218 1.948275 2.150159 2.492596 2.625742 +1.057458 1.221852 1.869129 2.268825 2.456540 2.580362 +1.033078 1.150105 1.708873 2.264876 2.476044 2.563612 +0.988998 1.159268 1.962027 2.302711 2.448723 2.560725 +1.028425 1.228689 2.025910 2.260366 2.561850 2.661757 +0.934860 1.348208 2.053889 2.214742 2.525301 2.647713 +0.919150 1.264565 2.068138 2.183398 2.534979 2.644315 +0.975247 1.362233 2.052147 2.231420 2.582800 2.724482 +0.954336 1.311177 1.977372 2.238157 2.478111 2.617046 +0.941853 1.335982 1.976422 2.219013 2.579491 2.714299 +0.928694 1.366450 1.884879 2.183146 2.580560 2.657594 +0.986067 1.338370 1.954317 2.187863 2.566522 2.638835 +0.912646 1.284402 1.814142 2.175069 2.553933 2.638518 +0.968965 1.310497 1.839690 2.078084 2.590335 2.660573 +0.977192 1.304629 1.880951 2.127022 2.598044 2.712114 +1.023839 1.299619 1.944708 2.103778 2.625919 2.730897 +1.110208 1.286313 1.959383 2.053969 2.564587 2.676132 +1.028136 1.324243 1.976740 2.094942 2.586202 2.754727 +1.129799 1.269907 2.011874 2.109219 2.588902 2.696539 +1.056967 1.340484 2.016171 2.105554 2.557611 2.747157 +1.037500 1.255766 2.029385 2.136193 2.511776 2.709627 +1.006157 1.417167 2.071949 2.132612 2.543898 2.701957 +1.136962 1.416211 2.050339 2.112042 2.449673 2.695205 +1.135319 1.436267 2.083850 2.194924 2.386385 2.656934 +1.094073 1.385456 2.015160 2.113333 2.320097 2.641531 +1.025929 1.360649 1.878300 1.981456 2.128037 2.458938 +1.142747 1.416162 1.901013 2.054884 2.170210 2.459052 +1.093211 1.488385 1.801376 2.073578 2.203432 2.494834 +1.161243 1.263262 1.784814 2.071204 2.194577 2.436217 +1.010788 1.141181 1.728171 2.118721 2.251271 2.426326 +1.083805 1.275984 1.888426 2.068392 2.227464 2.511105 +1.093824 1.303401 1.924085 2.183963 2.348527 2.531702 +1.409867 1.540059 1.722330 2.049905 2.235685 2.389249 +1.466595 1.617030 1.819393 2.035808 2.439730 2.543324 +1.526883 1.811727 1.926153 2.129197 2.481471 2.556058 +1.420465 1.731610 1.925362 2.081119 2.474447 2.570275 +1.248374 1.462520 1.699273 1.907107 2.355354 2.484796 +1.183224 1.558159 1.646615 1.999807 2.374069 2.461600 +1.143841 1.513288 1.675690 1.906750 2.428362 2.518793 +1.066986 1.500051 1.667526 1.961464 2.445898 2.521565 +1.046648 1.520761 1.705160 1.878376 2.459759 2.532729 +1.013709 1.559530 1.737535 1.955854 2.437820 2.515857 +1.021952 1.586883 1.737034 1.929179 2.523644 2.577879 +0.942307 1.579146 1.776104 2.060265 2.437220 2.517653 +0.914226 1.642076 1.812801 2.001091 2.508510 2.570062 +0.952017 1.688066 1.935018 2.016153 2.446793 2.563584 +0.856280 1.697514 1.902727 2.012686 2.522414 2.584398 +0.891878 1.553150 1.935497 2.046974 2.532664 2.594967 +0.845424 1.602286 1.937720 2.027521 2.583016 2.649168 +0.876501 1.716624 1.939566 2.067536 2.588264 2.625363 +0.901014 1.864369 1.978925 2.075191 2.462666 2.609798 +0.911677 1.767853 1.947788 2.072575 2.595744 2.634946 +0.937394 1.708734 1.927739 2.054606 2.574109 2.647431 +1.003647 1.614615 1.942062 2.035984 2.592009 2.664724 +1.089415 1.563712 1.910690 1.974956 2.590910 2.681816 +1.180196 1.457231 1.840836 1.921595 2.573409 2.659354 +1.239380 1.444276 1.818908 1.893870 2.559595 2.657419 +1.377315 1.528992 1.744904 1.862220 2.591155 2.669066 +1.504904 1.589455 1.777756 1.887229 2.506207 2.617754 +1.628411 1.697438 1.830602 1.957574 2.495413 2.652982 +1.655345 1.726761 1.914454 2.042947 2.589709 2.658972 +1.698171 1.754006 1.967189 2.090429 2.602705 2.677128 +1.676303 1.767709 2.042847 2.156668 2.628324 2.690687 +1.724974 1.789927 2.022254 2.138454 2.576232 2.671774 +1.748186 1.802674 2.037781 2.180248 2.542513 2.638948 +1.727494 1.820586 1.984490 2.159068 2.525266 2.641113 +1.681162 1.820947 1.975700 2.157376 2.485796 2.590414 +1.695585 1.807190 1.993679 2.180888 2.380331 2.560860 +1.706934 1.810695 2.008115 2.133097 2.420753 2.641751 +1.654579 1.765733 2.024758 2.124029 2.493478 2.660848 +1.482280 1.849534 2.039337 2.240485 2.457215 2.547774 +1.603912 1.832539 2.051601 2.251630 2.461138 2.560412 +1.611914 1.787316 2.134457 2.250322 2.620939 2.678279 +1.702258 1.857664 2.093573 2.245781 2.633559 2.687798 +1.692364 1.776254 2.026193 2.275357 2.580552 2.683245 +1.587105 1.750297 1.997944 2.242069 2.586538 2.691453 +1.535548 1.765338 2.053611 2.233619 2.646730 2.717875 +1.189624 1.336795 1.763750 2.001818 2.436073 2.594289 +1.190961 1.322629 1.662495 2.028538 2.347408 2.530977 +1.170930 1.394685 1.727435 2.022812 2.382661 2.552602 +1.082797 1.383312 1.623231 1.825654 2.463128 2.574492 +1.058861 1.316419 1.617844 1.734402 2.496675 2.607354 +1.031745 1.332707 1.534727 1.707419 2.433275 2.544209 +1.096632 1.405927 1.540583 1.719915 2.509655 2.573209 +1.088142 1.381934 1.507222 1.618554 2.484112 2.618437 +1.128355 1.341806 1.494171 1.715551 2.495969 2.579865 +1.175042 1.360111 1.572899 1.757164 2.481162 2.588909 +1.251837 1.388286 1.580411 1.744290 2.530232 2.614281 +1.310739 1.444267 1.657251 1.823494 2.515110 2.614602 +1.329594 1.483659 1.703926 1.871461 2.532374 2.621921 +1.364647 1.503101 1.755842 1.919028 2.547482 2.624406 +1.400143 1.516781 1.808646 1.943813 2.572341 2.655551 +1.403936 1.536778 1.854571 1.961169 2.527770 2.650144 +1.441635 1.534902 1.873629 1.970753 2.528116 2.670832 +1.448614 1.528669 1.860977 1.951947 2.473243 2.657815 +1.451619 1.547843 1.824154 2.019980 2.462454 2.654097 +1.474914 1.548478 1.890892 1.995469 2.484609 2.659992 +1.432352 1.541523 1.888921 2.060202 2.407091 2.630443 +1.443739 1.529785 1.892698 1.996592 2.373799 2.620977 +1.379224 1.489730 1.897357 2.016742 2.416784 2.627496 +1.377069 1.463119 1.911655 2.022620 2.355389 2.608649 +1.331805 1.431037 1.929174 2.046904 2.374045 2.605001 +1.261392 1.448545 1.975458 2.082519 2.366860 2.620796 +1.222534 1.418974 1.979786 2.116310 2.439587 2.664630 +1.142938 1.304442 1.984504 2.071356 2.473077 2.672948 +1.163073 1.268521 1.930445 2.046302 2.305097 2.594448 +1.102508 1.246087 1.951734 2.103272 2.299777 2.571979 +1.010568 1.147332 1.902536 2.046240 2.288021 2.566997 +1.010466 1.307000 1.827652 2.076872 2.333263 2.555967 +1.246338 1.534633 1.859079 2.187994 2.388066 2.541619 +1.200493 1.578943 1.899233 2.165025 2.448881 2.583181 +0.969958 1.321171 1.879198 2.166270 2.417955 2.602455 +0.883738 1.359575 2.004523 2.100728 2.516977 2.633388 +0.844286 1.405546 2.057051 2.140524 2.516435 2.660060 +0.862435 1.502332 2.107411 2.205164 2.558187 2.660491 +0.940459 1.428240 2.139821 2.233319 2.564481 2.673761 +0.930987 1.583981 2.021904 2.152394 2.404035 2.506344 +1.046556 1.798258 1.988424 2.129290 2.357578 2.453538 +1.053483 1.593749 2.104331 2.232679 2.372807 2.498150 +1.137645 1.642783 2.089155 2.231807 2.383165 2.575567 +1.180782 1.899843 2.114705 2.223340 2.453147 2.554915 +1.144768 1.795798 2.058166 2.194105 2.452139 2.558749 +1.132549 1.688302 1.980246 2.107445 2.321949 2.446573 +1.155835 1.527004 1.951246 2.101869 2.265669 2.423260 +1.218988 1.551877 1.978933 2.129503 2.365239 2.547894 +1.269955 1.592834 1.957403 2.059254 2.477360 2.620075 +1.304775 1.597146 1.974266 2.084408 2.414413 2.613437 +1.304611 1.645522 1.976796 2.100584 2.364468 2.510600 +1.357449 1.721619 2.013975 2.141789 2.385178 2.512136 +1.335725 1.833907 2.001270 2.155846 2.401439 2.496098 +1.311398 1.558292 1.938760 2.063279 2.307274 2.526616 +1.360360 1.440763 1.893578 2.075310 2.237527 2.504599 +1.331599 1.468494 1.928903 2.060963 2.318029 2.567821 +1.318611 1.537603 1.924470 2.015195 2.358808 2.593307 +1.214364 1.546191 1.882099 1.995250 2.377928 2.652939 +1.296335 1.566534 1.875140 2.003277 2.476321 2.631527 +1.397784 1.586154 1.861480 2.030113 2.587065 2.654646 +1.475237 1.644203 1.915883 2.047027 2.653267 2.714423 +1.524741 1.716019 1.957822 2.067654 2.623703 2.690243 +1.578686 1.677809 1.940919 2.066782 2.613829 2.704583 +1.558659 1.702533 1.930114 2.028274 2.615049 2.686527 +1.500895 1.699904 1.908920 1.998738 2.620634 2.691280 +1.442946 1.702672 1.900985 1.975333 2.624730 2.699244 +1.372883 1.638290 1.917707 2.028286 2.626184 2.697452 +1.284224 1.656214 1.897845 1.992564 2.644425 2.707381 +1.204035 1.651822 1.889771 1.992564 2.638494 2.709577 +1.149198 1.622068 1.884510 1.979246 2.632691 2.699244 +1.133732 1.618626 1.895041 1.977544 2.625046 2.694884 +1.157568 1.662329 1.889784 1.978395 2.626035 2.684544 +1.218943 1.667105 1.879063 2.005165 2.602271 2.658132 +1.224226 1.626864 1.791981 1.894650 2.517637 2.647870 +1.354348 1.558760 1.843077 1.930892 2.571225 2.630861 +1.339527 1.595092 1.762248 1.979267 2.546017 2.613198 +1.389217 1.592419 1.859636 1.962120 2.550950 2.637714 +1.441267 1.590433 1.879393 1.987047 2.582006 2.666738 +1.431033 1.609808 1.890274 2.037874 2.525040 2.672056 +1.468384 1.575421 1.945848 2.029866 2.551470 2.705315 +1.450092 1.601430 1.954103 2.062799 2.534132 2.666966 +1.482171 1.565438 1.973588 2.124154 2.520208 2.656022 +1.429418 1.560169 1.984368 2.078415 2.510933 2.668346 +1.440913 1.587927 1.976090 2.097963 2.464144 2.621669 +1.432466 1.582610 1.973345 2.159930 2.500511 2.668329 +1.429101 1.593924 1.974811 2.070207 2.527049 2.683794 +1.377247 1.571046 1.937033 2.094336 2.488609 2.653189 +1.485270 1.572718 1.935520 2.015863 2.471891 2.687018 +1.473606 1.569260 1.872618 1.962880 2.412797 2.654369 +1.486059 1.580245 1.866252 1.975544 2.318749 2.586712 +1.465213 1.581118 1.784993 1.913021 2.172477 2.555915 +1.433656 1.566339 1.728508 1.853259 2.061966 2.413952 +1.367612 1.543842 1.700068 1.854972 2.034622 2.282022 +1.503264 1.657179 1.809362 1.937669 2.143191 2.435605 +1.340742 1.593266 1.833843 2.129408 2.468938 2.572839 +1.336721 1.481696 1.944774 2.230613 2.480290 2.580121 +1.321318 1.603141 1.968333 2.203371 2.515102 2.650047 +1.341931 1.668341 1.988838 2.185252 2.564141 2.653216 +1.315554 1.648897 1.959899 2.147638 2.516885 2.612616 +1.277314 1.620218 2.001858 2.229409 2.531549 2.621818 +1.305168 1.578599 2.038627 2.295512 2.565341 2.654838 +1.330511 1.609911 1.991543 2.262708 2.563339 2.665956 +1.374004 1.683930 1.980067 2.338575 2.595603 2.682727 +1.268703 1.389752 1.885378 2.110404 2.488114 2.638645 +1.216813 1.310045 1.854691 2.036714 2.277594 2.566534 +1.234945 1.337806 1.949427 2.059361 2.295326 2.566468 +1.188939 1.302387 1.996200 2.107442 2.349193 2.585236 +1.268977 1.440154 2.024771 2.136855 2.444005 2.664042 +1.274373 1.383125 2.066734 2.151173 2.407560 2.654201 +1.264553 1.356123 2.001656 2.118864 2.287784 2.569535 +1.234337 1.329784 2.063392 2.150768 2.367188 2.598596 +1.155210 1.257442 2.082496 2.211439 2.390593 2.620100 +1.199455 1.265557 1.934979 2.226691 2.540894 2.664195 +1.304701 1.526851 1.954550 2.174656 2.477694 2.621713 +1.638067 1.896263 2.077081 2.361007 2.646027 2.718839 +1.643821 1.943109 2.131987 2.329624 2.578717 2.645464 +1.640898 1.989224 2.161468 2.269205 2.586475 2.655395 +1.723007 1.910073 2.070189 2.259565 2.564392 2.640342 +1.652067 1.998733 2.135937 2.352824 2.652512 2.717475 +1.680722 2.074091 2.269666 2.453470 2.699939 2.763041 +1.695085 2.058973 2.193637 2.313571 2.639345 2.699445 +1.782955 2.014033 2.224899 2.332287 2.645355 2.724401 +1.705960 1.974745 2.180829 2.256084 2.575177 2.716938 +1.662556 1.988643 2.115183 2.205279 2.548376 2.657655 +1.562053 1.843896 2.173269 2.265891 2.477950 2.695966 +1.685920 1.795837 2.078330 2.180138 2.465369 2.667314 +1.680613 1.738555 1.994736 2.131193 2.473191 2.649544 +1.659289 1.833639 2.000087 2.140167 2.564913 2.692724 +1.714890 1.784823 1.974907 2.085230 2.566670 2.701036 +1.729112 1.826059 1.895041 2.053724 2.603924 2.699244 +1.696294 1.791079 1.916038 2.017742 2.583106 2.704200 +1.626844 1.720989 1.890443 2.014482 2.589192 2.689135 +1.574181 1.677998 1.880801 1.982799 2.574984 2.664083 +1.432597 1.676378 1.834673 1.964658 2.535300 2.638654 +1.318535 1.535375 1.836957 1.932882 2.478408 2.578350 +1.226292 1.492951 1.836423 1.946067 2.430171 2.582074 +1.098912 1.499048 1.896293 2.028872 2.540535 2.618603 +1.034465 1.533372 1.964842 2.070966 2.578583 2.651519 +0.979835 1.480912 1.975960 2.089319 2.534240 2.632634 +0.916592 1.481293 1.967506 2.053292 2.558345 2.642742 +0.937338 1.474374 2.023762 2.110460 2.585438 2.665463 +0.873055 1.560533 2.028802 2.086416 2.575020 2.684778 +0.901938 1.628414 2.031806 2.102850 2.610158 2.685650 +0.862562 1.556144 1.997573 2.081742 2.533196 2.615757 +0.906140 1.665744 2.019373 2.133337 2.581928 2.661153 +0.872836 1.638660 2.038436 2.097283 2.645014 2.697786 +0.829264 1.441895 2.039191 2.111142 2.611659 2.688610 +0.825197 1.304534 2.056354 2.143792 2.590309 2.657819 +0.793520 1.521024 1.979438 2.058424 2.596225 2.668581 +0.849751 1.485532 1.986103 2.055458 2.624269 2.701899 +0.849936 1.385589 2.007518 2.060577 2.567229 2.678449 +0.829655 1.230975 1.988404 2.101475 2.530728 2.677331 +0.940677 1.264510 1.946316 2.046724 2.499806 2.677984 +1.038884 1.297487 1.958215 2.035997 2.406970 2.650323 +1.157909 1.247311 1.892511 1.984329 2.396990 2.663399 +1.237064 1.318827 1.843309 1.954773 2.420851 2.693910 +1.328871 1.403948 1.808685 1.946118 2.400888 2.683397 +1.393193 1.460812 1.822128 1.939601 2.242548 2.723232 +1.370957 1.526137 1.785367 1.963164 2.136749 2.644805 +1.501135 1.606768 1.841831 2.009462 2.198461 2.614649 +1.467944 1.551473 1.849852 1.982829 2.208604 2.514793 +1.405944 1.480977 1.855980 1.997060 2.178717 2.490007 +1.448170 1.520957 1.868813 1.975365 2.241031 2.616351 +1.380808 1.612670 1.869962 2.026788 2.443477 2.639977 +1.483716 1.596112 1.969733 2.100913 2.577431 2.688144 +1.467685 1.578222 1.986564 2.194709 2.570945 2.671094 +1.496302 1.614196 2.032020 2.218322 2.553463 2.681813 +1.596958 1.722731 2.144525 2.319980 2.604392 2.703958 +1.563283 1.830072 2.213128 2.432926 2.641108 2.721000 +1.591103 1.948477 2.288414 2.486581 2.666837 2.743573 +1.475707 1.718658 2.050982 2.217962 2.487280 2.571804 +1.558930 1.772302 2.094474 2.234464 2.518928 2.597737 +1.567586 1.822091 2.100593 2.286654 2.533948 2.648113 +1.750029 1.936668 2.135601 2.347638 2.546896 2.638316 +1.756882 1.998584 2.116800 2.223412 2.556559 2.647062 +1.700043 1.922262 2.075348 2.184374 2.556081 2.639062 +1.598667 1.709712 1.994558 2.098788 2.521397 2.628442 +1.609782 1.719799 1.937528 2.091978 2.547584 2.621070 +1.580745 1.686692 1.927934 2.059508 2.580331 2.643528 +1.541164 1.684662 1.944797 2.038248 2.568516 2.637104 +1.474497 1.633889 1.881331 1.988847 2.554704 2.623589 +1.427685 1.616808 1.898469 1.994121 2.545908 2.635844 +1.366974 1.583736 1.860760 2.018090 2.526247 2.594032 +1.257899 1.562399 1.870764 1.961750 2.512050 2.589589 +1.183313 1.571246 1.867445 1.988791 2.543767 2.607786 +1.137720 1.607193 1.879149 2.008769 2.536804 2.607481 +1.053818 1.511423 1.904439 2.002387 2.584849 2.657089 +1.029306 1.560669 1.913466 1.984439 2.613420 2.670916 +0.990299 1.520302 1.919708 2.005988 2.615870 2.705960 +0.927002 1.486845 1.900099 1.977768 2.614622 2.695757 +0.924166 1.500302 1.837270 1.915819 2.601787 2.702827 +0.901854 1.422756 1.898010 1.950141 2.572992 2.759299 +0.910623 1.286484 1.801282 1.925793 2.438152 2.671294 +0.904293 1.226137 1.873337 1.946907 2.485265 2.645532 +0.872654 1.122664 1.912497 2.047619 2.468062 2.645490 +1.136081 1.248013 1.725399 2.180627 2.493778 2.579400 +1.161500 1.346974 1.804044 2.157021 2.550312 2.633164 +1.287295 1.663717 2.044188 2.321923 2.599284 2.687129 +1.456799 1.758274 2.055266 2.310654 2.549315 2.660074 +1.416948 1.741370 2.104189 2.357764 2.591761 2.679543 +1.379535 1.752525 2.173415 2.361073 2.617497 2.699322 +1.361005 1.762025 2.115710 2.330663 2.562002 2.650389 +1.340777 1.685357 2.024889 2.281946 2.547415 2.639463 +1.278174 1.686145 1.961407 2.165468 2.554171 2.647873 +1.294524 1.547620 1.981967 2.183432 2.547510 2.637235 +1.201621 1.343641 2.007859 2.089427 2.535679 2.660742 +1.201995 1.332111 1.949153 2.051811 2.553202 2.665468 +1.180355 1.354250 1.890523 2.069912 2.515229 2.620120 +1.128725 1.419757 1.854779 2.056632 2.480702 2.583539 +1.133191 1.402342 1.822656 2.013606 2.539914 2.639438 +1.149266 1.376927 1.821187 1.914934 2.562423 2.664037 +1.080871 1.408443 1.788020 1.879929 2.517515 2.656681 +1.152439 1.509600 1.822338 1.939812 2.528944 2.619151 +1.227262 1.543782 1.935413 2.017678 2.575512 2.665626 +1.253647 1.485940 1.945543 1.987370 2.539186 2.715089 +1.224504 1.521337 1.982156 2.044940 2.522684 2.687446 +1.258716 1.476124 1.981858 2.073104 2.536174 2.634089 +1.255580 1.471131 1.983938 2.052555 2.541040 2.708650 +1.221419 1.556731 2.013319 2.089772 2.538596 2.706495 +1.178484 1.474650 2.007635 2.122088 2.560256 2.629434 +1.136643 1.459288 2.033733 2.100427 2.544702 2.689126 +1.035202 1.462561 2.024973 2.194093 2.530601 2.662208 +1.090875 1.522421 2.038442 2.129424 2.587618 2.687392 +1.054541 1.538340 2.000589 2.084015 2.516505 2.644331 +1.069567 1.471150 1.977006 2.102657 2.548224 2.645658 +1.084637 1.235068 1.999027 2.091007 2.405191 2.622410 +1.073907 1.180490 1.961383 2.101877 2.255303 2.531797 +1.185536 1.320277 2.006751 2.098846 2.443082 2.582972 +1.256811 1.419989 1.983529 2.130962 2.470417 2.558689 +1.290736 1.391916 1.995379 2.106560 2.351663 2.485168 +1.428569 1.748298 2.044813 2.277573 2.513087 2.625248 +1.495766 1.686660 2.135657 2.292230 2.499007 2.616505 +1.482459 1.632012 2.083877 2.297241 2.488552 2.605327 +1.538843 1.630868 2.111745 2.223107 2.576837 2.693238 +1.551627 1.628553 2.040601 2.158000 2.590177 2.713514 +1.570014 1.637722 1.958103 2.124258 2.570176 2.692788 +1.534589 1.607992 1.801643 2.087274 2.392697 2.600933 +1.502776 1.607625 1.843802 2.082344 2.323284 2.522392 +1.515698 1.613442 1.837842 2.027239 2.402910 2.602242 +1.510034 1.607577 1.826422 1.955465 2.340570 2.679619 +1.445827 1.566639 1.756421 1.869709 2.296147 2.601653 +1.410709 1.488515 1.820022 1.910438 2.358230 2.614654 +1.301575 1.428283 1.812427 1.902581 2.293360 2.725276 +1.106808 1.351509 1.888725 1.956330 2.320442 2.646886 +1.056263 1.366917 1.866615 1.968949 2.421463 2.653524 +1.148746 1.368055 1.809637 2.064105 2.437788 2.604096 +0.990270 1.453159 1.887277 2.035172 2.296937 2.600298 +0.943695 1.204266 1.748001 1.886445 2.181614 2.509804 +1.057049 1.221402 1.835972 1.972438 2.154951 2.492969 +0.936404 1.225524 1.895053 1.998065 2.539531 2.644930 +0.941516 1.224493 1.966408 2.055267 2.515087 2.609082 +1.000240 1.314972 1.942001 2.051921 2.535877 2.634783 +1.031394 1.407401 1.953467 2.045443 2.550815 2.634369 +1.118870 1.441951 1.952517 2.061995 2.494339 2.608036 +1.197103 1.553158 1.887646 2.009186 2.472098 2.550658 +1.293802 1.588339 1.868376 2.045916 2.481096 2.566107 +1.353770 1.610646 1.897619 2.083477 2.408292 2.543397 +1.403681 1.521997 1.891672 2.054144 2.357288 2.512253 +1.370402 1.446254 1.871326 1.998144 2.336676 2.570693 +1.499387 1.755248 2.090328 2.282953 2.484033 2.574394 +1.567708 1.842611 2.136623 2.278726 2.477117 2.576067 +1.591554 1.767544 2.169415 2.302935 2.525126 2.637496 +1.458272 1.799744 2.227216 2.397500 2.616529 2.705570 +1.496705 1.846042 2.279896 2.437186 2.649673 2.726623 +1.502759 1.731322 2.268727 2.464213 2.623623 2.706745 +1.497299 1.617932 2.156580 2.386255 2.579030 2.664716 +1.379977 1.538687 1.850634 2.109517 2.410662 2.586146 +1.405875 1.497926 1.741705 1.932278 2.337183 2.563846 +1.346170 1.431041 1.657425 1.884420 2.373948 2.587354 +1.307909 1.406366 1.734141 1.875825 2.460720 2.602094 +1.273940 1.571154 1.771276 1.912248 2.536452 2.595610 +1.200061 1.575178 1.770854 1.877630 2.508016 2.579146 +1.125813 1.539421 1.722626 1.859971 2.511653 2.574626 +1.064900 1.484512 1.690862 1.832750 2.519579 2.589278 +1.042869 1.483231 1.627118 1.867084 2.495867 2.550264 +0.950910 1.474823 1.576110 1.830086 2.519438 2.569906 +1.004516 1.423026 1.550120 1.835220 2.473605 2.544366 +1.026409 1.365688 1.510656 1.879110 2.467179 2.543867 +0.978321 1.338491 1.528018 1.913878 2.465066 2.524725 +0.922555 1.409585 1.520258 1.932657 2.404714 2.472216 +1.009019 1.345028 1.518729 1.999531 2.463064 2.544939 +0.989351 1.433164 1.573872 2.015438 2.401202 2.490979 +1.035325 1.556325 1.677312 2.086779 2.481518 2.567949 +1.004119 1.575292 1.796393 2.075521 2.402912 2.574238 +1.037355 1.681818 1.943106 2.065425 2.478887 2.598899 +1.005855 1.684746 1.972392 2.109307 2.565052 2.623513 +0.954873 1.719791 2.006188 2.112346 2.598630 2.682782 +0.937994 1.728321 1.993763 2.105254 2.632050 2.700706 +0.889626 1.709530 2.001291 2.090092 2.620540 2.709802 +0.912128 1.657624 1.966778 2.058636 2.626429 2.702918 +0.972006 1.569116 1.985953 2.130241 2.569149 2.677258 +1.038791 1.651170 2.008290 2.118109 2.599188 2.701292 +1.102203 1.624993 1.998759 2.125031 2.569760 2.646643 +1.187738 1.639367 2.059243 2.147304 2.475862 2.634964 +1.274099 1.590670 2.016754 2.099633 2.548725 2.668989 +1.373403 1.630011 1.981494 2.070929 2.505950 2.689328 +1.511208 1.602606 1.911343 2.022899 2.475945 2.645751 +1.553078 1.639398 1.870403 1.975613 2.473431 2.626572 +1.633420 1.773325 1.875127 1.959482 2.413151 2.625912 +1.596719 1.747314 1.878046 2.049018 2.587489 2.669276 +1.664674 1.933354 2.156044 2.280025 2.462736 2.571555 +1.551190 1.695801 2.047099 2.236977 2.447592 2.570843 +1.648304 1.728067 2.060789 2.273739 2.475137 2.631203 +1.633548 1.757572 2.089279 2.240980 2.436119 2.556847 +1.608644 1.684711 2.123747 2.256566 2.486503 2.598234 +1.653176 1.714541 2.105354 2.203230 2.509317 2.641781 +1.541046 1.679960 2.104266 2.247262 2.540379 2.626724 +1.559664 1.659637 2.101376 2.213674 2.473238 2.562999 +1.608810 1.671776 2.071434 2.184829 2.493283 2.639463 +1.538876 1.610189 2.083083 2.171544 2.554389 2.650993 +1.511021 1.595459 2.031637 2.130089 2.587598 2.660399 +1.340693 1.587842 1.931002 2.117119 2.599860 2.676574 +1.484682 1.533251 2.024488 2.113154 2.548321 2.659954 +1.534337 1.608310 2.031541 2.136001 2.537102 2.617716 +1.571577 1.618314 2.056726 2.139748 2.525414 2.622206 +1.564471 1.631266 2.060592 2.166039 2.469995 2.635657 +1.533650 1.663515 2.093962 2.190787 2.406743 2.622754 +1.570124 1.631042 2.049374 2.165169 2.393566 2.588498 +1.552473 1.634522 2.008478 2.098878 2.509195 2.669322 +1.498536 1.602806 2.008880 2.099726 2.525137 2.659175 +1.450925 1.660536 1.991759 2.103304 2.544073 2.696474 +1.447598 1.569099 1.993051 2.079756 2.587712 2.676395 +1.394567 1.544697 2.006663 2.078973 2.579015 2.721882 +1.347921 1.507746 1.993785 2.077331 2.510234 2.682685 +1.265189 1.355385 1.877848 2.063826 2.425800 2.657797 +1.266300 1.376932 2.008877 2.275008 2.479039 2.636159 +1.414729 1.680622 2.057398 2.332754 2.549975 2.652454 +1.499883 1.708789 2.054742 2.313580 2.521026 2.613915 +1.445680 1.741768 2.126388 2.338809 2.495118 2.597970 +1.459203 1.792340 2.113493 2.346074 2.563702 2.664973 +1.416845 1.644394 2.131474 2.322905 2.578800 2.677164 +1.447967 1.708221 2.144894 2.272584 2.593212 2.700869 +1.474608 1.742978 2.066944 2.341635 2.601749 2.685249 +1.346721 1.653940 1.999147 2.218537 2.633365 2.723602 +1.375208 1.551414 2.052682 2.232013 2.586844 2.697029 +1.260950 1.501751 1.925196 2.033937 2.546694 2.652031 +1.259339 1.500189 1.909647 1.982913 2.545881 2.638673 +1.252838 1.563842 1.910593 1.973683 2.579307 2.664280 +1.263002 1.546326 1.878080 2.031152 2.583468 2.653793 +1.265196 1.521273 1.905708 1.967385 2.581430 2.658715 +1.307704 1.547718 1.881421 1.962040 2.573475 2.658828 +1.291340 1.575015 1.915239 1.985560 2.602082 2.697699 +1.295431 1.626460 1.923299 2.023724 2.591291 2.680142 +1.301210 1.624080 1.878934 1.998083 2.560098 2.634506 +1.305813 1.620922 1.888028 1.989036 2.606227 2.669425 +1.308088 1.642328 1.885958 2.013573 2.611911 2.696648 +1.312101 1.627858 1.861841 1.974096 2.602616 2.658487 +1.292897 1.605725 1.877131 1.973395 2.599643 2.682844 +1.273139 1.591736 1.870416 1.947454 2.602328 2.674146 +1.283582 1.620817 1.847273 1.928033 2.590051 2.636876 +1.246205 1.560066 1.851625 1.954533 2.587535 2.673542 +1.260393 1.539639 1.831617 1.928432 2.552288 2.629629 +1.261220 1.505229 1.857309 1.933908 2.569004 2.696314 +1.283108 1.719865 1.823903 1.976026 2.565436 2.628748 +1.314387 1.617735 1.804065 1.960535 2.596814 2.686738 +1.338699 1.637284 1.896932 2.009128 2.523466 2.637375 +1.336475 1.577029 1.850025 1.943237 2.521339 2.596832 +1.398912 1.549275 1.724463 1.861933 2.166791 2.466332 +1.406894 1.497435 1.805042 1.909122 2.284281 2.542582 +1.474849 1.579373 1.970765 2.079699 2.371434 2.542616 +1.452309 1.539401 2.076665 2.137999 2.442972 2.649515 +1.450617 1.506612 2.036385 2.131452 2.484829 2.674720 +1.434796 1.583083 2.027674 2.136807 2.429113 2.578344 +1.087572 1.367208 1.786303 2.025035 2.298079 2.515673 +0.992092 1.436432 1.725512 1.965111 2.425717 2.549021 +0.969474 1.497321 1.730092 2.016045 2.414373 2.633316 +0.936277 1.413012 1.683609 2.029768 2.443096 2.552830 +1.176352 1.559638 1.748772 2.061891 2.311483 2.434690 +1.067106 1.406642 1.643885 1.978806 2.374725 2.547845 +0.989262 1.333111 1.475085 1.728650 2.492018 2.553467 +0.957471 1.308545 1.424561 1.823472 2.490215 2.552316 +1.035765 1.254486 1.352081 1.786247 2.539488 2.585779 +1.023678 1.232418 1.398476 1.875768 2.451677 2.540251 +1.037249 1.247286 1.387422 2.008554 2.419268 2.496115 +1.045924 1.231687 1.361952 1.887611 2.384450 2.471500 +1.000981 1.250837 1.376662 1.767666 2.398053 2.484439 +1.061773 1.214611 1.410756 1.728252 2.423979 2.514269 +1.168228 1.291194 1.597509 1.900015 2.415419 2.555014 +1.150788 1.412860 1.825953 1.953264 2.400052 2.535324 +1.166923 1.517635 1.943529 2.034246 2.373359 2.521470 +1.183183 1.523161 1.995315 2.119892 2.433461 2.591155 +1.159482 1.521728 2.072369 2.176962 2.514904 2.660759 +1.260320 1.722656 2.116773 2.249048 2.534123 2.645628 +1.450433 1.717713 2.048790 2.212752 2.499485 2.636128 +1.449227 1.653123 2.023641 2.196888 2.453054 2.612516 +1.388122 1.597569 1.968649 2.163453 2.425431 2.578033 +1.347603 1.449808 1.894138 2.168973 2.446471 2.602268 +1.398006 1.471755 1.922063 2.120957 2.396434 2.600718 +1.428663 1.541308 2.046052 2.132513 2.397088 2.643104 +1.492673 1.585159 2.059339 2.158303 2.480824 2.648749 +1.558991 1.648786 2.037511 2.153321 2.512380 2.647660 +1.587505 1.659085 2.020500 2.139692 2.537458 2.616564 +1.634348 1.739360 2.044485 2.218194 2.530130 2.622735 +1.650152 1.736774 2.049269 2.148919 2.551868 2.651288 +1.640705 1.707347 1.991329 2.119563 2.587595 2.642835 +1.655822 1.709750 1.941946 2.090791 2.570081 2.630366 +1.606441 1.695623 1.852762 2.047845 2.554897 2.628090 +1.484591 1.657033 1.822979 2.008956 2.584027 2.653723 +1.348381 1.627797 1.779073 1.897327 2.521867 2.646403 +1.155644 1.464872 1.763798 1.943553 2.555854 2.642088 +1.339453 1.676328 1.971041 2.186803 2.438887 2.571072 +1.297378 1.615525 1.946759 2.151180 2.429841 2.558129 +1.136457 1.519887 1.867226 2.107387 2.452727 2.553710 +0.943433 1.350976 1.714327 1.830884 2.380038 2.573606 +0.933950 1.078579 1.553087 1.662344 2.027950 2.453145 +0.896937 1.246931 1.586629 1.684078 2.397137 2.611707 +0.892078 1.350059 1.560075 1.689846 2.506278 2.607560 +0.772181 1.313675 1.525659 1.650282 2.468977 2.636413 +0.863603 1.328577 1.481135 1.768890 2.496778 2.546566 +0.908312 1.258415 1.382771 1.699751 2.448589 2.547326 +0.863083 1.273798 1.422414 1.575877 2.509924 2.567103 +0.798143 1.233378 1.328045 1.718547 2.545479 2.654885 +0.937997 1.297209 1.447389 1.659450 2.539430 2.664368 +1.015311 1.282646 1.449652 1.656931 2.519587 2.597241 +1.012603 1.308086 1.428756 1.742642 2.581377 2.654752 +1.075222 1.359942 1.466363 1.790456 2.582927 2.654917 +1.174719 1.354592 1.470683 1.808114 2.611814 2.690601 +1.304671 1.380565 1.486415 1.863253 2.499088 2.646637 +1.329253 1.458935 1.599739 1.985102 2.412241 2.489601 +1.326849 1.466962 1.650712 1.972882 2.173652 2.363777 +1.440729 1.597862 1.756923 1.942121 2.134420 2.330899 +1.490912 1.615283 1.799725 1.989183 2.307191 2.535959 +1.523001 1.676436 1.841390 2.084493 2.490067 2.619504 +1.536446 1.672927 1.834339 2.067942 2.594848 2.655730 +1.585206 1.673419 1.879347 2.026137 2.609162 2.691334 +1.576452 1.662112 1.868110 1.987273 2.629831 2.702492 +1.561137 1.629084 1.910414 2.005430 2.633437 2.726135 +1.531209 1.615548 1.873644 1.966279 2.522587 2.706064 +1.473294 1.591222 1.908945 1.973407 2.535042 2.733124 +1.412536 1.473645 1.871722 1.957323 2.341205 2.740704 +1.379808 1.473241 1.923919 1.986068 2.447172 2.657583 +1.333691 1.500115 1.933534 2.138032 2.501795 2.615830 +1.405765 1.570091 2.028114 2.332669 2.573681 2.664117 +1.386052 1.546746 2.101843 2.380119 2.607300 2.712463 +1.420552 1.664080 2.096840 2.287671 2.545433 2.645671 +1.429919 1.632895 2.056448 2.245342 2.469727 2.594625 +1.450338 1.542326 1.936139 2.160089 2.389658 2.594948 +1.458650 1.545840 1.973946 2.132840 2.280546 2.519107 +1.499624 1.621854 1.924363 2.086584 2.253820 2.393464 +1.480124 1.596614 1.822901 2.030079 2.212455 2.440593 +1.385572 1.515794 1.763525 2.007562 2.207014 2.505163 +1.363477 1.483710 1.745394 2.020826 2.177380 2.428417 +1.422412 1.526361 1.802470 2.041367 2.267629 2.509983 +1.451781 1.539504 1.888618 2.079745 2.258528 2.500819 +1.462745 1.548876 1.925748 2.065292 2.320100 2.591877 +1.459612 1.526791 1.937299 2.029745 2.425999 2.618215 +1.426774 1.495962 1.934803 2.028683 2.474317 2.639936 +1.395478 1.494605 1.923542 2.006865 2.508795 2.651596 +1.315323 1.475877 1.925867 2.012444 2.562544 2.642674 +1.216208 1.542312 1.867609 1.962911 2.578507 2.638914 +1.188119 1.592111 1.826165 1.956758 2.592728 2.659305 +1.157283 1.519027 1.841285 1.936129 2.596722 2.669387 +1.042732 1.334857 1.852810 1.927812 2.509256 2.721390 +1.076921 1.512728 1.892211 1.976017 2.370736 2.635640 +1.328644 1.555209 1.826957 2.080018 2.447934 2.607755 +1.271225 1.383527 1.740551 2.048721 2.356257 2.567108 +1.288765 1.385478 1.793872 1.977849 2.390396 2.604554 +1.328655 1.422241 1.805644 2.002822 2.289156 2.544301 +1.377945 1.493655 1.793682 2.031868 2.353733 2.518906 +1.384430 1.453654 1.838071 2.001840 2.390785 2.635123 +1.289457 1.403427 1.871018 1.986122 2.479981 2.723796 +1.207888 1.388220 1.865052 2.031661 2.450066 2.591415 +1.218628 1.309314 1.909852 2.003782 2.499425 2.604984 +1.178831 1.273297 1.832814 2.025041 2.508629 2.650229 +1.147475 1.259195 1.930161 2.027735 2.522075 2.634075 +1.100906 1.268026 1.857908 1.951898 2.508895 2.660387 +1.069825 1.225671 1.888950 1.974341 2.492132 2.592105 +1.042255 1.182210 1.891740 2.039958 2.559652 2.679327 +0.956414 1.180966 1.881463 1.994332 2.316474 2.617691 +1.061791 1.571696 1.926569 2.107177 2.404155 2.525452 +1.374312 1.475896 1.678426 1.972424 2.364289 2.516531 +1.363442 1.455771 1.763156 1.970798 2.368334 2.586977 +1.423043 1.591891 1.798197 2.012780 2.388112 2.602184 +1.527265 1.605781 1.909513 2.033429 2.406683 2.593463 +1.585135 1.664508 1.918013 2.026537 2.425727 2.600924 +1.611888 1.728561 1.907667 2.034036 2.395680 2.641770 +1.463013 1.624657 1.872286 1.998243 2.487821 2.662465 +1.507075 1.597912 1.893748 1.997011 2.535979 2.672459 +1.502401 1.618027 1.888560 2.024162 2.581852 2.656536 +1.553117 1.639479 1.918920 2.034284 2.576859 2.655677 +1.577358 1.648261 1.958093 2.053413 2.567886 2.656516 +1.595375 1.654628 1.997767 2.099746 2.531642 2.675206 +1.621639 1.704007 1.957750 2.074637 2.584314 2.660506 +1.618433 1.711386 1.954786 2.067454 2.533767 2.695229 +1.617851 1.716314 1.949677 2.103360 2.635944 2.686892 +1.649322 1.746309 1.901606 2.064352 2.606774 2.690238 +1.635059 1.769603 1.904617 2.019099 2.607597 2.713325 +1.645565 1.779500 1.868948 1.965332 2.592154 2.714895 +1.686573 1.757504 1.858066 1.922036 2.505271 2.698890 +1.612716 1.703234 1.831053 1.925901 2.373806 2.613684 +1.244351 1.409563 1.713462 1.967702 2.351463 2.537356 +1.269988 1.387301 1.640967 1.991832 2.324911 2.501768 +1.305349 1.455772 1.788777 2.091229 2.487237 2.614726 +1.413862 1.518807 1.888520 2.252275 2.448086 2.594722 +1.409418 1.591460 1.944717 2.196924 2.518393 2.638233 +1.399142 1.703314 1.966146 2.224863 2.616908 2.734082 +1.375311 1.636377 2.061764 2.292420 2.586624 2.705744 +1.394667 1.733415 2.073598 2.297154 2.573824 2.672888 +1.366082 1.738611 2.016634 2.285662 2.605490 2.693517 +1.360620 1.601685 1.967966 2.194839 2.564848 2.657918 +1.354700 1.471541 1.990171 2.165439 2.569000 2.679116 +1.319372 1.403922 2.030220 2.115007 2.452702 2.635911 +1.303257 1.374731 1.975040 2.111171 2.369818 2.660606 +1.325790 1.431051 2.036171 2.113943 2.475995 2.685073 +1.307478 1.510363 2.117703 2.179166 2.554579 2.695776 +1.311427 1.548305 2.128351 2.279725 2.551702 2.645499 +1.293775 1.442228 2.115561 2.289555 2.415905 2.531210 +1.278672 1.697114 2.092498 2.199540 2.368518 2.561138 +1.292641 1.867932 2.128826 2.206329 2.450839 2.551778 +1.234857 1.631071 2.143705 2.304460 2.491014 2.565728 +1.219953 1.367565 2.149802 2.218488 2.495215 2.635299 +1.208902 1.484837 2.180300 2.276690 2.526332 2.626732 +1.165264 1.458241 2.155590 2.227283 2.490182 2.596799 +1.116188 1.492178 2.177271 2.241905 2.532331 2.620529 +1.096897 1.524925 2.093489 2.345253 2.480356 2.611159 +1.043785 1.369028 2.229277 2.306648 2.527431 2.613026 +1.080719 1.336126 2.135541 2.240613 2.463443 2.634282 +1.126263 1.502538 2.065329 2.274832 2.512833 2.588250 +1.199125 1.448000 2.040575 2.216856 2.449127 2.544297 +1.244303 1.540831 2.036533 2.174834 2.470267 2.580345 +1.277190 1.574057 2.066371 2.150365 2.508540 2.611728 +1.341754 1.576876 2.031475 2.120651 2.496164 2.575343 +1.335444 1.541598 1.994337 2.108804 2.518844 2.622948 +1.351719 1.543708 2.003315 2.075354 2.579158 2.656631 +1.359299 1.470533 1.968461 2.042323 2.565151 2.664841 +1.368199 1.433218 1.983774 2.044947 2.438603 2.670598 +1.351177 1.426131 1.991290 2.087726 2.430748 2.616370 +1.349866 1.483300 2.000270 2.242826 2.535909 2.629047 +1.322061 1.596777 2.113123 2.408146 2.548980 2.625263 +1.381288 1.648758 2.192458 2.378361 2.579516 2.654496 +1.372134 1.542663 2.062546 2.307310 2.475587 2.580621 +1.363570 1.463481 1.864764 2.288459 2.467800 2.571685 +1.335793 1.536300 1.886159 2.221871 2.543381 2.670529 +1.259757 1.393352 1.604761 1.934288 2.430512 2.509599 +1.224722 1.349648 1.481936 1.836832 2.384963 2.463134 +1.253661 1.369206 1.505507 1.994342 2.366061 2.454562 +1.250448 1.372217 1.563439 2.133283 2.391531 2.461107 +1.298984 1.412532 1.560005 2.162846 2.475577 2.551467 +1.308701 1.487231 1.616571 2.140891 2.422519 2.527844 +1.362265 1.509740 1.691137 2.151850 2.425060 2.504008 +1.415186 1.573817 1.726343 2.145690 2.423615 2.518947 +1.468304 1.624569 1.768003 2.107079 2.433687 2.501879 +1.474213 1.645172 1.829377 2.150471 2.330539 2.454132 +1.488731 1.662220 1.853177 2.160434 2.390722 2.507469 +1.515371 1.685102 1.820897 2.090815 2.477135 2.541320 +1.533941 1.681022 1.911151 2.101052 2.431211 2.507421 +1.547022 1.762747 1.905315 2.057302 2.369967 2.496458 +1.524747 1.707503 1.880853 2.145136 2.331290 2.443298 +1.532670 1.689464 1.838440 2.066707 2.352074 2.487585 +1.449082 1.639914 1.786524 2.047043 2.328788 2.426218 +1.393415 1.607003 1.752128 2.065963 2.381000 2.473775 +1.234921 1.620384 1.751709 2.079353 2.400969 2.471820 +1.128649 1.589193 1.725978 2.097814 2.421776 2.507176 +1.205122 1.491109 1.707033 2.143134 2.407676 2.489596 +1.105985 1.524092 1.740260 2.142524 2.422755 2.532710 +1.146867 1.428089 1.698792 2.100330 2.423332 2.545496 +1.116015 1.351902 1.754307 2.146023 2.411698 2.527537 +1.178509 1.306840 1.824109 2.272040 2.452886 2.546314 +1.386046 1.686532 2.010818 2.148686 2.439205 2.570934 +1.334381 1.674050 1.962490 2.108725 2.403922 2.587496 +1.309542 1.519433 2.030598 2.119732 2.436082 2.620801 +1.199624 1.425192 2.037889 2.161327 2.493314 2.639529 +0.913804 1.251727 2.055079 2.176873 2.416854 2.644928 +0.822137 1.067331 2.019119 2.216592 2.395557 2.658189 +0.859923 0.985874 1.904285 2.160589 2.433708 2.639822 +0.906761 1.140617 2.010505 2.146239 2.469640 2.644134 +0.950845 1.253958 2.039526 2.095898 2.600275 2.711094 +0.953879 1.245319 1.985465 2.133152 2.543655 2.613003 +1.031672 1.286594 1.974619 2.037126 2.541018 2.690276 +1.051598 1.373163 1.905246 2.009638 2.495552 2.674053 +1.088262 1.297396 1.898694 2.018578 2.508840 2.690510 +1.146698 1.282269 1.930714 2.010155 2.439408 2.647009 +1.157205 1.343846 1.930823 2.029125 2.368152 2.598000 +1.247348 1.432742 1.942594 2.067451 2.392833 2.554304 +1.297617 1.516021 1.993391 2.079273 2.439458 2.548273 +1.386254 1.483598 1.965854 2.071612 2.444793 2.594366 +1.429692 1.499865 1.880633 2.074107 2.346203 2.604251 +1.569133 1.644482 1.942763 2.045196 2.370694 2.589367 +1.696361 1.745617 1.980943 2.093662 2.433481 2.583667 +1.694840 1.801151 1.961027 2.068322 2.452636 2.638290 +1.619793 1.785586 1.919626 2.055816 2.238163 2.498763 +1.223689 1.621225 1.791717 1.898693 2.161669 2.499947 +1.144413 1.452915 1.780893 1.866745 2.214208 2.494268 +1.135538 1.495124 1.820776 1.894356 2.115005 2.441578 +1.131378 1.535817 1.737318 1.842419 2.021638 2.425946 +1.212645 1.312165 1.752907 1.889323 2.108905 2.469701 +1.253951 1.352407 1.652652 1.960954 2.394436 2.568676 +1.362676 1.580790 1.913319 2.212617 2.381597 2.528987 +1.417331 1.582049 1.977630 2.237995 2.413078 2.580292 +1.383161 1.603552 2.016139 2.210126 2.449048 2.587234 +1.442111 1.544212 1.938946 2.141876 2.494998 2.590164 +1.381730 1.579156 1.982000 2.138775 2.485780 2.620572 +1.361593 1.597812 1.964935 2.138121 2.542610 2.622470 +1.360664 1.614689 2.010781 2.161500 2.460448 2.583897 +1.390092 1.628646 1.963826 2.130557 2.477732 2.613382 +1.346169 1.648499 2.082367 2.321708 2.555952 2.649424 +1.440422 1.742439 2.007648 2.208244 2.450993 2.577906 +1.444825 1.695062 2.026868 2.210477 2.414028 2.532766 +1.345541 1.589166 1.955423 2.129306 2.409889 2.543165 +1.400043 1.481922 1.947067 2.110259 2.313164 2.531167 +1.384776 1.484787 1.983872 2.107142 2.360088 2.585480 +1.429185 1.514936 2.019660 2.137662 2.329551 2.585292 +1.450546 1.518321 2.010034 2.102797 2.401692 2.603278 +1.441363 1.525406 1.964971 2.076719 2.376014 2.594808 +1.464787 1.521553 1.968987 2.077867 2.444963 2.621082 +1.486696 1.573684 2.001845 2.108515 2.433771 2.626158 +1.471032 1.543603 1.991659 2.111714 2.473307 2.645459 +1.415271 1.524488 2.012703 2.095751 2.458820 2.642016 +1.407514 1.501486 2.050311 2.156204 2.480187 2.623271 +1.376118 1.459583 2.009938 2.169415 2.480196 2.642689 +1.345946 1.472883 2.073124 2.184863 2.486126 2.610362 +1.306365 1.438379 2.090496 2.213143 2.554203 2.683954 +1.219262 1.423037 2.090917 2.170494 2.559623 2.668211 +1.180469 1.408080 1.935170 2.088177 2.548134 2.639438 +1.209541 1.528929 1.887266 1.961882 2.483440 2.649342 +1.219923 1.521384 1.939175 1.988023 2.460034 2.673476 +1.198754 1.474098 1.859112 1.981042 2.395346 2.719202 +1.118408 1.504845 1.897944 2.002376 2.242870 2.598523 +1.018525 1.459894 1.746590 2.051954 2.324856 2.458848 +0.866990 1.387782 1.654105 1.799741 2.325792 2.407380 +0.862252 1.365828 1.705762 1.802245 2.416352 2.493849 +0.928394 1.546454 1.716680 1.877069 2.379724 2.524594 +1.083354 1.487338 1.801149 2.005692 2.321736 2.558733 +1.057425 1.339797 1.834422 1.934601 2.279625 2.530701 +0.954787 1.140996 1.792870 1.891796 2.342908 2.492038 +0.996853 1.130036 1.792153 1.895409 2.236238 2.403350 +0.920268 1.069492 1.874858 2.072086 2.335228 2.486570 +0.954214 1.081065 1.827324 2.079149 2.238820 2.508120 +0.894487 1.013841 1.716536 2.018446 2.175347 2.482241 +0.842005 0.979634 1.644526 1.945897 2.271025 2.438632 +0.955710 1.090003 1.754054 1.967070 2.127836 2.448885 +0.954385 1.094473 1.727553 2.005579 2.266567 2.514397 +1.025620 1.137605 1.787527 2.002076 2.336896 2.511839 +1.013813 1.175105 1.881936 2.016643 2.345862 2.445716 +1.082667 1.227297 1.923243 2.022783 2.402376 2.520967 +1.118115 1.224136 1.824448 1.961745 2.245832 2.515829 +1.146448 1.298991 1.872929 1.995465 2.371727 2.526896 +1.188552 1.310653 1.902213 1.996780 2.290374 2.520538 +1.309924 1.416529 1.878448 2.050089 2.224176 2.387793 +1.394764 1.506270 1.934888 2.056817 2.271193 2.453341 +1.377933 1.572642 1.990697 2.083570 2.381595 2.606523 +1.444019 1.689297 1.997464 2.153207 2.361127 2.507701 +1.515035 1.642770 1.929088 2.159339 2.335507 2.497838 +1.540079 1.708314 1.883825 2.094981 2.398624 2.570098 +1.600911 1.698511 1.881481 2.085171 2.451013 2.653738 +1.502633 1.756061 2.040722 2.163397 2.376168 2.548669 +1.532107 1.855341 1.993840 2.139554 2.302488 2.430987 +1.484859 1.822055 1.964302 2.135961 2.337023 2.472337 +1.536688 1.766917 1.951249 2.090524 2.324175 2.529206 +1.582282 1.723852 1.912068 2.069366 2.302944 2.473896 +1.499712 1.593288 1.912697 2.034098 2.366553 2.553790 +1.434200 1.540709 1.867569 1.989167 2.323715 2.539399 +1.189101 1.500824 1.763417 1.976198 2.137279 2.441179 +1.165922 1.470178 1.772997 1.927098 2.088007 2.304301 +1.250154 1.600421 1.818068 1.922113 2.080252 2.241814 +1.122694 1.628796 1.814409 1.932949 2.099304 2.418672 +1.019615 1.510656 1.850726 1.995621 2.130205 2.457063 +0.958176 1.639680 1.840433 1.956534 2.104283 2.279028 +1.010543 1.537512 1.772221 1.930517 2.101622 2.248506 +0.904371 1.505016 1.664330 1.827875 2.278031 2.348418 +1.067733 1.454537 1.686858 1.803459 2.384372 2.499789 +1.262873 1.516004 1.882748 1.975559 2.353571 2.519731 +1.560637 1.698959 1.921539 2.000060 2.540292 2.605234 +1.665625 1.744091 1.995924 2.104003 2.538942 2.620162 +1.615168 1.748503 2.024112 2.126056 2.408165 2.614133 +1.678025 1.752954 2.027903 2.146564 2.382374 2.568508 +1.580352 1.680273 1.997415 2.122458 2.459846 2.587827 +1.590082 1.692050 1.934784 2.095757 2.552980 2.625876 +1.539000 1.620243 1.920765 2.031604 2.481670 2.592695 +1.408796 1.511786 1.744250 1.896588 2.412019 2.515579 +1.320558 1.487993 1.754964 1.896907 2.437159 2.563184 +1.174869 1.524851 1.708181 1.962955 2.513779 2.581010 +1.287639 1.559567 1.903084 2.105175 2.450979 2.599458 +1.224033 1.507999 1.922793 2.076370 2.372907 2.581210 +1.163218 1.444961 1.734673 2.020179 2.322152 2.541566 +1.212255 1.448003 1.638494 2.031919 2.229345 2.399467 +1.108889 1.283327 1.481151 1.907068 2.100013 2.293484 +1.155218 1.290372 1.476717 1.688065 2.089220 2.181765 +1.171472 1.290390 1.556515 1.825992 2.018143 2.243494 +1.149886 1.282652 1.601900 1.745296 2.110780 2.409060 +1.223914 1.360718 1.650069 1.792936 2.265100 2.370934 +1.254374 1.404539 1.706674 1.854649 2.276473 2.394690 +1.225833 1.442107 1.766130 1.924123 2.292396 2.394677 +1.211141 1.461886 1.804549 1.927018 2.361986 2.453285 +1.218638 1.405782 1.809530 1.914204 2.318449 2.520048 +1.222942 1.394674 1.840107 1.932398 2.391674 2.503193 +1.206898 1.372866 1.842954 1.943799 2.424465 2.578763 +1.246306 1.423826 1.866209 1.962415 2.436055 2.595659 +1.270919 1.455901 1.888055 1.976335 2.469281 2.582811 +1.198265 1.323940 1.880236 1.949408 2.471659 2.644805 +1.174323 1.293200 1.765612 2.019282 2.282243 2.576238 +1.141730 1.383190 1.882826 2.126532 2.453044 2.611191 +1.483342 1.650728 2.043593 2.193798 2.517271 2.622915 +1.446069 1.621898 1.999609 2.103532 2.493478 2.581923 +1.414671 1.630237 1.945678 2.061773 2.500655 2.588950 +1.438432 1.615586 1.903350 2.013028 2.426105 2.613642 +1.556674 1.623119 1.875461 1.972308 2.366695 2.629218 +1.466504 1.638319 1.796576 1.959267 2.457617 2.603231 +1.308284 1.481394 1.730539 1.979266 2.332265 2.538090 +1.301646 1.413738 1.674441 1.933375 2.143487 2.508142 +1.318907 1.416559 1.751644 1.913438 2.294089 2.555125 +1.324509 1.425623 1.844923 1.947411 2.375384 2.597366 +1.266998 1.359728 1.849155 1.950839 2.370723 2.579301 +1.162697 1.344305 1.906935 1.986568 2.470580 2.583422 +1.115998 1.365829 1.948029 2.040077 2.461135 2.583597 +1.061798 1.350291 2.006280 2.080459 2.451632 2.526961 +1.024331 1.233571 1.989411 2.085049 2.387181 2.495816 +0.962287 1.219238 1.967000 2.089191 2.424659 2.599861 +0.881533 1.356828 2.047429 2.155394 2.409074 2.508754 +0.856010 1.217716 2.008528 2.111528 2.424806 2.537738 +0.774065 0.965055 1.874139 2.035878 2.251024 2.527966 +0.820344 0.990331 1.960958 2.242123 2.349553 2.535465 +0.846158 1.062894 1.972506 2.169152 2.353165 2.556086 +0.748812 1.063441 1.949952 2.066846 2.364509 2.602003 +0.855725 1.158383 2.008420 2.144140 2.328495 2.600481 +0.862076 1.188230 1.906456 2.191351 2.368506 2.542645 +0.814218 1.194007 2.086397 2.156864 2.482953 2.574777 +0.811087 1.320952 2.038259 2.112835 2.508878 2.598939 +0.967874 1.191718 2.049318 2.146525 2.422668 2.566778 +1.008026 1.234198 2.040908 2.121036 2.480150 2.609085 +1.118175 1.312265 1.961423 2.071245 2.409323 2.600531 +1.189338 1.302425 1.961961 2.063211 2.432115 2.545303 +1.253885 1.371226 1.931879 2.030140 2.387565 2.558949 +1.307301 1.398036 1.910989 2.006938 2.409438 2.577142 +1.330085 1.468465 1.908521 2.012222 2.418015 2.537683 +1.367992 1.492291 1.942021 2.036750 2.498866 2.581003 +1.368367 1.443433 1.947482 2.013180 2.486344 2.585241 +1.418284 1.496850 1.933442 2.024630 2.473682 2.594036 +1.443886 1.551220 1.904909 2.018103 2.456717 2.542868 +1.473689 1.587097 1.899829 2.079006 2.421501 2.584477 +1.424674 1.611334 1.974517 2.142720 2.402882 2.620760 +1.431487 1.622660 1.940232 2.125436 2.429652 2.581851 +1.484538 1.690581 1.921860 2.109101 2.474401 2.607828 +1.498136 1.751579 1.925730 2.039135 2.440519 2.616180 +1.505248 1.789182 1.994666 2.114126 2.408417 2.599889 +1.609869 1.793035 1.986226 2.160600 2.519572 2.593245 +1.562825 1.739913 1.974184 2.143221 2.539588 2.620088 +1.650259 1.723964 2.002949 2.150399 2.532100 2.600746 +1.584628 1.665482 1.833853 1.979658 2.511168 2.576182 +1.547562 1.665631 1.805111 1.930451 2.428670 2.548606 +1.499078 1.595123 1.700269 1.824190 2.376924 2.575480 +1.300837 1.552954 1.664576 1.791707 2.488304 2.561078 +1.168605 1.311953 1.668583 1.872905 2.413570 2.493285 +1.047458 1.249963 1.699886 1.914183 2.417032 2.496381 +0.948776 1.275594 1.738944 1.998684 2.312154 2.462020 +0.921081 1.311946 1.775244 1.895491 2.382160 2.528440 +0.811311 1.125217 1.745194 2.094737 2.326109 2.511883 +0.796518 1.060230 1.740129 2.060503 2.179506 2.385501 +0.868836 1.153353 1.792833 1.945638 2.125498 2.248001 +0.915536 1.218160 1.818910 2.068347 2.243402 2.348648 +0.966595 1.301606 1.895255 2.111957 2.248646 2.389247 +0.995849 1.442084 1.952071 2.066120 2.240125 2.338587 +1.056392 1.372214 1.984171 2.119327 2.271702 2.372743 +1.098400 1.324164 1.781533 2.082856 2.218804 2.344318 +1.039157 1.356474 1.820178 2.114625 2.346728 2.450389 +0.988689 1.293884 1.916348 2.088201 2.362497 2.481270 +1.104406 1.230679 1.939434 2.122401 2.254811 2.377705 +1.086105 1.174481 1.826346 2.111318 2.237689 2.471667 +1.069802 1.206486 1.845381 2.118634 2.471087 2.575405 +1.074963 1.342794 1.955309 2.147713 2.511467 2.589270 +1.149198 1.418813 1.887043 1.966968 2.472616 2.587246 +1.455749 1.669829 1.964104 2.175182 2.469990 2.605009 +1.418548 1.603566 1.964426 2.175678 2.466765 2.583333 +1.389392 1.601163 1.925746 2.131857 2.442025 2.574229 +1.415333 1.507338 1.911262 2.087139 2.535199 2.629580 +1.382483 1.453710 1.872292 1.955406 2.554343 2.658507 +1.392944 1.482296 1.838526 1.928577 2.473732 2.633718 +1.390456 1.463044 1.839906 1.922012 2.514942 2.698788 +1.339376 1.470118 1.858751 1.959522 2.539427 2.686382 +1.353776 1.541029 1.822546 2.022164 2.542215 2.677200 +1.350868 1.631877 1.918792 2.183528 2.501087 2.617310 +1.407644 1.669128 2.000740 2.224226 2.522804 2.634897 +1.433780 1.586913 1.999627 2.192922 2.535981 2.626121 +1.413876 1.639426 1.952196 2.170695 2.501106 2.610591 +1.505388 1.613685 1.991590 2.214459 2.487873 2.612841 +1.409245 1.563694 2.048043 2.154145 2.483727 2.642180 +1.411023 1.646699 1.983177 2.152550 2.568807 2.661248 +1.384745 1.603808 1.934487 2.141949 2.507642 2.630050 +1.366120 1.551337 1.999561 2.177467 2.489112 2.596761 +1.355542 1.635015 2.008420 2.162675 2.465273 2.661406 +1.453972 1.673697 2.037857 2.180201 2.615971 2.709278 +1.369538 1.696466 1.999789 2.084847 2.482775 2.666286 +1.349740 1.462313 1.966717 2.051722 2.472616 2.652615 +1.327312 1.437762 1.928517 2.006392 2.505810 2.658921 +1.341350 1.419153 1.921202 1.991463 2.530825 2.613585 +1.342697 1.505329 1.946926 2.029431 2.538224 2.635583 +1.392743 1.535099 1.936104 2.024567 2.527279 2.614258 +1.432564 1.543790 1.951854 2.049855 2.546244 2.623711 +1.452940 1.569432 1.932369 2.037247 2.558693 2.638096 +1.467999 1.597453 1.920306 2.018574 2.536219 2.622824 +1.486806 1.569654 1.875855 1.966065 2.536740 2.631905 +1.454618 1.578126 1.811620 1.974659 2.537513 2.606334 +1.418040 1.507665 1.783572 1.893001 2.551797 2.628991 +1.264140 1.474380 1.770586 1.898927 2.524762 2.594073 +1.118340 1.456671 1.734720 1.996589 2.412285 2.519146 +1.096432 1.603123 1.808391 2.012238 2.409620 2.544361 +0.976303 1.473740 1.759171 1.855828 2.412929 2.483947 +0.990184 1.390703 1.710711 1.831672 2.377092 2.454935 +1.056900 1.387366 1.783109 1.873514 2.401419 2.486425 +0.989786 1.452622 1.851566 1.945924 2.403454 2.482939 +1.112084 1.364820 1.770002 1.921998 2.290405 2.437297 +1.096250 1.336388 1.741855 1.968572 2.211613 2.362493 +1.000030 1.346185 1.704531 1.966852 2.277389 2.389374 +1.027901 1.174070 1.793005 2.026854 2.178200 2.387232 +1.056882 1.167504 1.861000 2.204421 2.351246 2.485631 +1.075972 1.226420 1.997644 2.196176 2.330099 2.494137 +1.147221 1.258128 1.958667 2.258550 2.387749 2.552119 +1.162811 1.290567 2.052795 2.201829 2.424621 2.560484 +1.147890 1.265733 2.025675 2.130794 2.496878 2.620259 +1.239563 1.315734 2.018377 2.123513 2.463946 2.569207 +1.181131 1.358942 1.942155 2.159833 2.458701 2.593961 +1.247455 1.386435 1.898250 1.999009 2.446020 2.542764 +1.227695 1.504889 1.817998 1.908019 2.213334 2.552228 +1.201972 1.577872 1.771276 1.873354 2.061263 2.535817 +1.306230 1.516310 1.819234 1.923423 2.382025 2.582568 +1.505719 1.585654 1.949330 2.046203 2.448307 2.615962 +1.623749 1.698728 2.009543 2.108007 2.461522 2.647903 +1.690861 1.764294 2.036097 2.175502 2.515253 2.616822 +1.715336 1.828294 2.078551 2.252209 2.483666 2.607649 +1.659970 1.807170 1.975009 2.255594 2.481341 2.589617 +1.734824 1.850216 2.012044 2.276744 2.519359 2.608181 +1.635768 1.862548 1.956456 2.328743 2.568869 2.632471 +1.616355 1.825398 1.949523 2.281216 2.560861 2.641804 +1.592472 1.804360 1.927158 2.167339 2.577510 2.646873 +1.606484 1.895095 1.983153 2.112452 2.477608 2.576959 +1.708493 1.835068 1.966711 2.127238 2.427571 2.543077 +1.691093 1.889580 1.986069 2.206774 2.522399 2.601798 +1.702442 1.902120 2.076380 2.216219 2.484843 2.603543 +1.329491 1.542588 1.875436 2.105532 2.385234 2.536630 +1.321384 1.474161 1.932268 2.152505 2.374420 2.506710 +1.277750 1.458580 1.963094 2.182377 2.417003 2.558654 +1.208016 1.418710 2.009739 2.138531 2.396782 2.554506 +1.198910 1.299925 1.983625 2.150128 2.296124 2.505944 +1.250344 1.361156 2.010558 2.195944 2.340984 2.500873 +1.308664 1.585162 2.106341 2.214164 2.402673 2.635894 +1.330165 1.494630 2.141901 2.235810 2.459582 2.649465 +1.296306 1.434105 2.098086 2.204131 2.355208 2.600113 +1.309619 1.402978 1.892542 2.184955 2.333605 2.513160 +1.269067 1.491839 1.958963 2.174572 2.324689 2.543667 +1.434975 1.628849 1.981273 2.247282 2.476397 2.593980 +1.459644 1.650080 2.024368 2.267723 2.546314 2.675203 +1.381486 1.703195 2.138905 2.295559 2.545762 2.642527 +1.441842 1.700585 2.197906 2.276293 2.468211 2.694954 +1.539669 1.999668 2.206532 2.351484 2.651231 2.734825 +1.589576 1.926407 2.173457 2.256196 2.633242 2.707677 +1.434262 1.859373 2.141950 2.211447 2.511783 2.628376 +1.326814 1.596573 2.024769 2.115813 2.426136 2.609340 +1.229072 1.325550 1.838698 2.013045 2.471300 2.639281 +1.230813 1.329059 1.872619 1.964510 2.444752 2.594694 +1.193705 1.426297 1.898594 2.039364 2.502714 2.581046 +1.175637 1.473287 1.912423 2.002740 2.476222 2.606851 +1.099269 1.443896 1.892457 1.997567 2.522081 2.611086 +1.113739 1.439098 1.912268 2.000476 2.462769 2.559343 +1.085510 1.469634 1.914465 2.064613 2.427917 2.512412 +1.052481 1.501205 1.918797 1.999794 2.493684 2.571708 +1.043597 1.331616 1.927947 1.989186 2.445730 2.578082 +1.051981 1.200390 1.938627 2.026811 2.446750 2.629884 +0.978672 1.083042 1.868777 2.133583 2.430141 2.580267 +0.904772 1.105214 1.960566 2.064948 2.362564 2.604875 +0.859439 1.084629 1.901705 2.033000 2.276166 2.574716 +0.948943 1.043554 1.855644 2.050857 2.444431 2.661478 +0.974338 1.126459 1.927321 2.020910 2.455487 2.559782 +0.995629 1.175887 1.937743 2.013680 2.378974 2.617290 +1.001312 1.224390 1.901702 1.976467 2.425878 2.574844 +0.985969 1.282601 1.886614 2.032451 2.455957 2.599528 +0.927590 1.320448 1.924006 2.012174 2.498308 2.599681 +1.007942 1.383963 1.921628 2.007624 2.507570 2.607500 +0.972512 1.446775 1.920365 2.013492 2.490207 2.576492 +0.951123 1.452036 1.889861 1.987269 2.421483 2.562217 +0.924342 1.369953 1.851744 1.942740 2.475661 2.544282 +0.882605 1.301666 1.850813 2.032498 2.364632 2.541824 +0.933888 1.368996 1.943109 2.023849 2.405442 2.530330 +0.927916 1.112379 1.847430 1.979093 2.255596 2.563992 +1.031936 1.249132 1.833165 1.925221 2.310315 2.520141 +0.934046 1.239886 1.909603 2.008149 2.372869 2.548965 +0.984297 1.220031 1.823788 1.947602 2.264359 2.478653 +0.933366 1.278980 1.860469 1.942999 2.289801 2.465670 +0.983115 1.227707 1.842104 2.047699 2.272651 2.531979 +0.953311 1.245822 1.849685 1.945142 2.289569 2.572282 +0.994609 1.303464 1.868144 1.971560 2.372435 2.585257 +0.986061 1.364094 1.852132 1.917821 2.435113 2.633873 +0.975486 1.248848 1.848797 1.934434 2.402023 2.574203 +1.008388 1.304679 1.804310 1.888508 2.369473 2.598230 +0.999393 1.329937 1.901438 1.994378 2.397503 2.504548 +0.922186 1.321538 1.851082 1.962056 2.382159 2.472985 +0.897224 1.382187 1.780842 1.921734 2.359590 2.448091 +0.859516 1.447371 1.732311 1.881193 2.295231 2.380849 +0.986347 1.601641 1.752386 1.966362 2.314384 2.459101 +1.265264 1.616535 1.811273 2.097139 2.371242 2.550361 +1.318958 1.600426 1.755641 2.029814 2.329188 2.493144 +1.209901 1.470135 1.670187 1.970732 2.416208 2.523420 +1.122232 1.308395 1.457114 1.720231 2.384259 2.470421 +1.077675 1.245511 1.366478 1.664281 2.327344 2.419196 +1.075445 1.228131 1.365376 1.558947 2.238585 2.324563 +1.044502 1.215785 1.325993 1.645187 2.148642 2.225749 +0.955863 1.150609 1.283133 1.492306 2.177576 2.266677 +0.909204 1.045108 1.166160 1.320593 2.215965 2.352846 +0.960368 1.103540 1.278352 1.467726 2.260152 2.460237 +1.010220 1.186777 1.290055 1.578425 2.388733 2.500317 +1.020144 1.135718 1.239343 1.388838 2.438182 2.563922 +1.082493 1.206954 1.347455 1.490039 2.404819 2.494617 +1.144114 1.278638 1.434725 1.567887 2.322768 2.424800 +1.274296 1.348789 1.515602 1.632221 2.360105 2.552789 +1.301328 1.390629 1.638492 1.764907 2.347961 2.576115 +1.358515 1.444452 1.724492 1.843715 2.478143 2.574552 +1.399712 1.513306 1.791713 1.902169 2.495815 2.581592 +1.448866 1.534750 1.821506 1.931492 2.517823 2.622859 +1.438398 1.530057 1.831437 1.999329 2.531929 2.623280 +1.511918 1.581087 1.927484 2.041399 2.573287 2.663469 +1.535380 1.608310 1.924231 2.048796 2.546746 2.681650 +1.544368 1.620413 1.980425 2.068130 2.477398 2.626652 +1.558461 1.643007 2.024613 2.121014 2.451868 2.639494 +1.524202 1.613947 2.005898 2.115477 2.429090 2.663085 +1.504519 1.590381 1.966356 2.072628 2.376901 2.621094 +1.439395 1.512336 1.950354 2.058564 2.276407 2.573036 +1.315215 1.400050 1.854752 1.957633 2.246197 2.576501 +1.288117 1.488904 1.945571 2.024839 2.439848 2.605685 +1.436278 1.667254 2.056847 2.146443 2.548238 2.661743 +1.417389 1.819841 2.083572 2.220278 2.606693 2.690863 +1.373599 1.963014 2.144565 2.274057 2.547389 2.638900 +1.320367 1.918635 2.063208 2.237723 2.415847 2.517654 +1.223778 1.619753 1.890594 2.107915 2.520999 2.629701 +1.018748 1.427668 1.917566 2.001782 2.435507 2.564351 +1.026252 1.377048 1.949170 2.039209 2.393769 2.530053 +1.009988 1.472847 1.998049 2.079876 2.484961 2.553950 +1.053267 1.468372 2.016120 2.129309 2.456623 2.564128 +1.101072 1.355268 2.010441 2.107467 2.395605 2.537748 +1.132796 1.391658 2.016574 2.114099 2.497623 2.585099 +1.173305 1.443009 1.970633 2.104863 2.447883 2.535937 +1.209478 1.384097 1.972240 2.069587 2.457494 2.573686 +1.242419 1.453561 1.983731 2.068419 2.471041 2.593609 +1.320388 1.463651 1.997825 2.082334 2.472034 2.605892 +1.389516 1.477732 1.978692 2.094038 2.480170 2.644445 +1.413743 1.526085 1.963751 2.113919 2.403846 2.654427 +1.519419 1.592852 1.919458 2.024494 2.301172 2.668892 +1.513663 1.600129 1.922007 2.105104 2.278322 2.523416 +1.481852 1.659944 1.913552 2.049439 2.272255 2.493787 +1.567545 1.659167 1.930647 2.071517 2.312595 2.564270 +1.550890 1.677657 1.863928 2.010128 2.223475 2.520007 +1.572772 1.683020 1.863047 2.002198 2.320378 2.560791 +1.621943 1.734050 1.920642 2.062932 2.335107 2.576252 +1.631487 1.697136 1.952883 2.056578 2.459627 2.652858 +1.594706 1.671490 1.936091 2.013301 2.430776 2.669632 +1.601444 1.668704 1.945495 2.037168 2.503369 2.682121 +1.587570 1.664898 1.944621 2.032989 2.569757 2.703408 +1.556417 1.631245 1.930707 2.040513 2.453873 2.665177 +1.487851 1.565634 1.892869 2.011729 2.393945 2.647118 +1.406012 1.520184 1.791646 1.987880 2.289334 2.602762 +1.358221 1.436040 1.818480 1.957084 2.309801 2.605784 +1.309339 1.405329 1.835697 2.076369 2.340807 2.613062 +1.303792 1.415614 1.985149 2.129488 2.469355 2.643119 +1.358952 1.437733 1.988826 2.127374 2.537981 2.656471 +1.333866 1.480460 1.950069 2.122437 2.431168 2.587133 +1.384528 1.539708 1.964093 2.130549 2.510449 2.652805 +1.412625 1.544436 1.947280 2.173185 2.593018 2.716637 +1.433269 1.539892 2.004125 2.201951 2.515051 2.635244 +1.447580 1.554019 2.128269 2.240167 2.470753 2.657077 +1.480647 1.609898 2.097964 2.167566 2.473701 2.700702 +1.607823 1.675959 2.023409 2.146384 2.426913 2.636247 +1.643303 1.717783 2.060655 2.197557 2.415413 2.614329 +1.737392 1.816967 2.039362 2.219707 2.422999 2.623531 +1.694258 1.799366 2.042600 2.280098 2.418626 2.583273 +1.556188 1.831866 1.985355 2.207899 2.471677 2.630819 +1.421150 1.803896 1.984581 2.123513 2.438200 2.522496 +1.327444 1.668870 1.888433 2.029945 2.224455 2.461746 +1.109824 1.562199 1.862663 1.977860 2.139552 2.328644 +1.233875 1.580797 1.854187 2.021788 2.193504 2.355917 +1.207537 1.568638 1.872908 1.986671 2.137938 2.487653 +1.179978 1.625946 1.900003 2.008135 2.231660 2.594349 +1.469842 1.717204 1.875670 2.024433 2.325463 2.488422 +1.641097 1.809779 1.926763 2.062053 2.414037 2.542900 +1.648803 1.734123 1.966905 2.086726 2.354475 2.498840 +1.605468 1.689394 2.010048 2.114211 2.407628 2.527066 +1.520887 1.628733 1.977005 2.086771 2.340162 2.489336 +1.503816 1.600587 2.039010 2.130377 2.396482 2.513742 +1.437817 1.545316 2.043931 2.188366 2.356821 2.521449 +1.445398 1.549208 1.982213 2.096659 2.328629 2.462126 +1.416417 1.504357 1.973772 2.080427 2.393479 2.543532 +1.425822 1.528083 1.995729 2.162530 2.440693 2.562510 +1.394274 1.473952 2.043537 2.149086 2.432979 2.549080 +1.373755 1.476048 2.043903 2.160251 2.345351 2.501882 +1.370183 1.443588 2.092872 2.178103 2.413056 2.590595 +1.320393 1.466374 2.036782 2.137812 2.435621 2.578912 +1.286926 1.393325 2.060733 2.200945 2.500015 2.582353 +1.323391 1.421794 2.058500 2.153930 2.495548 2.638088 +1.295313 1.393216 2.004420 2.138189 2.526374 2.641535 +1.230979 1.355132 2.047369 2.156418 2.522379 2.664129 +1.233755 1.308524 1.939495 2.097348 2.487349 2.649836 +1.227589 1.355101 1.875835 1.977538 2.319288 2.575191 +1.227369 1.507108 1.853515 2.022894 2.212431 2.576493 +1.152896 1.470513 1.830430 1.954309 2.331452 2.533253 +1.336656 1.650185 1.779214 2.043424 2.444821 2.539640 +1.455824 1.582937 2.022254 2.176680 2.481340 2.592664 +1.437625 1.556245 2.081454 2.174959 2.482445 2.614573 +1.416470 1.620886 2.033007 2.157073 2.462925 2.601588 +1.376304 1.551493 2.117213 2.198338 2.416190 2.605635 +1.442804 1.657855 2.127088 2.206301 2.344857 2.578113 +1.368110 1.538734 2.060199 2.198045 2.366884 2.622242 +1.346445 1.428338 1.980453 2.126605 2.283275 2.530611 +1.304592 1.373259 1.923523 2.096362 2.239964 2.508433 +1.298027 1.371594 1.954971 2.107512 2.349707 2.545570 +1.307177 1.416169 1.980337 2.064455 2.389102 2.588444 +1.279296 1.390782 1.959784 2.090687 2.436145 2.612606 +1.317020 1.415866 1.921874 2.071794 2.463821 2.616221 +1.294309 1.412297 1.916195 2.019201 2.484708 2.611341 +1.310051 1.407774 1.853169 2.009907 2.466493 2.645013 +1.341298 1.422330 1.885156 1.967813 2.483863 2.626324 +1.428263 1.526125 1.885115 1.978529 2.499386 2.603389 +1.501165 1.580511 1.847282 2.000494 2.465952 2.608868 +1.538510 1.625396 1.813916 1.950057 2.522899 2.620472 +1.566628 1.639602 1.771792 1.878749 2.541764 2.663693 +1.543435 1.647821 1.748616 1.822597 2.434677 2.631280 +1.623389 1.680917 1.759152 1.844539 2.521467 2.653611 +1.574857 1.663719 1.767780 1.869740 2.453335 2.658218 +1.558309 1.661251 1.793844 1.895130 2.261873 2.572330 +1.543680 1.627756 1.817671 1.921282 2.432997 2.653342 +1.493536 1.575657 1.805687 1.939448 2.470642 2.665081 +1.440050 1.513838 1.832212 1.937802 2.530248 2.702867 +1.319101 1.506232 1.823485 1.931612 2.539554 2.676703 +1.307271 1.563371 1.847930 1.951724 2.251818 2.453220 +1.336405 1.661596 1.828825 1.988331 2.189506 2.354248 +1.342922 1.598751 1.784739 1.915122 2.109991 2.450644 +1.336704 1.646363 1.800742 1.891215 2.235913 2.558506 +1.311763 1.500014 1.830220 1.945042 2.430387 2.644578 +1.266113 1.431962 1.858757 2.059148 2.590485 2.674762 +1.317779 1.419948 1.916462 2.124820 2.574729 2.668476 +1.341519 1.436167 1.968421 2.097444 2.572787 2.685098 +1.305930 1.438859 1.933746 2.036080 2.569070 2.656417 +1.279130 1.406473 1.943094 2.031719 2.530080 2.630882 +1.286005 1.410029 1.969688 2.040243 2.448573 2.651374 +1.257538 1.391063 1.966565 2.039208 2.402422 2.646794 +1.224386 1.352129 1.931370 2.006343 2.456203 2.696151 +1.296292 1.488099 1.996948 2.068189 2.594535 2.695842 +1.334566 1.607716 1.922141 2.163161 2.545921 2.679970 +1.381781 1.646772 2.037640 2.204087 2.545791 2.639326 +1.416818 1.628929 2.045931 2.209348 2.523853 2.675794 +1.431463 1.694802 1.998932 2.159531 2.522928 2.664749 +1.384236 1.622936 2.036943 2.115706 2.528893 2.633929 +1.403832 1.558362 2.027347 2.138015 2.562774 2.659379 +1.390591 1.671936 2.017942 2.164595 2.592820 2.683609 +1.357527 1.553759 2.023137 2.212306 2.420463 2.558257 +1.301715 1.465816 2.052932 2.215957 2.420685 2.548524 +1.339331 1.597053 2.035156 2.145819 2.509602 2.644137 +1.346088 1.633870 2.006920 2.114724 2.570026 2.688879 +1.358438 1.501669 1.949578 2.027633 2.479635 2.637460 +1.427991 1.533690 1.853629 1.960806 2.437544 2.588461 +1.507003 1.585812 1.864642 1.950265 2.478769 2.624546 +1.535154 1.619477 1.784602 1.926332 2.537152 2.665799 +1.499658 1.574823 1.685832 1.822553 2.533986 2.705306 +1.585485 1.642424 1.721846 1.846735 2.524494 2.710346 +1.167359 1.627213 1.768394 1.853039 2.265556 2.540517 +1.110320 1.506953 1.805632 1.881807 2.361271 2.589961 +1.066434 1.539420 1.746305 1.936119 2.127988 2.461181 +1.110995 1.565351 1.852078 1.960462 2.214924 2.497897 +1.116118 1.590687 1.879184 1.969081 2.323294 2.532966 +1.148401 1.557455 1.819964 1.963793 2.380344 2.484532 +1.092558 1.569815 1.784004 1.959241 2.324259 2.468490 +1.212996 1.578928 1.751637 1.901569 2.271773 2.386093 +1.123979 1.626268 1.758062 1.983762 2.291127 2.408000 +1.075785 1.534831 1.784777 2.041940 2.236695 2.368112 +1.118783 1.415693 1.971932 2.122755 2.330245 2.440458 +1.016087 1.334517 1.899204 2.121574 2.425143 2.543872 +1.066196 1.289419 1.948157 2.081946 2.471493 2.593822 +1.064989 1.255756 1.935973 2.036951 2.493176 2.612753 +1.049670 1.228450 1.829530 2.025060 2.431071 2.670840 +1.019627 1.313583 1.880313 1.953952 2.491693 2.642660 +1.153477 1.551900 1.909752 2.133530 2.540066 2.626465 +1.293030 1.600480 2.035687 2.166885 2.572967 2.658261 +1.409308 1.624144 1.993621 2.268493 2.527057 2.651858 +1.426397 1.681509 2.039405 2.215283 2.559060 2.681401 +1.422045 1.752644 2.027991 2.231432 2.546485 2.631238 +1.403067 1.735547 2.007077 2.202109 2.635543 2.718353 +1.364124 1.687363 2.011927 2.293629 2.640697 2.705256 +1.328058 1.608269 1.989851 2.364958 2.590564 2.689451 +1.333592 1.644867 2.130503 2.308577 2.644140 2.732807 +1.405236 1.665965 2.123365 2.315861 2.656941 2.732874 +1.435372 1.679544 2.019100 2.254404 2.596082 2.674056 +1.041025 1.476515 1.923322 2.290557 2.592337 2.673623 +0.818396 1.189747 2.051367 2.233382 2.417100 2.622567 +0.745703 1.240251 2.139256 2.224179 2.476418 2.558791 +0.786217 1.296744 2.004359 2.245816 2.548718 2.631400 +0.781573 1.122340 1.875748 2.277284 2.459421 2.557207 +0.697586 1.327149 2.097985 2.173556 2.574671 2.693605 +0.773107 1.393007 1.971171 2.270220 2.591495 2.651543 +0.799951 1.252666 1.928383 2.211233 2.577718 2.683817 +0.737528 1.237907 1.827160 2.110526 2.476303 2.627671 +0.896067 1.421355 1.841161 2.104821 2.432869 2.585719 +0.920446 1.418578 1.943416 2.252701 2.491235 2.623110 +0.905094 1.284731 1.843688 2.269109 2.479541 2.595905 +1.049549 1.447497 1.841173 2.160358 2.575747 2.655700 +1.282800 1.445416 1.901230 2.290173 2.581640 2.678726 +1.174710 1.517021 1.867926 2.176617 2.547483 2.640154 +1.241259 1.518496 1.936773 2.208770 2.521322 2.619833 +1.321929 1.540199 1.998528 2.205769 2.605663 2.707912 +1.303802 1.622926 1.880392 2.189485 2.588909 2.669966 +1.360827 1.658553 1.903323 2.178010 2.554280 2.634772 +1.385461 1.623312 1.959095 2.257739 2.605390 2.694616 +1.467954 1.628168 2.003097 2.348920 2.596096 2.674558 +1.411837 1.691393 1.947010 2.259218 2.526145 2.615112 +1.415256 1.697464 2.003104 2.284290 2.526236 2.643365 +1.365343 1.610187 2.022103 2.171703 2.557595 2.642236 +1.343948 1.630769 2.040836 2.261714 2.477921 2.647359 +1.333580 1.630378 2.031205 2.210871 2.504057 2.623327 +1.344121 1.704685 2.065813 2.192571 2.541365 2.658520 +1.439884 1.666588 2.082726 2.206006 2.636341 2.699174 +1.344355 1.655936 2.026852 2.227832 2.565868 2.661265 +1.299677 1.585295 1.961552 2.231139 2.599559 2.677599 +1.184434 1.441654 1.888542 2.255409 2.554664 2.625508 +1.446570 1.792548 2.022664 2.179214 2.497160 2.591115 +1.464682 1.809276 2.060194 2.205446 2.545963 2.641910 +1.481290 1.729523 2.025686 2.250012 2.537459 2.667746 +1.476458 1.657788 2.008062 2.249201 2.503220 2.613116 +1.386264 1.589548 2.031702 2.218301 2.509210 2.619100 +1.386263 1.662864 2.052585 2.208677 2.488387 2.623049 +1.438117 1.646070 1.967818 2.212439 2.508718 2.629395 +1.437599 1.590230 2.089082 2.184453 2.566546 2.677847 +1.367022 1.652527 2.084373 2.169492 2.483600 2.655744 +1.403779 1.701337 2.062797 2.148537 2.443186 2.657250 +1.399193 1.706047 2.062427 2.144585 2.531224 2.635014 +1.409664 1.750569 2.005073 2.087238 2.602834 2.694068 +1.430153 1.760399 2.048802 2.118059 2.569383 2.657275 +1.418847 1.858926 2.018666 2.141412 2.597867 2.671139 +1.515040 1.815611 1.942165 2.089059 2.554645 2.634597 +1.420031 1.740119 1.953746 2.196133 2.502692 2.639749 +1.384099 1.723309 1.901165 2.160196 2.426618 2.522583 +1.341050 1.737372 1.894752 2.110869 2.407505 2.502838 +1.375756 1.553983 1.784274 1.981423 2.504116 2.571526 +1.414589 1.520552 1.715365 2.013015 2.511199 2.608636 +1.384971 1.519108 1.696689 1.939377 2.575701 2.644752 +1.377861 1.611683 1.751236 2.044564 2.493605 2.567974 +1.360853 1.553679 1.693976 2.036113 2.535885 2.588469 +1.391629 1.489335 1.631480 1.853083 2.529546 2.631825 +1.364077 1.476053 1.629040 1.949019 2.525741 2.587922 +1.243896 1.398594 1.539687 2.066323 2.528653 2.592221 +1.255509 1.429357 1.548843 1.950985 2.519984 2.574845 +1.213331 1.388798 1.505976 1.886640 2.486118 2.545361 +1.125797 1.286903 1.534946 1.982051 2.490209 2.570684 +1.132522 1.296198 1.460831 1.925246 2.355670 2.444037 +1.146734 1.365341 1.496067 2.020613 2.448334 2.510650 +1.192778 1.378937 1.491161 1.959258 2.459140 2.519716 +1.271605 1.383883 1.525856 1.953206 2.473140 2.526275 +1.199948 1.366094 1.519729 1.926772 2.562989 2.623739 +1.236017 1.383510 1.510394 1.793300 2.585490 2.677079 +1.277218 1.416561 1.539447 1.923790 2.599080 2.667723 +1.195957 1.408063 1.568713 2.090793 2.622180 2.668897 +1.174436 1.300805 1.706567 2.070327 2.332828 2.490999 +1.120253 1.252790 1.562102 2.057117 2.357857 2.488099 +1.176325 1.291966 1.760265 2.093355 2.395545 2.591528 +1.197722 1.415532 1.801926 2.033180 2.459620 2.592560 +1.170462 1.491249 1.888044 2.082479 2.392285 2.528149 +1.083509 1.491779 1.949458 2.046197 2.422471 2.591609 +1.059936 1.417978 1.954816 2.073246 2.480964 2.599125 +0.939633 1.348507 2.005684 2.094229 2.474051 2.580294 +0.849679 1.293534 1.998123 2.105266 2.410101 2.615907 +0.886534 1.432349 1.990451 2.089797 2.379083 2.539500 +0.973462 1.473622 1.944390 2.051837 2.393100 2.468610 +1.041989 1.576432 1.952733 2.062536 2.326319 2.437768 +1.048696 1.543946 1.799024 2.015259 2.415911 2.487382 +1.060745 1.463281 1.792003 1.940494 2.417438 2.517618 +1.086879 1.350511 1.715443 1.804481 2.481994 2.577240 +1.237763 1.487227 1.724896 1.808323 2.528530 2.614554 +1.398461 1.499585 1.705939 1.817865 2.537422 2.611149 +1.461839 1.549278 1.719489 1.835184 2.480052 2.656622 +1.411934 1.594838 1.722617 1.840214 2.536598 2.618705 +1.527085 1.609472 1.704839 1.832817 2.512769 2.605081 +1.549304 1.649714 1.747183 1.838847 2.593282 2.681523 +1.408650 1.622130 1.797760 1.950766 2.238972 2.463941 +1.463558 1.647961 1.790731 1.921407 2.348044 2.572625 +1.531892 1.700373 1.834041 2.005597 2.413477 2.570542 +1.595204 1.681563 1.857023 2.020177 2.475381 2.620261 +1.578383 1.651863 1.912263 2.011994 2.512496 2.625607 +1.551105 1.644360 1.936207 2.041608 2.527321 2.617243 +1.531973 1.623150 1.927602 2.007454 2.528038 2.634563 +1.492463 1.579493 1.908682 1.998228 2.490609 2.583094 +1.445430 1.548758 1.913697 2.002797 2.519245 2.610948 +1.397285 1.482251 1.891220 1.983837 2.474487 2.607776 +1.358299 1.562942 1.902050 2.003614 2.425639 2.585407 +1.313352 1.518886 1.923066 2.011942 2.496939 2.583703 +1.321679 1.506830 1.903064 1.990064 2.510610 2.619736 +1.272893 1.513437 1.897901 2.039656 2.536517 2.604144 +1.255738 1.431150 1.896619 1.960886 2.526746 2.624236 +1.253559 1.392826 1.893788 1.975079 2.520685 2.596673 +1.212336 1.375220 1.860311 1.964962 2.531189 2.598668 +1.177442 1.324186 1.806632 1.885288 2.487316 2.595463 +1.184996 1.383080 1.783224 1.863469 2.466568 2.570648 +1.162268 1.444731 1.797884 1.960244 2.515838 2.594432 +1.293132 1.612625 1.912866 2.113069 2.467202 2.592647 +1.354402 1.698025 1.960114 2.149465 2.532985 2.652695 +1.412069 1.729124 2.034085 2.172945 2.538810 2.643693 +1.391792 1.801757 1.944790 2.194546 2.467300 2.547714 +1.476077 1.743192 1.982548 2.141155 2.559049 2.642891 +1.423680 1.857196 1.998407 2.146989 2.499501 2.583857 +1.420678 1.878169 2.012321 2.298282 2.578266 2.665489 +1.455663 1.910540 2.069836 2.393055 2.593493 2.679808 +1.525575 1.925713 2.186470 2.400715 2.660126 2.743114 +1.376147 1.633438 1.934297 2.250493 2.494057 2.618970 +1.354498 1.560950 1.931259 2.207320 2.500701 2.611053 +1.308071 1.569512 1.967243 2.245460 2.461123 2.595512 +1.347009 1.654983 1.980907 2.251887 2.510089 2.634977 +1.478008 1.588438 2.038202 2.224140 2.499366 2.646631 +1.451530 1.630286 2.114101 2.249734 2.416504 2.651801 +1.412137 1.655832 2.128349 2.224639 2.525056 2.681740 +1.374504 1.848893 2.140832 2.291897 2.602827 2.691005 +1.378568 1.744853 2.106673 2.201221 2.626831 2.711996 +1.082739 1.603117 2.070774 2.129571 2.504286 2.657551 +1.013288 1.467910 1.960032 2.091788 2.362049 2.561554 +0.994100 1.328068 1.791699 1.902549 2.410628 2.501324 +0.999159 1.325245 1.722310 1.871377 2.281177 2.502088 +1.035282 1.338082 1.653023 1.759760 2.441464 2.540672 +1.077126 1.293589 1.565666 1.711796 2.330341 2.436256 +1.058117 1.243026 1.488328 1.623677 2.330121 2.429536 +1.150659 1.296201 1.574724 1.701839 2.390475 2.507354 +1.167918 1.382035 1.573815 1.795297 2.440653 2.490361 +1.221368 1.405075 1.535783 1.728642 2.412290 2.519375 +1.248273 1.383975 1.572280 1.826858 2.425352 2.494218 +1.274149 1.386267 1.557821 1.734106 2.378306 2.477968 +1.343890 1.456032 1.668535 1.815600 2.248744 2.419705 +1.356022 1.559300 1.731279 1.853333 2.343968 2.514760 +1.433214 1.575906 1.673186 1.781463 2.292800 2.491264 +1.354708 1.637604 1.875368 2.162870 2.408490 2.566375 +1.464664 1.591442 2.071219 2.235462 2.398887 2.563489 +1.424812 1.622646 2.020332 2.161315 2.328264 2.468190 +1.364274 1.516152 2.011760 2.109608 2.395705 2.554722 +1.342677 1.460516 2.038898 2.122976 2.506655 2.643449 +1.338308 1.519884 2.030044 2.100145 2.533338 2.674767 +1.321127 1.545574 1.977232 2.122268 2.557592 2.680218 +1.315091 1.467109 1.972429 2.068538 2.526845 2.645634 +1.304457 1.400689 1.954545 2.053140 2.562504 2.685886 +1.267182 1.376660 1.888057 2.029893 2.545417 2.669311 +1.225012 1.339338 1.887320 1.965236 2.543506 2.672285 +1.226210 1.403527 1.797664 1.959693 2.540988 2.627346 +1.347025 1.607942 1.966769 2.184515 2.477879 2.608821 +1.332099 1.755961 1.948416 2.176713 2.513390 2.601370 +1.349288 1.781404 1.922794 2.109230 2.462878 2.559863 +1.362379 1.693594 1.884339 2.088053 2.522473 2.613966 +1.320290 1.510299 1.857749 2.065435 2.494726 2.605564 +1.282991 1.459743 1.744910 1.961419 2.439941 2.623746 +1.251365 1.381919 1.673542 1.772697 2.323540 2.661592 +1.204256 1.435153 1.654230 1.737800 2.305057 2.581558 +1.181960 1.465280 1.670027 1.861303 2.444123 2.546129 +1.347122 1.628258 1.931339 2.123429 2.466851 2.598918 +1.170479 1.284934 1.552741 1.832546 2.299787 2.519811 +1.190040 1.284015 1.646086 1.969170 2.496917 2.620449 +1.255411 1.381474 1.781732 2.094994 2.431362 2.593520 +1.231880 1.334167 1.796249 2.040002 2.387081 2.554655 +1.180520 1.308571 1.818239 1.976323 2.293501 2.451796 +1.102564 1.266319 1.844247 1.961761 2.324841 2.514083 +1.004636 1.144874 1.835019 1.997102 2.182380 2.522076 +0.956994 1.212915 1.940923 2.060449 2.312226 2.441670 +0.795434 1.444280 1.932418 2.047161 2.365680 2.450523 +0.942462 1.606038 2.025121 2.119735 2.299947 2.431814 +0.812186 1.469389 2.078323 2.173021 2.391967 2.474051 +0.831008 1.620609 2.092943 2.167732 2.334863 2.416721 +0.917049 1.800997 2.121233 2.199383 2.347284 2.440519 +0.857286 1.679152 2.112428 2.203072 2.444738 2.529211 +0.809582 1.542552 2.182369 2.239437 2.461979 2.543366 +0.912283 1.779198 2.166321 2.251092 2.461682 2.576876 +0.774827 1.770199 2.179196 2.239611 2.487323 2.560225 +1.222989 1.574575 2.081078 2.223587 2.501523 2.661302 +1.394216 1.696320 2.036647 2.273328 2.570400 2.684130 +1.370771 1.698913 2.082660 2.245671 2.598794 2.695446 +1.372406 1.647175 2.142373 2.272905 2.608093 2.686558 +1.342788 1.694536 2.123284 2.256762 2.575277 2.690952 +1.380553 1.750680 2.123405 2.199744 2.488043 2.610243 +1.395056 1.883317 2.088702 2.189488 2.458258 2.548140 +1.413151 1.872836 2.020835 2.161956 2.396167 2.487013 +1.403097 1.764242 1.911249 2.055851 2.391006 2.484601 +1.250592 1.606846 1.834805 1.914414 2.344090 2.549461 +1.171007 1.406438 1.699124 1.858102 2.354073 2.471053 +1.132691 1.251867 1.521350 1.638290 2.355284 2.470608 +1.011681 1.287897 1.450262 1.663822 2.285463 2.371452 +1.030244 1.208417 1.366673 1.550352 2.337520 2.421401 +0.964915 1.171185 1.288162 1.588419 2.327292 2.388297 +0.953674 1.102888 1.263755 1.835591 2.316855 2.424820 +0.886544 1.074635 1.242245 1.964445 2.296815 2.412946 +0.853009 1.077083 1.184534 1.752324 2.283038 2.389217 +0.840278 1.033222 1.152546 1.520954 2.333984 2.454533 +0.910770 1.083873 1.223537 1.668076 2.346235 2.511845 +0.967915 1.121818 1.220258 1.806588 2.421129 2.498176 +0.992265 1.169069 1.260049 1.679990 2.398939 2.459143 +1.065276 1.230957 1.322385 1.753477 2.314399 2.415925 +1.081305 1.271782 1.458008 1.729400 2.332304 2.405121 +1.017815 1.349087 1.515836 1.721892 2.292963 2.398991 +1.097652 1.332937 1.570030 1.776462 2.377274 2.465894 +1.147644 1.302495 1.640156 1.797044 2.363880 2.474795 +1.127168 1.322009 1.684884 1.796463 2.407050 2.578659 +1.159532 1.266652 1.709552 1.830584 2.438156 2.572425 +1.137105 1.331512 1.749399 1.846000 2.414391 2.511488 +1.121271 1.351105 1.728223 1.846664 2.449211 2.564158 +1.118680 1.261543 1.794458 1.885767 2.429009 2.552772 +1.076991 1.212163 1.727637 1.861263 2.432992 2.564041 +1.082093 1.261697 1.760917 1.858031 2.315851 2.573591 +1.086353 1.279061 1.763123 1.864186 2.380786 2.485297 +0.988401 1.262393 1.737901 1.836710 2.375780 2.492390 +1.074712 1.196202 1.677279 1.806309 2.341401 2.560642 +1.067864 1.265290 1.689350 1.802993 2.401947 2.524062 +1.010475 1.289540 1.652721 1.778727 2.362305 2.466551 +0.977570 1.261308 1.576271 1.741327 2.297622 2.404091 +1.097180 1.464421 1.606664 1.717614 2.330709 2.412068 +1.383838 1.652270 1.898203 2.096608 2.476719 2.574183 +1.279735 1.700611 1.894987 2.029873 2.468395 2.584491 +1.236668 1.683312 1.791059 1.953368 2.533100 2.587084 +1.185052 1.599131 1.853897 1.944925 2.499951 2.572896 +1.163573 1.307316 1.872443 1.953987 2.544667 2.623228 +1.190969 1.449255 1.863288 1.937666 2.525272 2.599969 +1.118547 1.513105 1.856666 1.968822 2.497385 2.575529 +1.156521 1.630926 1.845452 2.051106 2.443167 2.534052 +1.410042 1.541981 2.135508 2.235609 2.575406 2.680553 +1.392791 1.720666 2.034946 2.192456 2.487154 2.653398 +1.581248 1.837838 2.109761 2.187484 2.497898 2.660089 +1.663078 1.901302 2.151665 2.248289 2.534789 2.639793 +1.623160 1.843067 2.177770 2.255312 2.543601 2.681190 +1.539709 1.846069 2.119080 2.315024 2.605425 2.695012 +1.532691 1.805362 2.166180 2.276515 2.582080 2.695324 +1.517203 1.864729 2.111840 2.241033 2.602399 2.678593 +1.481004 1.879771 2.183398 2.258504 2.624580 2.714706 +1.480064 1.947829 2.126591 2.239313 2.602703 2.689760 +1.615747 2.025678 2.188405 2.291472 2.673701 2.723276 +1.546688 2.023668 2.137583 2.233880 2.563573 2.627361 +1.517274 1.902434 2.132410 2.189277 2.548379 2.643352 +1.498762 1.602359 2.159933 2.275665 2.540579 2.682962 +1.573572 1.655201 2.071740 2.214602 2.523447 2.642142 +1.601993 1.680362 2.130147 2.247308 2.567706 2.670568 +1.632928 1.733671 2.134699 2.255127 2.559994 2.682076 +1.707428 1.752059 2.139704 2.252060 2.567637 2.647910 +1.680790 1.812582 2.189235 2.287297 2.578245 2.644737 +1.746130 1.778548 2.119511 2.283392 2.596379 2.686826 +1.680242 1.774944 2.097848 2.213994 2.558507 2.656276 +1.698158 1.777690 2.096918 2.211009 2.512421 2.625627 +1.757218 1.828197 2.092183 2.218630 2.459897 2.653906 +1.768299 1.815758 2.044601 2.174404 2.469800 2.674385 +1.740913 1.830010 2.044499 2.168426 2.442501 2.587668 +1.728988 1.801586 2.036902 2.135694 2.483000 2.647346 +1.740200 1.780349 2.039841 2.116482 2.460078 2.666408 +1.679167 1.810585 1.976200 2.085150 2.330970 2.574697 +1.675383 1.741676 1.986605 2.086988 2.444839 2.648385 +1.605366 1.684640 1.977146 2.084309 2.401376 2.626669 +1.593589 1.667011 1.993079 2.095793 2.477055 2.660517 +1.495436 1.677492 1.915438 2.107516 2.504100 2.687519 +1.371193 1.581007 1.812088 2.159971 2.540808 2.654514 +1.308897 1.652762 1.877696 2.100223 2.498357 2.635266 +1.257546 1.701192 1.908659 2.063978 2.330876 2.588480 +1.260641 1.733829 1.901311 2.046022 2.230421 2.379709 +1.192017 1.695443 1.866332 1.969861 2.131279 2.367813 +1.331300 1.727619 1.875686 1.967226 2.115488 2.461652 +1.221851 1.644785 1.861070 1.957289 2.263788 2.509227 +1.297010 1.684814 1.825106 1.981266 2.388696 2.497940 +1.292992 1.621691 1.795497 1.891584 2.430941 2.597238 +1.293338 1.412441 1.678427 2.013436 2.406265 2.575295 +1.355250 1.470521 1.748288 2.044830 2.411070 2.590823 +1.352085 1.474384 1.811950 2.028535 2.445376 2.597977 +1.380432 1.472981 1.836191 1.957768 2.390372 2.571170 +1.417568 1.514975 1.839991 1.974610 2.382486 2.510706 +1.396329 1.511621 1.743909 2.009524 2.414088 2.533502 +1.355999 1.511197 1.775041 1.973539 2.445398 2.568851 +1.357482 1.533305 1.820633 1.998326 2.395457 2.573696 +1.244544 1.446552 1.726849 1.935995 2.428985 2.555947 +1.206555 1.365874 1.510017 1.809039 2.464853 2.520241 +1.204707 1.340270 1.477154 1.731800 2.461076 2.525822 +1.152135 1.294762 1.429873 1.669780 2.436091 2.504828 +1.122329 1.284669 1.445441 1.811897 2.444467 2.535691 +1.167102 1.311995 1.430682 1.931216 2.579180 2.626367 +1.140963 1.255562 1.416924 1.913114 2.462643 2.552650 +1.175380 1.325094 1.434137 1.826282 2.534111 2.599692 +1.152952 1.311344 1.428753 1.733281 2.499163 2.555417 +1.208942 1.318147 1.450855 1.631131 2.484793 2.560756 +1.214984 1.312305 1.496973 1.602685 2.441060 2.513740 +1.154899 1.274352 1.497828 1.611080 2.493972 2.628464 +1.221737 1.324479 1.529355 1.668502 2.496342 2.572455 +1.265483 1.360436 1.574447 1.698291 2.465872 2.529454 +1.299969 1.411470 1.634331 1.790167 2.464188 2.546209 +1.296816 1.461296 1.674047 1.867297 2.472828 2.546532 +1.319231 1.493029 1.702922 1.867177 2.417583 2.503853 +1.307703 1.511731 1.795464 1.988697 2.415827 2.502063 +1.341439 1.567295 1.849636 2.054411 2.368545 2.484938 +1.346092 1.709857 1.847822 2.089875 2.320388 2.426929 +1.351207 1.582397 1.853947 2.087781 2.269740 2.406134 +1.403409 1.681258 1.930634 2.064741 2.317595 2.445510 +1.303563 1.800429 1.946546 2.064780 2.347899 2.575654 +1.401968 1.795117 2.043851 2.149158 2.337423 2.475421 +1.486349 1.896915 2.033679 2.164583 2.427213 2.516709 +1.581223 1.920360 2.032925 2.186636 2.458825 2.534175 +1.623672 1.949219 2.056949 2.220873 2.544733 2.612737 +1.720081 1.916335 2.069658 2.310061 2.503085 2.592652 +1.652066 1.993905 2.122170 2.282322 2.533728 2.604129 +1.696384 1.990268 2.088659 2.317899 2.562346 2.630795 +1.688613 1.976549 2.085500 2.354425 2.483404 2.567677 +1.791891 1.956617 2.084765 2.344129 2.473213 2.578020 +1.770146 1.955967 2.075143 2.263105 2.508576 2.594808 +1.688172 1.958387 2.097165 2.237127 2.443133 2.558386 +1.614095 1.858106 1.996129 2.151245 2.327315 2.485345 +1.517662 1.729778 1.975388 2.118726 2.390828 2.523423 +1.576388 1.764916 1.937347 2.159436 2.354537 2.476553 +1.596523 1.796717 1.930679 2.173774 2.415264 2.515193 +1.598274 1.758907 1.941525 2.242941 2.461919 2.548378 +1.564588 1.667806 1.910211 2.207508 2.432969 2.562295 +1.502258 1.598757 1.701036 1.993517 2.431658 2.568611 +1.261165 1.379257 1.669436 1.864259 2.424394 2.560278 +1.183142 1.291685 1.496242 1.775091 2.415349 2.571850 +1.176858 1.280643 1.397295 1.556275 2.482609 2.556911 +1.151406 1.269090 1.402613 1.529417 2.547298 2.660723 +1.138350 1.270088 1.386698 1.656508 2.516680 2.570828 +1.167637 1.288387 1.379397 1.815954 2.488744 2.544025 +1.191129 1.318584 1.433056 1.898734 2.440995 2.505523 +1.231547 1.339710 1.505832 1.865461 2.401919 2.567552 +1.249001 1.342543 1.526521 1.644629 2.260060 2.528113 +1.292116 1.385043 1.567293 1.928018 2.343597 2.526727 +1.553055 1.731196 1.875584 2.037623 2.189580 2.433617 +1.556332 1.807351 2.009873 2.134758 2.395110 2.517757 +1.700800 1.862996 2.016062 2.212872 2.465828 2.576608 +1.744516 1.892300 2.042875 2.203697 2.393022 2.529386 +1.614682 1.867043 2.024132 2.172368 2.402152 2.567866 +1.662548 1.926469 2.016222 2.153675 2.544682 2.636605 +1.607737 1.840632 2.036507 2.148869 2.475726 2.623423 +1.542603 1.789412 1.988210 2.133702 2.500071 2.623838 +1.520491 1.854019 1.966284 2.100229 2.465497 2.590987 +1.429100 1.726203 1.958566 2.068736 2.397125 2.578275 +1.230963 1.483915 1.909424 2.037168 2.278162 2.442677 +1.165473 1.402475 1.877668 1.985029 2.337001 2.482301 +1.060649 1.341795 1.891591 1.997803 2.342252 2.473851 +1.045982 1.264410 1.892878 2.028108 2.265711 2.418342 +0.872467 1.318607 1.941288 2.054895 2.265976 2.523000 +0.878165 1.208778 1.863524 2.074171 2.319885 2.460496 +0.871380 1.050930 1.866310 2.044293 2.184267 2.469225 +0.814866 1.206234 1.936241 2.046364 2.243986 2.391005 +0.791495 1.154802 1.950862 2.062225 2.270188 2.497120 +0.734873 1.117496 2.013891 2.146348 2.252079 2.340218 +0.717596 1.113315 2.145116 2.214288 2.350660 2.437091 +0.747897 1.181886 1.982640 2.073387 2.391063 2.461216 +0.814210 1.593704 1.930814 2.051889 2.279916 2.450975 +1.007998 1.635254 1.848698 1.998294 2.264960 2.399367 +1.058125 1.548258 1.725115 1.885874 2.174154 2.386746 +1.065325 1.446828 1.763113 2.061160 2.393931 2.533355 +1.245436 1.513106 1.699869 1.885972 2.163732 2.412556 +1.402218 1.550167 1.679097 2.104476 2.314265 2.464617 +1.439688 1.565541 1.746159 2.175756 2.353179 2.445969 +1.282789 1.467574 1.689789 2.057017 2.299566 2.506538 +1.157513 1.360077 1.531522 1.931682 2.277828 2.387362 +1.127719 1.287186 1.421085 1.844362 2.281074 2.385221 +1.172511 1.317506 1.497831 1.768329 2.327099 2.453399 +1.215615 1.351452 1.554622 1.706859 2.280267 2.410315 +1.162714 1.318505 1.568816 1.757107 2.225559 2.321236 +1.221146 1.364069 1.728202 1.867240 2.149636 2.323430 +1.274525 1.455876 1.651807 1.929882 2.119518 2.245371 +1.324827 1.466657 1.837727 1.982753 2.167839 2.294890 +1.207408 1.463737 1.907228 2.010942 2.187613 2.315377 +1.197505 1.325369 1.903945 2.104257 2.264375 2.406017 +0.964658 1.421326 1.800591 2.075541 2.249667 2.391422 +0.900184 1.419486 1.860531 2.052169 2.204670 2.414730 +0.976462 1.444988 1.837158 1.997086 2.133567 2.303194 +0.943062 1.543803 1.914625 1.993134 2.184650 2.344182 +0.896780 1.426973 1.923545 2.039994 2.257922 2.504524 +0.957615 1.553177 1.862682 2.044650 2.192655 2.484166 +1.024381 1.626871 1.891283 2.041787 2.304775 2.613132 +1.260699 1.570977 1.796922 1.938909 2.457980 2.543689 +1.433872 1.676893 2.020354 2.249287 2.488434 2.619226 +1.427791 1.605308 1.999841 2.197618 2.472581 2.628257 +1.344936 1.547750 2.019906 2.153463 2.482519 2.664904 +1.394553 1.830863 2.075753 2.146704 2.529848 2.662938 +1.393531 1.579984 2.005267 2.068322 2.595828 2.677955 +1.371670 1.501665 2.012362 2.069292 2.605716 2.701205 +1.365970 1.443760 1.893696 2.063362 2.540864 2.635754 +1.392813 1.470933 1.920415 1.985276 2.612047 2.670626 +1.393576 1.502340 1.926492 2.019514 2.571540 2.645701 +1.331438 1.470056 1.844344 1.945539 2.527331 2.620827 +1.280394 1.379998 1.822792 1.927676 2.470720 2.614037 +1.230446 1.394851 1.772237 1.910697 2.494879 2.569172 +1.103766 1.420997 1.742156 1.901028 2.458527 2.544960 +1.070834 1.438456 1.754789 1.827791 2.323725 2.484121 +1.023924 1.522342 1.713716 1.834742 2.289596 2.496846 +1.123843 1.539945 1.766275 1.866623 2.349980 2.441218 +1.046667 1.496581 1.791535 1.859477 2.400747 2.468296 +1.031227 1.504904 1.714267 1.944348 2.365219 2.459437 +1.201184 1.370120 1.882630 2.011333 2.411295 2.510294 +1.249461 1.324457 1.907616 2.059001 2.448619 2.551408 +1.308584 1.403015 1.961155 2.048592 2.475709 2.562469 +1.354357 1.476040 2.008730 2.111323 2.513237 2.591557 +1.415309 1.559632 2.020191 2.107847 2.505348 2.596462 +1.452150 1.536961 2.033461 2.120472 2.473458 2.600239 +1.476159 1.570668 1.981439 2.089874 2.441733 2.574939 +1.532138 1.607322 1.996255 2.099111 2.448993 2.575083 +1.578251 1.670901 1.946452 2.067931 2.484573 2.596033 +1.645992 1.719829 1.908426 2.034805 2.521504 2.630135 +1.675204 1.739089 1.858009 1.951150 2.549621 2.668138 +1.698801 1.740674 1.816221 1.872214 2.552990 2.675039 +1.589313 1.665941 1.751972 1.834254 2.495821 2.663916 +1.443571 1.535057 1.685496 1.788025 2.391781 2.644852 +1.389394 1.597558 1.884291 2.161052 2.453631 2.577281 +1.344693 1.573396 1.949051 2.033207 2.436483 2.650227 +1.340679 1.442192 1.904082 1.992387 2.427510 2.604339 +1.301569 1.363519 1.870210 1.953388 2.445808 2.609366 +1.265637 1.365516 1.838660 1.922174 2.431739 2.552480 +1.291868 1.451067 1.770742 1.900677 2.380488 2.474590 +1.319797 1.502062 1.686208 1.922008 2.291200 2.392613 +1.253224 1.445797 1.591748 1.893558 2.295028 2.381503 +1.171375 1.370630 1.523209 1.825821 2.336350 2.399182 +1.238986 1.365086 1.486833 1.790131 2.302513 2.384222 +1.186490 1.327527 1.463687 1.680778 2.322037 2.402246 +1.160765 1.294904 1.467635 1.613241 2.219663 2.329651 +1.167970 1.312269 1.458793 1.725469 2.182513 2.270653 +1.160491 1.371381 1.546645 1.859914 2.151480 2.267109 +1.060643 1.447736 1.589363 1.762026 2.187949 2.312538 +1.096873 1.449372 1.669939 1.880786 2.205157 2.322919 +0.965471 1.394985 1.664859 1.869740 2.130135 2.272101 +0.992815 1.276232 1.736324 1.883127 2.198488 2.291947 +0.989087 1.348989 1.869284 1.945029 2.217100 2.329616 +0.905850 1.296468 1.839413 1.984491 2.131357 2.261643 +0.913468 1.347104 1.974941 2.056808 2.233065 2.312403 +0.891335 1.518146 1.956057 2.017051 2.234247 2.369537 +0.838007 1.490697 2.017641 2.097784 2.331456 2.417972 +0.918242 1.411219 2.047094 2.157938 2.312207 2.414304 +0.737470 1.475335 2.131705 2.195099 2.336065 2.410088 +0.804454 1.247009 2.183193 2.253103 2.376866 2.457474 +0.910989 1.120584 2.031279 2.134740 2.301672 2.401323 +0.823657 1.023714 1.899299 2.153486 2.278157 2.468898 +0.820197 0.968457 1.655670 2.137310 2.320413 2.442552 +0.901009 1.047635 1.785794 2.126322 2.248142 2.419219 +0.908944 1.151536 1.941268 2.153759 2.287775 2.477861 +1.022921 1.329810 1.973526 2.121196 2.269160 2.496929 +1.008035 1.176565 1.832554 2.130737 2.263094 2.484071 +1.148404 1.261617 1.868165 2.138339 2.287914 2.475774 +1.131641 1.245536 1.746902 2.127206 2.273644 2.439518 +1.105449 1.230686 1.759865 2.023222 2.225896 2.485020 +1.232277 1.363476 1.914876 2.021647 2.314039 2.455927 +1.287966 1.377464 1.853658 2.039634 2.348077 2.502708 +1.285144 1.520789 1.951021 2.053636 2.366537 2.486110 +1.276358 1.656613 1.882329 2.084625 2.430619 2.524004 +1.305701 1.532539 1.861534 2.029161 2.435632 2.519577 +1.295725 1.474840 1.838375 2.045012 2.413018 2.545296 +1.232802 1.307215 1.786758 1.911450 2.533633 2.625793 +1.106012 1.252432 1.737311 1.827401 2.395470 2.658026 +1.080321 1.249736 1.763810 1.842229 2.488083 2.637970 +1.084809 1.302696 1.791104 1.915712 2.532753 2.626979 +1.024077 1.398495 1.758154 1.947685 2.536753 2.647797 +1.052552 1.486524 1.835972 2.013128 2.526539 2.621519 +0.980943 1.528894 1.887706 1.990429 2.559226 2.631730 +0.954706 1.355188 1.890849 1.968743 2.538301 2.645803 +0.894853 1.316420 1.931923 2.000630 2.617822 2.706960 +0.859848 1.166660 1.851854 2.011085 2.629872 2.731061 +0.817565 1.169139 1.975684 2.117069 2.593136 2.683713 +0.776768 0.999874 1.951669 2.126997 2.578530 2.719218 +0.750075 1.105669 2.015241 2.099156 2.469178 2.637879 +0.878438 1.039620 2.078822 2.189100 2.453168 2.610618 +0.915136 1.114879 2.017689 2.236527 2.370275 2.538277 +0.826110 1.208983 2.069074 2.156825 2.331864 2.463067 +0.869876 1.289563 2.061703 2.143050 2.313737 2.395809 +0.790056 1.421058 1.945728 2.025231 2.254924 2.384106 +0.782642 1.678142 1.928308 1.980152 2.169702 2.290020 +0.795940 1.409661 1.767797 1.894756 2.191648 2.280190 +0.832117 1.169093 1.828013 1.911028 2.228646 2.366162 +0.862231 1.189399 1.754948 1.924129 2.312126 2.412551 +1.034774 1.290469 1.783502 1.996158 2.343760 2.462730 +1.135806 1.358791 1.789192 1.980630 2.376359 2.495841 +1.303901 1.414996 1.787505 1.918440 2.435463 2.547746 +1.489246 1.592963 1.850578 1.950051 2.428039 2.571337 +1.631472 1.742640 1.887885 1.994933 2.493769 2.619665 +1.683853 1.800379 1.926611 2.064050 2.509149 2.592626 +1.745313 1.854259 1.988545 2.117137 2.504306 2.611340 +1.764270 1.890575 2.037993 2.174299 2.507724 2.600610 +1.680174 1.817366 1.937110 2.228976 2.550139 2.623314 +1.552625 1.819462 1.957322 2.263495 2.517281 2.580506 +1.558425 1.784912 2.021491 2.239374 2.543712 2.637456 +1.240665 1.739293 1.889814 2.105082 2.532436 2.618228 +0.928972 1.440269 1.769258 1.853352 2.400406 2.636877 +1.055767 1.488842 1.756065 1.832574 2.209682 2.650309 +1.013301 1.381032 1.704087 1.772713 2.155486 2.585135 +1.009186 1.333235 1.741382 1.846496 2.158765 2.517761 +1.006381 1.519900 1.813751 1.916290 2.407674 2.581853 +1.357730 1.530547 1.883639 2.141513 2.463268 2.614627 +1.426823 1.560875 1.882518 2.175206 2.488354 2.628703 +1.315984 1.579838 1.859556 2.083481 2.419884 2.564645 +1.213050 1.538899 1.800250 1.882067 2.341570 2.574606 +1.275056 1.543507 1.917099 2.127451 2.388939 2.542721 +1.438943 1.698143 1.856610 2.075189 2.266712 2.437372 +1.454331 1.663763 1.869820 2.011414 2.366272 2.533385 +1.382166 1.672920 1.827442 1.942032 2.453906 2.559856 +1.400656 1.585453 1.841334 2.002744 2.426997 2.517756 +1.382144 1.688087 1.819756 2.063153 2.417793 2.492551 +1.255095 1.603378 1.753915 2.047569 2.455562 2.569585 +1.134783 1.409147 1.705283 1.802106 2.488030 2.647140 +1.111876 1.260129 1.676050 1.778495 2.501588 2.627003 +1.060347 1.208811 1.660354 1.776864 2.488758 2.604456 +0.947120 1.164647 1.642037 1.723789 2.475156 2.567411 +0.902077 1.251204 1.664026 1.769008 2.499003 2.576704 +0.920170 1.243894 1.709681 1.794989 2.534352 2.623833 +0.938770 1.267684 1.725861 1.870157 2.549512 2.628197 +0.914357 1.254315 1.712915 1.784742 2.590431 2.707485 +0.930246 1.281241 1.802793 1.878861 2.560218 2.687216 +0.955350 1.148671 1.814732 1.902586 2.557821 2.684594 +0.968330 1.098589 1.813440 1.911875 2.463136 2.646490 +0.990311 1.185444 1.864673 1.941589 2.488112 2.664465 +1.186903 1.590929 1.954158 2.033697 2.597861 2.662179 +1.302643 1.694423 1.997444 2.169046 2.617414 2.693079 +1.379258 1.718278 1.993219 2.212202 2.543730 2.640859 +1.405165 1.780534 1.997893 2.151147 2.555776 2.632215 +1.297766 1.878255 2.020268 2.190566 2.546467 2.617338 +1.442158 1.856645 2.101038 2.299709 2.561481 2.644123 +1.370167 1.781207 2.114991 2.251821 2.446751 2.549845 +1.403451 1.703568 2.079302 2.221399 2.448766 2.593978 +1.413349 1.649169 2.009976 2.159164 2.518675 2.615138 +1.326655 1.719941 1.950443 2.025468 2.521068 2.635953 +1.385954 1.552749 1.856784 1.937506 2.496646 2.580159 +1.345409 1.488014 1.885538 2.017189 2.546874 2.625597 +1.335716 1.420210 1.787067 1.976842 2.501334 2.643553 +1.303803 1.408266 1.801454 1.901471 2.375048 2.575946 +1.312907 1.408086 1.837981 1.950093 2.318536 2.475897 +1.193613 1.293642 1.819061 1.974492 2.468077 2.585285 +1.191527 1.311470 1.711629 1.854585 2.395044 2.554024 +1.103176 1.332165 1.717922 1.857994 2.340287 2.445217 +0.996011 1.234172 1.751022 1.868274 2.285877 2.406723 +1.055311 1.378240 1.712116 1.841673 2.206702 2.440537 +1.078611 1.465910 1.787009 1.948977 2.231741 2.478981 +0.984520 1.420593 1.815304 1.925218 2.263433 2.430940 +0.984574 1.495178 1.774189 1.964126 2.221656 2.346849 +1.154842 1.507200 1.812101 1.949371 2.281741 2.426097 +1.170058 1.429376 1.745091 1.937927 2.235016 2.374769 +1.206485 1.487526 1.767298 2.009836 2.207048 2.339471 +1.073656 1.377733 1.828679 1.993004 2.130615 2.256776 +1.088454 1.495385 1.907767 1.996871 2.213903 2.390489 +1.122976 1.422213 1.865827 2.037113 2.253747 2.418388 +1.134166 1.382636 1.804236 1.963200 2.161170 2.473602 +1.245397 1.552607 1.960811 2.134690 2.453597 2.577539 +1.118704 1.567208 1.952615 2.176519 2.446630 2.578556 +1.141708 1.643603 2.013339 2.277434 2.557381 2.634785 +1.392514 1.807925 2.039343 2.237922 2.578023 2.668286 +1.433212 1.833712 2.020620 2.252182 2.518635 2.600857 +1.379262 1.712226 2.024999 2.242965 2.515533 2.602479 +1.366984 1.675637 1.976590 2.199474 2.516967 2.598815 +1.352760 1.801872 2.033607 2.181935 2.491382 2.589883 +1.323663 1.743572 2.009640 2.122701 2.474517 2.566379 +1.190092 1.540538 1.933066 2.088076 2.506726 2.570608 +1.519832 1.766187 1.906004 2.076747 2.261416 2.407680 +1.534691 1.714074 2.016476 2.130902 2.323259 2.457608 +1.522050 1.794760 2.050945 2.218278 2.408013 2.537728 +1.665365 1.906867 2.025658 2.232383 2.430131 2.550641 +1.666299 1.834650 1.998042 2.220240 2.401507 2.502391 +1.523608 1.730092 1.862962 2.164599 2.466262 2.549229 +1.216124 1.503465 1.760462 1.967473 2.381720 2.564350 +1.171128 1.429428 1.616628 1.917782 2.387933 2.477271 +1.091303 1.351374 1.568657 1.796196 2.437587 2.514874 +1.001277 1.386906 1.539603 1.775045 2.413270 2.482152 +0.952227 1.397307 1.527926 1.722524 2.442747 2.492370 +0.824979 1.388886 1.568976 1.735264 2.408751 2.471180 +0.794444 1.433059 1.588848 1.749579 2.489366 2.576364 +0.899067 1.521851 1.681397 1.780293 2.441748 2.508286 +0.922249 1.464613 1.592525 1.828442 2.418162 2.477264 +0.871556 1.444421 1.538321 1.889009 2.353691 2.412544 +0.857823 1.270248 1.501265 1.760257 2.355761 2.407297 +0.846263 1.176606 1.481984 1.614166 2.369933 2.485687 +0.882414 1.176092 1.377969 1.497390 2.380010 2.516508 +0.938718 1.100648 1.489109 1.576205 2.325566 2.543468 +0.932462 1.105586 1.294346 1.470956 2.400120 2.554718 +0.945253 1.161000 1.303877 1.580262 2.466680 2.584612 +1.018317 1.214740 1.330580 1.683749 2.482961 2.557157 +1.048240 1.175481 1.258095 1.599087 2.521448 2.642499 +1.073739 1.203513 1.298705 1.688758 2.555683 2.614473 +1.096788 1.260856 1.368595 1.755340 2.493034 2.606453 +1.105643 1.227026 1.404391 1.849702 2.523314 2.601568 +1.143864 1.269393 1.387340 1.829083 2.395167 2.496463 +1.099246 1.228614 1.344408 1.664420 2.440626 2.518066 +1.116181 1.228322 1.332947 1.667312 2.331673 2.512262 +1.201517 1.299388 1.478475 1.577915 2.003307 2.451583 +1.167995 1.292729 1.470730 1.814621 2.140965 2.436146 +1.280521 1.424881 1.595211 1.803880 2.205832 2.315376 +1.230157 1.364939 1.610435 2.002513 2.172872 2.355721 +1.302555 1.400606 1.734329 2.074003 2.208548 2.389274 +1.512686 1.818227 2.144783 2.266917 2.447736 2.569392 +1.507528 1.760422 2.164228 2.276872 2.479494 2.624837 +1.446511 1.760436 2.114696 2.256700 2.572570 2.661468 +1.468868 1.812355 2.114567 2.193023 2.617745 2.713842 +1.449647 1.776448 2.080604 2.210155 2.540909 2.713991 +1.441252 1.719517 2.114612 2.218690 2.511304 2.660049 +1.477657 1.619839 2.112699 2.198704 2.520599 2.655696 +1.532866 1.718145 2.132629 2.222301 2.551440 2.665729 +1.341030 1.814584 2.125039 2.245863 2.547976 2.649591 +1.361910 1.698086 2.076920 2.255113 2.524884 2.647043 +1.315333 1.592772 2.109776 2.210194 2.517745 2.666968 +1.382801 1.571593 2.106842 2.204058 2.495197 2.661417 +1.453626 1.641746 2.100313 2.199368 2.462404 2.608881 +1.376104 1.646574 1.987188 2.218409 2.413618 2.526810 +1.372839 1.632461 2.056237 2.163721 2.376186 2.586874 +1.432614 1.624632 2.074174 2.119889 2.480656 2.669026 +1.410683 1.662804 2.069219 2.130369 2.581373 2.714005 +1.174126 1.524516 2.032046 2.105255 2.502385 2.653307 +1.150832 1.249780 2.004788 2.158226 2.317980 2.588167 +1.057643 1.199724 2.043666 2.165479 2.371022 2.608171 +1.070330 1.169192 2.051065 2.187195 2.476449 2.671328 +0.989962 1.100883 1.959715 2.107656 2.451860 2.659328 +0.995945 1.125081 1.967729 2.171051 2.352755 2.586378 +0.951054 1.073408 1.768679 2.213097 2.362509 2.504270 +0.912647 1.063629 1.874306 2.209354 2.347793 2.515052 +0.880146 1.057702 1.939506 2.298197 2.447874 2.559719 +0.808391 0.999903 1.789456 2.221085 2.383243 2.512098 +0.872797 1.051306 1.907981 2.345885 2.551438 2.620384 +0.736864 0.925226 2.101552 2.273865 2.392948 2.568863 +0.704727 1.026198 2.094726 2.212489 2.474164 2.656197 +0.793545 1.029482 1.901019 2.333682 2.650248 2.721424 +0.890709 1.270067 2.139854 2.238320 2.544384 2.711324 +0.971655 1.317691 2.245472 2.351092 2.631963 2.711259 +1.080789 1.555771 2.010618 2.245992 2.528408 2.644890 +1.409512 1.769321 2.106696 2.284262 2.512254 2.638336 +1.248437 1.661986 2.035140 2.283241 2.534287 2.647326 +0.952460 1.123797 2.103484 2.258075 2.394744 2.604571 +0.989645 1.181656 2.023429 2.237371 2.369517 2.522527 +0.926042 1.348117 1.949341 2.062080 2.346962 2.449077 +0.919696 1.405301 1.834047 2.099696 2.376206 2.493394 +1.000811 1.371649 1.836653 2.224095 2.410108 2.539296 +1.200088 1.436788 1.839151 2.179281 2.398849 2.498430 +1.223520 1.486412 1.943988 2.252258 2.407325 2.540679 +1.113671 1.477208 1.844163 2.218008 2.381333 2.486877 +1.138107 1.498752 1.980951 2.297474 2.457848 2.560767 +1.146154 1.614539 1.898903 2.232476 2.416572 2.510958 +1.119673 1.589916 1.824415 2.111914 2.354760 2.453276 +1.032037 1.589416 1.852847 2.142988 2.324001 2.472943 +0.989427 1.528982 1.914645 2.179193 2.376737 2.494371 +1.095755 1.494564 1.866122 2.136805 2.283713 2.464058 +0.834557 1.463722 1.882565 2.150927 2.378636 2.463091 +0.835589 1.296069 1.771371 2.098776 2.286243 2.426378 +0.806577 1.403328 1.685216 2.040945 2.235736 2.356401 +0.800011 1.383092 1.814158 1.959934 2.309583 2.386791 +0.804745 1.318210 1.821360 1.908703 2.235131 2.427141 +0.895849 1.367225 1.864812 1.979670 2.324237 2.420788 +0.827390 1.425085 1.767158 2.058185 2.376232 2.469430 +0.917915 1.497920 1.855338 1.987207 2.315382 2.451640 +0.940855 1.409563 1.789190 1.988531 2.336666 2.534686 +0.972711 1.291697 1.786937 1.914881 2.323264 2.405491 +0.993281 1.368817 1.807237 1.958622 2.357274 2.459276 +1.074694 1.349312 1.840844 1.954844 2.269081 2.384056 +1.100597 1.218573 1.756134 1.900188 2.277874 2.406215 +1.165622 1.313695 1.843695 1.962222 2.157100 2.342911 +1.157768 1.372357 1.879963 1.991928 2.258080 2.390865 +1.286092 1.780986 1.959702 2.118874 2.324541 2.437595 +1.455169 1.738149 2.098885 2.235010 2.428464 2.539714 +1.500252 1.684257 2.161002 2.272591 2.399078 2.510334 +1.485672 1.846402 2.195717 2.305655 2.546282 2.650594 +1.727818 2.013707 2.167283 2.304214 2.586608 2.652160 +1.676773 1.960528 2.217006 2.368813 2.598284 2.681624 +1.631959 1.915752 2.227040 2.335178 2.603101 2.710218 +1.663857 1.973017 2.124709 2.222354 2.660483 2.724322 +1.542011 1.929582 2.075601 2.170628 2.628551 2.707745 +1.509689 1.706046 2.056908 2.197674 2.578326 2.653903 +1.482072 1.673728 2.131047 2.194868 2.586319 2.690293 +1.423447 1.643267 2.092317 2.178941 2.527205 2.636748 +1.355154 1.565169 2.023932 2.236487 2.538323 2.655495 +1.328421 1.553976 2.081558 2.161922 2.472742 2.656928 +1.330758 1.419042 2.026707 2.129051 2.367999 2.571017 +1.270648 1.377593 2.025948 2.140131 2.389237 2.575945 +1.236825 1.345428 2.022395 2.109848 2.478126 2.633911 +1.222076 1.320425 1.939670 2.021742 2.436807 2.628532 +1.252172 1.358274 1.972621 2.079346 2.371453 2.598928 +1.266234 1.470203 1.930446 2.145813 2.471858 2.618153 +1.332281 1.546411 2.025723 2.219524 2.464616 2.645111 +1.418604 1.649476 2.008305 2.128114 2.489878 2.676868 +1.455677 1.684682 1.988976 2.152647 2.470396 2.651526 +1.447490 1.600650 1.935900 2.271764 2.512990 2.631833 +1.444770 1.556361 2.020377 2.282318 2.475768 2.612336 +1.387476 1.487406 2.024679 2.244659 2.445046 2.582829 +1.353922 1.443279 1.957555 2.171307 2.336106 2.560084 +1.369786 1.447714 2.006181 2.191416 2.404713 2.604727 +1.425956 1.504279 2.072312 2.178177 2.417663 2.603411 +1.440235 1.540501 2.082397 2.211979 2.377070 2.637315 +1.497010 1.582681 2.056522 2.172175 2.389278 2.593845 +1.504963 1.584564 1.984094 2.149333 2.367563 2.559723 +1.519045 1.603989 1.993800 2.109929 2.327255 2.599694 +1.569559 1.651048 1.988942 2.116726 2.345772 2.569917 +1.569894 1.683682 1.980575 2.182917 2.357234 2.587282 +1.607074 1.712704 1.951468 2.125681 2.307168 2.547246 +1.645231 1.736599 1.952360 2.131487 2.376223 2.606463 +1.669612 1.763984 1.979653 2.173233 2.332349 2.516667 +1.632436 1.758871 1.980800 2.124271 2.285899 2.443828 +1.557406 1.667695 1.902055 2.106931 2.260859 2.483917 +1.470421 1.688945 1.846379 2.032834 2.185130 2.375868 +1.421944 1.531479 1.825667 2.026592 2.180382 2.360115 +1.385644 1.606158 1.846365 2.071388 2.488500 2.607454 +1.359715 1.577664 1.897105 2.111958 2.471108 2.603005 +1.339447 1.542640 1.933966 2.133741 2.454906 2.583194 +1.325808 1.691761 2.080233 2.164213 2.474164 2.605215 +1.347146 1.624704 2.074108 2.214395 2.430593 2.562946 +1.314857 1.541837 1.967631 2.164145 2.372693 2.606516 +1.312898 1.534081 1.917285 2.089949 2.411610 2.570672 +1.283019 1.557401 1.937879 2.103338 2.520615 2.623700 +1.138825 1.337472 1.871092 1.972746 2.433484 2.647653 +1.155936 1.281125 1.831346 1.919243 2.266602 2.600943 +1.166841 1.273824 1.843198 1.946026 2.318377 2.578792 +1.172291 1.275007 1.832581 2.025917 2.353813 2.624686 +1.082157 1.265436 1.892357 1.989008 2.383161 2.601421 +1.091903 1.208823 1.835009 2.034461 2.394722 2.562904 +1.098835 1.199487 1.757650 2.065888 2.390403 2.578893 +1.132798 1.244386 1.876625 2.071549 2.339183 2.537916 +1.180603 1.259469 1.823163 2.095055 2.256898 2.542724 +1.186987 1.312908 1.800793 2.105036 2.366989 2.496082 +1.266390 1.377139 1.810434 2.113272 2.329619 2.533152 +1.323586 1.404515 1.904242 2.145928 2.386113 2.580936 +1.352171 1.451401 1.949824 2.077051 2.390820 2.538573 +1.343859 1.452231 1.889889 2.026744 2.317477 2.482486 +1.244808 1.378854 1.792557 1.986745 2.422571 2.536950 +1.124619 1.253596 1.703825 1.951315 2.439640 2.545147 +0.995104 1.411750 1.728505 1.861639 2.456605 2.544957 +1.001072 1.409106 1.797727 1.897572 2.409482 2.555324 +1.033981 1.428160 1.786944 1.880286 2.326359 2.503159 +0.970169 1.320721 1.716642 1.841569 2.220200 2.388916 +0.930477 1.373382 1.798398 1.904734 2.305786 2.525304 +0.939935 1.418455 1.772704 1.878087 2.367491 2.461526 +0.949116 1.527114 1.765903 1.840735 2.164926 2.474337 +0.993353 1.629343 1.813445 1.910215 2.100772 2.492902 +1.013830 1.549621 1.796834 1.891936 2.239760 2.556346 +0.970121 1.509802 1.834006 1.938978 2.338575 2.504346 +0.947238 1.361377 1.783553 1.984713 2.423900 2.547178 +0.980991 1.388783 1.783307 2.131708 2.454635 2.558692 +1.002668 1.402339 1.807195 2.024461 2.464418 2.554280 +1.010697 1.404186 1.872558 2.079362 2.479332 2.569625 +0.972976 1.375802 1.843367 1.980698 2.513609 2.578272 +0.932062 1.277676 1.851126 1.985878 2.466286 2.566260 +0.938577 1.181150 1.833964 1.965034 2.458011 2.550532 +0.940095 1.145447 1.796688 2.078273 2.482897 2.610630 +0.909789 1.074084 1.717403 2.139110 2.462525 2.572261 +0.882446 1.066652 1.729556 2.284662 2.478899 2.555022 +0.938178 1.121504 1.828485 2.234041 2.474778 2.557100 +0.917165 1.283072 1.779497 2.100290 2.475831 2.590182 +1.062938 1.349043 1.762759 2.118297 2.504806 2.606788 +1.186965 1.461900 1.889039 2.112738 2.481323 2.621310 +1.480720 1.619232 1.979483 2.177103 2.436476 2.578983 +1.448723 1.566337 1.880134 2.138534 2.339676 2.554594 +1.407995 1.613546 1.828927 2.052703 2.344501 2.538078 +1.616019 1.691006 1.856347 1.980078 2.548246 2.637759 +1.628171 1.684163 1.886153 2.012867 2.563772 2.621577 +1.595743 1.688011 1.935400 2.025813 2.483630 2.616820 +1.641560 1.708656 1.955460 2.046989 2.519834 2.645741 +1.673668 1.752213 1.951288 2.080918 2.487394 2.640725 +1.656417 1.736239 1.991365 2.098321 2.571908 2.676827 +1.659820 1.732449 1.951246 2.077020 2.581642 2.693515 +1.654803 1.716207 1.966639 2.044230 2.563251 2.680200 +1.602729 1.682614 1.917410 1.994825 2.531087 2.673289 +1.582550 1.639535 1.926100 1.992074 2.532073 2.697110 +1.462370 1.585004 1.818300 1.897553 2.557132 2.706256 +1.453199 1.550734 1.815192 1.916461 2.399968 2.667684 +1.419387 1.557717 1.784441 1.909176 2.511382 2.669980 +1.395165 1.539820 1.847477 1.930837 2.583961 2.703625 +1.348853 1.610875 1.958146 2.043068 2.586086 2.664353 +1.372390 1.658144 1.958657 2.189437 2.450481 2.650316 +1.352586 1.528092 1.923141 2.194837 2.427729 2.562143 +1.380925 1.612272 1.993385 2.176111 2.508934 2.635056 +1.429580 1.686586 2.017126 2.172565 2.486420 2.609268 +1.392123 1.641039 1.952077 2.065066 2.421215 2.574909 +1.399593 1.788262 1.952093 2.098580 2.489935 2.629393 +1.383756 1.662435 1.983097 2.112236 2.532805 2.631814 +1.372732 1.673625 1.912122 2.134246 2.432996 2.612276 +1.396034 1.642619 1.962634 2.197392 2.521323 2.660686 +1.379360 1.623989 2.069404 2.243124 2.562033 2.668437 +1.338665 1.618629 2.042041 2.195119 2.570159 2.699099 +1.294124 1.712084 2.050162 2.120133 2.607839 2.681695 +1.293254 1.596252 1.993414 2.060041 2.583077 2.664144 +1.209917 1.362665 1.955116 2.028347 2.512957 2.625803 +1.381701 1.706617 2.003167 2.146470 2.500026 2.613009 +1.204671 1.734562 1.928802 2.109687 2.476898 2.549090 +1.114491 1.696319 1.888819 2.043672 2.539268 2.637168 +1.119312 1.601460 1.846733 2.085664 2.577543 2.645353 +1.128747 1.531175 1.858280 2.146770 2.596351 2.688725 +1.130254 1.674654 1.830664 2.172114 2.562554 2.672831 +1.100767 1.644406 1.833225 2.040605 2.599334 2.652288 +1.066968 1.530596 1.768634 2.003323 2.617323 2.678055 +1.063119 1.469356 1.797817 1.881851 2.568187 2.679145 +1.177293 1.703277 1.865510 2.061041 2.481068 2.581444 +1.404135 1.657504 1.927058 2.181851 2.457409 2.580431 +1.428360 1.663538 1.984994 2.183449 2.458664 2.569489 +1.403204 1.667154 1.955094 2.146449 2.462636 2.562658 +1.234126 1.597848 1.917754 2.034440 2.407548 2.560257 +1.224528 1.368625 1.848065 1.924719 2.494949 2.670207 +1.214772 1.588344 1.765811 2.003861 2.526784 2.635964 +1.264884 1.636472 1.825225 2.077058 2.563495 2.679292 +1.269611 1.588977 1.782182 2.095015 2.620415 2.691789 +1.296409 1.504336 1.802915 2.013382 2.605687 2.681621 +1.334375 1.520771 1.796606 1.963884 2.600418 2.703744 +1.397570 1.600583 1.845972 1.940123 2.616223 2.696111 +1.430879 1.559075 1.799241 1.994052 2.598948 2.674700 +1.482115 1.583037 1.807507 1.981426 2.575382 2.684729 +1.464344 1.565621 1.776029 1.917627 2.575000 2.659270 +1.455399 1.538232 1.730658 1.882074 2.563750 2.660443 +1.499577 1.584423 1.688069 1.892068 2.587098 2.688675 +1.479760 1.573703 1.695194 2.024437 2.558177 2.639037 +1.452267 1.547118 1.750567 2.072025 2.537014 2.673786 +1.447379 1.563037 1.794376 2.141633 2.353387 2.502548 +1.351721 1.450714 1.730230 1.991889 2.298349 2.463553 +1.318760 1.414624 1.641985 1.948338 2.326246 2.474291 +1.212051 1.346227 1.685099 1.959885 2.322238 2.512951 +1.209021 1.302946 1.634616 1.930848 2.282912 2.507545 +1.188947 1.292823 1.665660 2.177853 2.373563 2.474293 +1.257542 1.451148 1.836011 2.161476 2.447295 2.596642 +1.253420 1.370197 1.833717 2.244743 2.479769 2.576022 +1.179954 1.302011 1.592154 2.151577 2.455959 2.518120 +1.114477 1.257653 1.411579 2.042361 2.548294 2.620409 +1.099986 1.307070 1.407174 2.159418 2.585914 2.649358 +1.131151 1.246857 1.401279 2.116604 2.483756 2.546663 +1.173775 1.340865 1.449901 2.093705 2.561030 2.626482 +1.189575 1.346203 1.465586 2.003540 2.517749 2.575697 +1.217965 1.302991 1.569488 2.028970 2.455729 2.550140 +1.231915 1.393228 1.520464 1.955734 2.476226 2.642241 +1.277177 1.451138 1.591018 1.925992 2.458091 2.566561 +1.216236 1.483117 1.688680 1.988972 2.454628 2.599617 +1.184293 1.553039 1.838890 2.100265 2.385006 2.550049 +1.239174 1.792822 1.959073 2.182600 2.445294 2.529569 +1.624571 1.860854 2.120332 2.219916 2.429410 2.594102 +1.753243 1.889331 2.136521 2.254574 2.436331 2.562459 +1.757269 1.956924 2.242335 2.360108 2.493739 2.587626 +1.806843 1.985195 2.197761 2.338682 2.496335 2.600682 +1.859905 2.030422 2.282537 2.396000 2.548595 2.632629 +1.771104 1.896134 2.306763 2.421261 2.538338 2.625956 +1.505646 1.893235 2.019328 2.325790 2.487965 2.585530 +1.189137 1.771099 1.915068 2.254873 2.534430 2.612783 +1.103999 1.649346 1.834993 1.935938 2.534134 2.651998 +1.079006 1.522445 1.767276 1.934965 2.523135 2.596389 +1.106210 1.608040 1.751444 2.008392 2.491731 2.577152 +1.225135 1.597265 1.857833 2.103611 2.465420 2.593047 +1.375366 1.618359 1.930516 2.214454 2.445564 2.576198 +1.429991 1.698975 1.982144 2.233337 2.490443 2.605353 +1.482797 1.679463 1.997759 2.222400 2.464577 2.586822 +1.407997 1.676636 1.970849 2.221085 2.440364 2.592428 +1.279905 1.618797 1.920986 2.161088 2.438805 2.627424 +0.936959 1.310295 1.663367 2.010101 2.515991 2.597781 +1.014662 1.401511 1.590078 2.080875 2.556905 2.622152 +1.043648 1.384572 1.571501 1.988231 2.568660 2.647893 +1.107266 1.413973 1.562057 1.877144 2.554722 2.637289 +1.179476 1.467385 1.605003 1.839003 2.523485 2.640499 +1.218315 1.412023 1.591634 1.796526 2.519799 2.660570 +1.305370 1.427385 1.614577 1.763694 2.497267 2.657791 +1.338542 1.456340 1.642200 1.862353 2.448789 2.631625 +1.328675 1.442223 1.575230 1.858910 2.470665 2.570433 +1.351215 1.466285 1.601432 1.863743 2.425253 2.500336 +1.360914 1.476484 1.624624 1.832107 2.486273 2.563333 +1.401730 1.499881 1.613403 1.749733 2.423219 2.591408 +1.261551 1.402991 1.523781 1.802043 2.499740 2.605532 +1.160005 1.467049 1.605598 1.787691 2.508050 2.557362 +1.279521 1.535093 1.620574 1.758619 2.409621 2.676419 +1.161358 1.505461 1.626199 1.733096 2.398831 2.617482 +1.184633 1.528528 1.614286 1.698210 2.350337 2.667102 +1.117350 1.538074 1.658450 1.759625 2.281261 2.580678 +1.109838 1.492830 1.701966 1.789832 2.151236 2.489725 +1.010233 1.467118 1.631090 1.886421 2.420021 2.522779 +0.950861 1.336887 1.617005 1.789550 2.449618 2.528894 +1.028468 1.348095 1.571888 1.880393 2.543912 2.608014 +1.110746 1.415658 1.690546 2.005512 2.558177 2.650097 +1.110147 1.432665 1.669404 1.901594 2.516926 2.602743 +1.067829 1.543381 1.719440 1.979004 2.543666 2.617575 +1.422545 1.701061 1.940427 2.327061 2.557612 2.642956 +1.386122 1.781934 2.040679 2.383895 2.573951 2.633463 +1.512775 1.696332 2.184500 2.295985 2.578995 2.677261 +1.571845 1.705242 2.225227 2.319189 2.542604 2.676163 +1.514913 1.844285 2.247341 2.361592 2.529071 2.653297 +1.603580 1.948417 2.271813 2.429600 2.528208 2.617731 +1.620409 2.024184 2.379020 2.477983 2.622963 2.670765 +1.578823 1.906347 2.238314 2.378843 2.556955 2.647118 +1.611136 1.900666 2.185777 2.317384 2.517010 2.610141 +1.554611 1.941431 2.133055 2.249862 2.491762 2.571608 +1.469621 1.918901 2.094184 2.225177 2.490350 2.564343 +1.335366 1.697214 2.017085 2.232317 2.474337 2.571016 +1.221936 1.519055 1.814063 2.129404 2.458290 2.560125 +1.193348 1.426044 1.731637 2.009086 2.485687 2.566097 +1.140861 1.304138 1.724072 1.962123 2.456816 2.673582 +1.171988 1.316998 1.756942 2.050812 2.520621 2.679355 +1.135139 1.410213 1.715289 2.092595 2.499448 2.617713 +1.114534 1.487214 1.595404 2.013785 2.531961 2.628395 +1.185163 1.399888 1.582655 2.195793 2.518380 2.582468 +1.104552 1.423680 1.656289 2.262530 2.593187 2.664012 +1.164305 1.596992 1.717746 2.207846 2.563155 2.621398 +1.022593 1.596460 1.831763 2.287975 2.519037 2.580420 +0.920067 1.656499 1.829222 2.207172 2.535598 2.582536 +0.940069 1.577439 1.960575 2.189248 2.482820 2.549330 +0.824619 1.708493 1.932229 2.188611 2.551880 2.605484 +0.819752 1.688971 1.950607 2.083451 2.463192 2.515870 +0.820934 1.718478 2.021631 2.158415 2.521119 2.576288 +0.860984 1.615689 2.046857 2.146219 2.469888 2.571061 +0.722400 1.647372 1.973155 2.066104 2.438838 2.609071 +0.853506 1.577947 1.949855 2.082839 2.448741 2.512425 +0.745605 1.464510 1.993321 2.077513 2.469178 2.532474 +0.710718 1.533693 1.890047 2.013877 2.425598 2.516390 +0.877569 1.511979 1.831605 2.031903 2.441617 2.517441 +1.259618 1.519519 1.879696 2.138828 2.450290 2.614072 +1.326658 1.670099 1.919340 2.148365 2.362928 2.464453 +1.437714 1.671637 1.955052 2.166713 2.405950 2.557523 +1.603868 1.740291 1.989945 2.198778 2.467525 2.585653 +1.638499 1.743252 2.051089 2.149707 2.462625 2.569332 +1.631833 1.721768 2.002918 2.131145 2.438931 2.569221 +1.603157 1.763192 2.082194 2.174769 2.376719 2.502259 +1.630977 1.703944 2.009215 2.149268 2.369179 2.580570 +1.576599 1.658687 1.922940 2.124950 2.448734 2.578273 +1.516265 1.630706 1.860803 2.127036 2.444402 2.582277 +1.458879 1.547626 1.796080 2.046972 2.378056 2.535592 +1.376657 1.512511 1.733562 2.098209 2.361768 2.452137 +1.134749 1.320184 1.582547 2.052886 2.449062 2.527062 +1.079447 1.164059 1.573367 2.220764 2.500300 2.560928 +1.060468 1.186417 1.456658 2.155790 2.437004 2.526903 +0.974645 1.132811 1.563530 2.089864 2.504612 2.571780 +0.925733 1.049035 1.555693 2.095444 2.541677 2.614171 +1.012861 1.154680 1.283807 2.126165 2.558786 2.595811 +0.970704 1.088894 1.398803 1.969666 2.517460 2.621486 +0.996670 1.155602 1.284230 1.967741 2.478048 2.536750 +1.061875 1.172759 1.296847 1.890131 2.465313 2.550488 +0.971133 1.146895 1.425088 1.823656 2.310199 2.513193 +1.122316 1.246948 1.573931 1.945863 2.350666 2.546107 +1.130444 1.281802 1.711748 2.052845 2.471168 2.568969 +1.285794 1.425185 1.874398 2.085225 2.426111 2.576993 +1.273537 1.490213 1.878772 2.106249 2.402449 2.544368 +1.224244 1.462476 1.904611 2.128189 2.416565 2.570019 +1.252061 1.449849 1.802510 2.119875 2.418885 2.518798 +1.327124 1.417585 1.789962 2.174930 2.340651 2.468715 +1.346777 1.435555 1.734308 2.036035 2.356552 2.531051 +1.235820 1.315959 1.597124 1.897870 2.284217 2.575948 +0.955415 1.303770 1.560187 1.730070 2.449775 2.648120 +0.909089 1.471674 1.624478 1.890973 2.389653 2.627950 +0.919631 1.366873 1.506021 1.842587 2.342002 2.554492 +0.855197 1.279671 1.539553 1.688524 2.386911 2.502065 +0.807057 1.135620 1.541600 1.681299 2.243913 2.510869 +0.849115 1.190235 1.449935 1.541388 2.302579 2.655596 +0.832569 1.273363 1.592481 1.792808 2.284175 2.498482 +0.835449 1.168916 1.544629 1.718930 2.423889 2.632619 +0.826578 1.276188 1.407857 1.660287 2.378044 2.474526 +0.873632 1.360315 1.502868 1.758332 2.570802 2.712262 +0.828320 1.284633 1.462407 1.624198 2.575860 2.705612 +0.866930 1.133312 1.254056 1.429890 2.499289 2.562307 +0.807119 1.218080 1.346012 1.540621 2.487606 2.633103 +0.983680 1.146576 1.336648 1.479310 2.327156 2.614361 +0.991742 1.170728 1.296168 1.485606 2.543050 2.663819 +0.857243 1.172195 1.298593 1.623901 2.581253 2.675646 +1.024459 1.245164 1.335833 1.923956 2.623488 2.689817 +1.035260 1.293064 1.419811 1.882694 2.474976 2.673673 +0.981160 1.239841 1.334553 1.628448 2.544049 2.681735 +0.948338 1.227389 1.360095 1.572061 2.447980 2.668611 +1.097120 1.256099 1.362188 1.632542 2.507787 2.656424 +1.060738 1.283998 1.527933 1.676274 2.540944 2.638141 +0.999111 1.230695 1.531258 1.643979 2.373065 2.634336 +0.900037 1.357157 1.519901 1.691155 2.333453 2.605899 +0.906535 1.200477 1.615255 1.715962 2.288870 2.609565 +0.841267 1.337701 1.721187 1.799125 2.176356 2.627236 +0.950819 1.507117 1.718816 1.826725 2.050526 2.489892 +0.922437 1.447590 1.832061 1.920513 2.148990 2.509573 +0.797637 1.120473 1.756266 1.946112 2.209112 2.535941 +0.821846 1.168739 1.837911 1.977726 2.361612 2.642410 +0.802821 1.394640 1.945588 2.031517 2.337491 2.589953 +0.808599 1.214285 1.878529 2.002325 2.280219 2.577779 +0.825133 1.329296 1.896620 1.979559 2.455746 2.573104 +0.847939 1.235948 1.897295 2.016610 2.422214 2.651151 +0.793266 1.311794 1.885265 1.974869 2.493916 2.699921 +0.835729 1.418115 1.839725 1.903232 2.507962 2.645131 +0.849380 1.476197 1.836815 1.977378 2.321338 2.561101 +0.774570 1.284607 1.758190 1.864424 2.367732 2.561205 +0.896154 1.466437 1.770222 1.871354 2.586553 2.688477 +1.097803 1.576496 1.742325 1.910224 2.160666 2.658455 +0.950720 1.452865 1.760158 1.934774 2.196277 2.624191 +0.947778 1.334777 1.745609 1.830510 2.256113 2.667856 +0.970291 1.214911 1.745935 1.840709 2.268780 2.555177 +1.027483 1.193053 1.655411 1.770558 2.115990 2.502962 +1.108625 1.224039 1.556423 1.705900 2.019067 2.463824 +1.137334 1.248642 1.659896 1.835999 2.087298 2.494018 +1.192784 1.290313 1.652861 1.878632 2.086082 2.615960 +1.231829 1.343294 1.528206 1.646125 1.912160 2.354407 +1.043149 1.380698 1.679143 1.830121 2.008367 2.414010 +1.102887 1.243057 1.747479 1.861385 2.203092 2.504381 +1.049734 1.354368 1.735882 1.819000 2.248805 2.557794 +1.105977 1.571421 1.764806 1.953547 2.428854 2.560105 +1.290846 1.550164 1.837562 2.126596 2.488831 2.600779 +1.194236 1.426699 1.837665 1.914014 2.443207 2.635517 +1.165504 1.260088 1.790938 1.893312 2.400453 2.646643 +1.224955 1.308139 1.825926 1.919493 2.321356 2.695079 +1.248486 1.345382 1.775451 1.876708 2.353719 2.654140 +1.271138 1.399667 1.811535 1.897580 2.403493 2.653922 +1.309100 1.407658 1.806843 1.897827 2.339222 2.632347 +1.291018 1.383330 1.802439 1.887187 2.247718 2.662452 +1.261355 1.370512 1.755969 1.871246 2.101895 2.593588 +1.282645 1.376536 1.775534 1.904499 2.192341 2.507429 +1.361360 1.450864 1.791066 1.906164 2.221501 2.543343 +1.334993 1.431384 1.716268 1.905493 2.089197 2.378260 +1.385673 1.470423 1.765397 1.909217 2.173842 2.456572 +1.364318 1.455064 1.754884 1.871473 2.365039 2.572279 +1.387777 1.486887 1.712089 1.847504 2.243563 2.570692 +1.312448 1.425290 1.622893 1.756780 1.978470 2.367512 +1.347202 1.454345 1.683431 1.825472 2.087917 2.462563 +1.326447 1.405443 1.727641 1.835551 2.328868 2.614333 +1.333108 1.429712 1.796075 1.900347 2.445062 2.652912 +1.322803 1.421588 1.736939 1.843495 2.532120 2.646639 +1.344685 1.431856 1.766206 1.924579 2.550076 2.689857 +1.388277 1.485813 1.711960 1.826211 2.496137 2.658495 +1.411133 1.495610 1.776872 1.876674 2.492586 2.651345 +1.417795 1.491577 1.801693 1.890405 2.442446 2.706992 +1.406122 1.515595 1.757336 1.896968 2.382045 2.633633 +1.425860 1.514813 1.773260 1.901744 2.447546 2.634715 +1.476029 1.555032 1.745731 1.861617 2.398766 2.614978 +1.459852 1.561528 1.786445 1.911235 2.476542 2.591787 +1.403056 1.514189 1.720761 1.900939 2.489890 2.577333 +1.428127 1.523512 1.689756 1.835214 2.458899 2.565972 +1.328956 1.434709 1.604068 1.734252 2.466296 2.566835 +1.241317 1.343249 1.457997 1.696624 2.527818 2.645659 +1.136623 1.311125 1.429957 1.695364 2.542525 2.660410 +1.153111 1.344144 1.690808 1.985929 2.420013 2.553782 +1.231755 1.373918 1.668818 2.117444 2.401907 2.488883 +0.978581 1.115592 1.517126 2.000531 2.449025 2.526020 +0.951081 1.107962 1.208612 1.737223 2.474298 2.611849 +0.981806 1.127841 1.220590 1.720985 2.586528 2.698889 +0.977554 1.224067 1.337758 1.713271 2.593374 2.675408 +0.986078 1.260397 1.407440 1.571486 2.569420 2.631754 +1.068774 1.209396 1.464430 1.557978 2.551351 2.669751 +1.034191 1.174307 1.467256 1.555295 2.460490 2.642259 +1.056632 1.178692 1.509897 1.621544 2.153033 2.540535 +1.108939 1.240242 1.651384 1.778538 2.227605 2.571951 +1.040854 1.397785 1.709633 1.830019 2.398698 2.618954 +1.063080 1.564032 1.695538 1.794688 2.419017 2.577353 +1.156653 1.579890 1.742991 1.888966 2.419007 2.626873 +1.282148 1.604674 1.769820 1.984806 2.290529 2.408545 +1.414961 1.752587 1.937904 2.076787 2.287689 2.502281 +1.561586 1.882695 2.087185 2.199871 2.398595 2.509058 +1.741771 1.963051 2.161078 2.262211 2.516056 2.626131 +1.579553 1.916299 2.201667 2.301679 2.458486 2.648337 +1.656200 1.849299 2.101697 2.302170 2.487760 2.573832 +1.761707 1.935887 2.167102 2.423095 2.531309 2.619774 +1.747342 1.946460 2.129719 2.452120 2.591709 2.681100 +1.664774 1.950714 2.064839 2.452925 2.653282 2.719977 +1.182120 1.806988 2.031810 2.240448 2.589338 2.666952 +0.911793 1.444427 1.938199 2.009542 2.518849 2.662424 +0.906235 1.353950 1.860144 1.948940 2.570343 2.653728 +0.915756 1.182444 1.779374 1.918355 2.495182 2.685238 +0.923262 1.168083 1.705447 2.007985 2.401242 2.584424 +0.915338 1.196101 1.641183 1.957797 2.235160 2.502509 +1.116935 1.269153 1.597465 1.950801 2.129101 2.392503 +1.227147 1.344231 1.809259 1.999158 2.320768 2.545770 +1.307876 1.517973 1.832338 2.042156 2.347761 2.543408 +1.142909 1.427477 1.831520 2.022295 2.356478 2.589639 +1.020209 1.202712 1.780168 2.070788 2.565827 2.661648 +1.087846 1.265956 1.653284 2.093962 2.625661 2.709244 +1.146593 1.234170 1.666291 2.022252 2.605716 2.676253 +1.089057 1.311412 1.647149 1.833847 2.666682 2.722762 +1.188386 1.319963 1.725677 1.806948 2.571193 2.664171 +1.209565 1.358036 1.697429 1.794200 2.470455 2.640229 +1.246047 1.338292 1.695538 1.782003 2.565757 2.666941 +1.261251 1.384481 1.619675 1.779584 2.591799 2.712426 +1.337507 1.450232 1.646992 1.774207 2.578969 2.703367 +1.387688 1.478096 1.618920 1.747276 2.531990 2.665704 +1.301779 1.392643 1.541867 1.665649 2.484537 2.655063 +1.257012 1.398833 1.527358 1.734139 2.619531 2.689676 +1.211161 1.324264 1.664338 1.911508 2.589343 2.685254 +1.113028 1.325407 1.697702 1.940185 2.591124 2.679629 +1.000343 1.352231 1.719494 2.024790 2.577661 2.639096 +0.952537 1.564659 1.914580 2.021105 2.481262 2.553572 +0.941380 1.573371 1.898482 1.990822 2.388399 2.527824 +0.835656 1.426857 1.914902 2.006303 2.455843 2.544426 +0.762518 1.617975 1.848163 1.952719 2.511683 2.576889 +0.760103 1.720246 1.884039 1.972497 2.526184 2.668968 +0.788105 1.515939 1.760885 1.953721 2.498661 2.553903 +0.842390 1.235086 1.687435 2.011114 2.391471 2.529546 +0.970555 1.304880 1.689915 2.060096 2.386014 2.524270 +1.078507 1.220815 1.630394 2.103928 2.411414 2.518300 +1.035130 1.374294 1.739516 2.015391 2.383541 2.542893 +1.232775 1.466122 1.942876 2.112602 2.359872 2.476841 +1.032139 1.460157 1.843607 2.111319 2.405612 2.545609 +0.863004 1.575367 1.754339 2.026425 2.484055 2.545871 +0.781880 1.621135 1.876114 2.131620 2.591150 2.665213 +0.689257 1.567671 1.951319 2.246727 2.507788 2.649956 +0.762920 1.454508 2.052137 2.239950 2.408909 2.570384 +0.735313 1.369541 2.141121 2.226737 2.404256 2.515847 +0.692794 1.213217 2.021728 2.170012 2.409789 2.632609 +0.749191 1.327407 1.876305 2.159813 2.396372 2.543556 +0.723514 1.311926 1.779121 2.000990 2.333064 2.521625 +0.800844 1.399334 1.702525 1.886771 2.183805 2.391837 +0.935365 1.532399 1.746103 1.843273 2.027876 2.366925 +0.879717 1.390978 1.696694 1.873227 2.273388 2.532951 +1.115628 1.395380 1.552486 2.062541 2.379745 2.485662 +1.253460 1.379822 1.726521 2.164899 2.386851 2.507812 +1.288652 1.548609 1.769224 2.106137 2.428838 2.517503 +1.369653 1.611147 1.793668 1.970474 2.367649 2.558036 +1.399028 1.694930 1.865624 2.036762 2.409162 2.586430 +1.433335 1.745725 1.930732 2.159385 2.426554 2.579037 +1.267585 1.665867 1.971379 2.103318 2.444523 2.567741 +1.226120 1.497218 1.888612 2.083592 2.547854 2.623475 +1.217864 1.502320 1.850155 1.973913 2.506017 2.625566 +1.213794 1.595369 1.875039 1.979415 2.427150 2.606463 +1.239752 1.513874 1.766680 1.947926 2.281624 2.492074 +1.247634 1.585626 1.729740 1.894696 2.381964 2.522121 +1.201153 1.474465 1.746568 1.834238 2.289729 2.525183 +1.181465 1.555321 1.703604 1.823083 2.315827 2.443888 +1.196327 1.573762 1.735225 1.808031 2.403501 2.557243 +1.149081 1.631606 1.769163 1.925569 2.368122 2.542814 +1.071093 1.633545 1.761338 1.872468 2.408464 2.573521 +1.065230 1.551738 1.713412 1.880487 2.387426 2.512159 +0.987564 1.635727 1.785940 1.956709 2.413400 2.548618 +0.931677 1.526457 1.773013 1.896960 2.437956 2.513898 +0.900322 1.645882 1.787979 2.041039 2.334273 2.434592 +0.867303 1.714715 1.901607 2.099190 2.387096 2.475894 +0.868278 1.693735 1.917301 2.013076 2.274597 2.382531 +0.848816 1.567192 1.829012 1.929834 2.339398 2.425619 +0.789452 1.369290 1.826862 1.917268 2.414283 2.502071 +0.737031 1.173300 1.873028 1.972833 2.455130 2.541243 +0.759015 1.250729 1.781114 1.994631 2.420436 2.554945 +0.749485 1.363939 1.896372 1.993571 2.442257 2.509848 +0.749379 1.214662 1.940660 2.034076 2.450716 2.568302 +0.801242 1.269156 1.870897 1.955986 2.405162 2.473861 +0.823290 1.258951 1.879861 2.069704 2.411773 2.510105 +0.836531 1.273927 1.957305 2.047469 2.490158 2.582295 +0.834116 1.183883 1.886457 1.969193 2.499483 2.604335 +0.876413 1.171153 1.946619 2.030903 2.431350 2.553010 +0.839364 1.056108 1.853641 2.100590 2.392613 2.554339 +0.864173 1.164684 1.835487 1.968845 2.376306 2.516103 +0.932804 1.294569 1.830951 1.901036 2.445265 2.552572 +0.963048 1.356861 1.768829 1.893219 2.479918 2.614673 +1.037066 1.359723 1.820807 1.891047 2.519312 2.605020 +1.060607 1.462340 1.797954 1.939293 2.521868 2.591879 +1.079923 1.504167 1.802208 1.930535 2.465137 2.543195 +1.140112 1.339064 1.813350 1.905307 2.370068 2.530420 +1.151868 1.356167 1.772359 1.883710 2.370014 2.610806 +1.288085 1.638629 1.751055 2.279923 2.555394 2.623279 +1.451442 1.739489 1.916401 2.388700 2.636146 2.702827 +1.591253 1.851544 2.218282 2.385490 2.593754 2.679427 +1.592264 2.016137 2.233799 2.333758 2.544823 2.665169 +1.654199 1.941575 2.250965 2.372366 2.458905 2.599827 +1.703247 2.025498 2.229596 2.337095 2.468575 2.617655 +1.638815 2.005565 2.201946 2.268461 2.499537 2.618409 +1.924675 2.135325 2.458180 2.504168 2.593838 2.625401 +1.803809 2.062572 2.199354 2.289456 2.550039 2.643916 +1.773011 1.976616 2.107571 2.220874 2.444977 2.543841 +1.764952 2.001727 2.214453 2.254705 2.475610 2.579746 +1.678332 1.863913 2.244638 2.343674 2.471126 2.636086 +1.755810 1.860246 2.223719 2.353060 2.498302 2.586676 +1.693433 1.869241 2.283303 2.395805 2.519741 2.583673 +1.704396 1.791207 2.147185 2.336447 2.479029 2.590894 +1.683258 1.862251 2.163335 2.351843 2.520908 2.616034 +1.623219 1.804206 2.222072 2.360296 2.619900 2.699507 +1.657240 1.825612 2.258489 2.347345 2.545732 2.694714 +1.660069 1.860341 2.253569 2.364116 2.564093 2.630731 +1.596899 1.839512 2.218930 2.385793 2.546468 2.625886 +1.622317 1.851201 1.996215 2.377397 2.522071 2.595493 +1.029466 1.254529 1.748991 2.053525 2.445882 2.576112 +0.856689 0.993818 1.569607 2.213756 2.461855 2.547082 +1.016581 1.191900 1.293465 1.778141 2.455802 2.551646 +1.010542 1.228148 1.311431 1.820284 2.531515 2.656752 +0.908278 1.189582 1.285536 1.858600 2.525918 2.619924 +0.871987 1.171922 1.317490 1.826516 2.400744 2.518087 +1.033124 1.188852 1.439697 2.039008 2.572425 2.656103 +0.970197 1.295635 1.402442 2.035038 2.488178 2.549888 +1.088196 1.220650 1.553062 2.133376 2.535702 2.595055 +1.009947 1.389803 1.517057 2.115221 2.474188 2.550693 +0.993372 1.427374 1.539173 1.972396 2.525839 2.583860 +1.048290 1.482084 1.637176 2.161075 2.523169 2.614712 +1.024326 1.562855 1.692237 2.295162 2.594836 2.648573 +0.907692 1.612559 1.746134 2.162536 2.575745 2.616258 +0.890482 1.611128 1.773927 1.970733 2.577746 2.659601 +0.808392 1.597802 1.785959 2.006399 2.565042 2.638957 +0.766474 1.584421 1.835838 1.929741 2.581539 2.641074 +0.769957 1.626769 1.869258 2.029447 2.602778 2.660482 +0.798945 1.531859 1.834894 1.946531 2.628257 2.692621 +0.720628 1.380228 1.817598 1.895348 2.547755 2.607196 +0.717991 1.301269 1.753273 1.880568 2.501113 2.570677 +0.757538 1.197506 1.719315 1.863401 2.467197 2.580754 +0.753702 1.292466 1.691851 1.775796 2.472592 2.583782 +0.814552 1.234200 1.583851 1.688282 2.546255 2.601382 +0.892573 1.259415 1.548665 1.628711 2.465185 2.557477 +0.949846 1.260567 1.429248 1.620283 2.396748 2.457397 +1.035299 1.244100 1.498240 1.643920 2.381366 2.524331 +1.108074 1.337571 1.538192 1.800588 2.513582 2.617693 +1.182535 1.370472 1.561886 1.844157 2.545726 2.614455 +1.215270 1.374402 1.595386 1.940797 2.512277 2.594163 +1.232828 1.356701 1.648355 2.040665 2.518326 2.606889 +1.295532 1.441002 1.626009 2.063594 2.535454 2.607196 +1.317455 1.484169 1.666626 2.107203 2.509460 2.569563 +1.288135 1.404836 1.708442 2.142397 2.478263 2.558149 +1.301178 1.490634 1.688663 2.209739 2.516570 2.582597 +1.388908 1.488602 1.753074 2.249110 2.468447 2.532735 +1.432358 1.501949 1.756043 2.227378 2.540315 2.633816 +1.270629 1.444250 1.697177 2.167736 2.574168 2.667078 +1.377953 1.511825 1.619242 2.070588 2.580573 2.655449 +1.319093 1.437635 1.575159 1.826257 2.568503 2.646941 +1.273340 1.439378 1.614682 1.977816 2.589179 2.642268 +1.364811 1.491437 1.654641 1.914895 2.277580 2.491707 +1.381399 1.482330 1.625703 1.767453 2.292816 2.535410 +1.316122 1.410804 1.574518 1.696495 2.241547 2.544142 +1.249213 1.448411 1.651606 1.812013 2.166941 2.528826 +1.329985 1.430104 1.637785 1.753696 2.144268 2.491734 +1.212008 1.460184 1.663715 1.723968 2.452735 2.654868 +1.154672 1.427992 1.639839 1.703824 2.524782 2.647191 +1.132193 1.276380 1.638189 1.750734 2.360136 2.630237 +1.106796 1.292196 1.563991 1.737151 2.276384 2.673484 +1.009469 1.409199 1.605253 1.755880 2.549809 2.666897 +0.849242 1.424760 1.607336 1.770467 2.593061 2.697570 +0.884126 1.418674 1.690537 1.910365 2.648893 2.753562 +0.835786 1.505326 1.650834 1.839830 2.667508 2.731820 +0.830887 1.418426 1.698221 1.812786 2.546614 2.605179 +0.770144 1.456185 1.735350 1.839787 2.485317 2.539411 +0.741204 1.461201 1.720258 2.039661 2.613149 2.656617 +0.746126 1.436058 1.674916 1.868865 2.616457 2.659599 +0.785082 1.343492 1.675451 1.756554 2.550054 2.611912 +0.745773 1.354824 1.630019 1.938987 2.453600 2.549079 +0.845780 1.469252 1.629079 1.974969 2.499282 2.549783 +0.949421 1.462768 1.572994 2.286043 2.549581 2.602929 +1.025145 1.385363 1.648388 2.192934 2.440628 2.531024 +1.033724 1.436166 1.744094 2.132259 2.544044 2.618903 +1.082839 1.455838 1.597987 2.003093 2.628262 2.736133 +1.021616 1.380799 1.537805 2.007919 2.656179 2.725478 +0.934605 1.338311 1.721281 2.021380 2.452658 2.635942 +0.974987 1.280603 1.740482 1.988643 2.383388 2.588543 +0.963572 1.358626 1.775093 2.077077 2.374408 2.552547 +1.339392 1.606067 1.941038 2.159799 2.446540 2.587306 +1.268637 1.604063 1.940062 2.178915 2.487660 2.597501 +1.129807 1.522621 1.872974 2.075068 2.479707 2.633172 +1.135346 1.422302 1.865991 1.945310 2.523357 2.686142 +1.135540 1.562266 1.768152 1.922013 2.506054 2.736130 +1.173335 1.637622 1.845405 1.974533 2.379511 2.627590 +1.223094 1.477161 1.799506 1.945290 2.603703 2.697773 +1.285652 1.781420 1.972532 2.335252 2.649620 2.719252 +1.516066 1.862470 2.084987 2.386138 2.563370 2.650523 +1.622511 1.800884 2.074682 2.371099 2.494100 2.608952 +1.644218 1.730914 2.235251 2.344625 2.460604 2.621775 +1.646495 1.743836 2.118671 2.334538 2.487649 2.597304 +1.574474 1.666941 2.165682 2.294626 2.463016 2.642929 +1.568529 1.662679 2.068377 2.240071 2.374784 2.534291 +1.501088 1.675567 2.019200 2.253935 2.403957 2.560212 +1.333222 1.481857 1.810385 2.032438 2.235271 2.464023 +1.184189 1.376469 1.743067 2.077177 2.247370 2.436639 +0.860298 1.017970 1.399466 2.031356 2.445832 2.512045 +0.987543 1.187216 1.324668 2.086564 2.440265 2.507859 +0.987539 1.057392 1.400508 2.291033 2.462013 2.534542 +1.072567 1.168456 1.335425 2.281555 2.595283 2.641991 +1.042424 1.219473 1.328751 2.104394 2.481407 2.544847 +1.075840 1.204873 1.370286 2.206558 2.509524 2.557197 +1.075906 1.188083 1.414337 2.320102 2.530914 2.589422 +1.076149 1.267397 1.411982 2.218421 2.452294 2.540946 +1.154549 1.314810 1.500389 2.300970 2.505189 2.569795 +1.170382 1.300375 1.477782 2.201078 2.418226 2.511009 +1.164826 1.290783 1.436432 2.042173 2.434597 2.517154 +1.193857 1.293191 1.527594 2.008805 2.370813 2.473257 +1.263542 1.385669 1.596130 2.048764 2.427787 2.504082 +1.305187 1.421012 1.658876 2.095853 2.429425 2.518576 +1.378304 1.494361 1.710276 2.078040 2.477964 2.559482 +1.333727 1.475263 1.674044 2.039635 2.446712 2.527050 +1.346152 1.468526 1.673673 1.961087 2.462599 2.567158 +1.324261 1.466904 1.747093 2.009440 2.480558 2.571278 +1.306921 1.411049 1.740784 2.032398 2.466338 2.575794 +1.277304 1.408311 1.715677 1.956928 2.505971 2.597300 +1.239174 1.409858 1.635688 1.843138 2.511337 2.592493 +1.262271 1.377900 1.665878 1.785276 2.414923 2.519101 +1.223772 1.378608 1.706935 1.812010 2.472106 2.553503 +1.248275 1.560969 1.688454 2.024421 2.464682 2.532083 +1.551147 1.674831 1.863917 2.242605 2.425666 2.512306 +1.613538 1.736360 1.915832 2.284340 2.505100 2.575495 +1.675654 1.764549 2.013262 2.308596 2.479308 2.570877 +1.676790 1.732192 2.216913 2.350744 2.516807 2.584938 +1.672091 1.768085 2.170300 2.277530 2.411164 2.492525 +1.645851 1.881233 2.216349 2.320633 2.460809 2.564931 +1.714095 1.933206 2.220117 2.327698 2.453033 2.557432 +1.864162 1.965600 2.211890 2.354075 2.451546 2.543697 +1.840509 1.980901 2.141357 2.275924 2.487833 2.607026 +1.281628 1.508538 1.878088 2.153311 2.510390 2.597723 +1.285937 1.558518 1.895925 2.154502 2.510047 2.628884 +1.179704 1.457966 1.805824 2.088695 2.536834 2.648347 +1.213178 1.474144 1.796481 1.886388 2.426441 2.597142 +1.175759 1.566628 1.786803 1.959634 2.443976 2.621808 +1.241280 1.495544 1.772941 1.959431 2.513639 2.611886 +1.252864 1.547349 1.741300 1.873671 2.447277 2.674639 +1.234254 1.437033 1.742154 1.835750 2.372173 2.581494 +1.262397 1.351279 1.710277 1.833486 2.308910 2.583598 +1.330861 1.424104 1.673893 1.802977 2.271847 2.556762 +1.374920 1.473192 1.703358 1.804519 2.374494 2.625833 +1.350424 1.477644 1.741927 1.869579 2.468162 2.637851 +1.299448 1.409270 1.707326 1.828822 2.412618 2.660075 +1.283675 1.413183 1.694008 1.913840 2.235005 2.663358 +1.131349 1.545449 1.738197 1.927132 2.242548 2.529539 +1.310395 1.445321 1.800815 1.941760 2.224181 2.430698 +1.207823 1.407710 1.792289 1.897833 2.278582 2.588793 +1.172078 1.380374 1.769606 1.870709 2.420713 2.665411 +1.050374 1.292916 1.708676 1.815571 2.398301 2.647835 +1.012196 1.352840 1.710467 1.798435 2.501052 2.622110 +0.949688 1.511315 1.802233 2.051775 2.386590 2.543931 +1.239527 1.523312 1.992644 2.175922 2.535838 2.663321 +1.170409 1.423959 1.918088 2.072957 2.371327 2.600694 +1.153282 1.631638 1.943662 2.041389 2.426287 2.527936 +1.130992 1.687340 1.913097 1.982416 2.366644 2.592156 +0.876015 1.539120 1.952815 2.040387 2.354192 2.592474 +0.741027 1.330783 2.010264 2.088976 2.406380 2.512408 +0.692068 1.220984 1.966843 2.053168 2.527609 2.625367 +0.697907 1.406778 2.016010 2.085819 2.573177 2.652342 +0.747161 1.542479 1.982188 2.091091 2.573313 2.614600 +0.759939 1.518111 1.938220 2.162963 2.534355 2.639085 +0.752015 1.445930 2.097743 2.150626 2.479886 2.587138 +0.804190 1.428522 2.012448 2.195806 2.470749 2.577263 +0.757784 1.356544 1.878177 2.232246 2.530996 2.630296 +0.782189 1.251703 1.766911 2.206553 2.564453 2.617695 +0.692136 1.308291 1.593024 1.842927 2.504334 2.652647 +0.779817 1.264995 1.689687 1.803686 2.530498 2.669456 +0.774734 1.199620 1.649586 1.726576 2.437097 2.591528 +0.885025 1.311938 1.646470 1.739192 2.578721 2.671994 +0.949387 1.387109 1.641927 1.762570 2.528769 2.585787 +1.012043 1.455355 1.666729 1.752575 2.434270 2.553516 +1.104075 1.529375 1.682092 1.973044 2.345511 2.511577 +1.423997 1.619409 1.995513 2.298913 2.430779 2.521288 +1.582461 1.832072 2.275101 2.383131 2.482800 2.539316 +1.706366 2.001667 2.300029 2.394812 2.486966 2.586945 +1.532256 1.933761 2.284009 2.422313 2.622936 2.706043 +1.678938 1.889060 2.338973 2.512967 2.632369 2.679498 +1.634405 1.783714 2.124182 2.462997 2.610348 2.691361 +1.618353 1.751021 2.026128 2.418017 2.609402 2.678953 +1.565199 1.794303 1.902067 2.405664 2.629332 2.696870 +1.282138 1.591250 1.852032 2.314230 2.617777 2.722940 +1.220365 1.421679 1.694336 1.881742 2.556796 2.653179 +1.139402 1.299007 1.622371 1.770432 2.543866 2.640704 +1.214491 1.467423 1.628034 1.794008 2.563409 2.691705 +1.059626 1.521805 1.631948 1.865161 2.601036 2.683659 +1.180200 1.536587 1.671861 2.137961 2.587647 2.638393 +1.213651 1.582110 1.709505 2.157513 2.476799 2.574007 +1.248459 1.553050 1.645298 1.897537 2.577761 2.681279 +1.340584 1.601427 1.679985 1.889143 2.647088 2.755132 +1.194554 1.575563 1.697528 1.801365 2.596516 2.752368 +1.152988 1.531378 1.716414 1.812718 2.417149 2.696455 +1.175284 1.565269 1.657415 1.734779 2.517977 2.671209 +1.315878 1.515976 1.775170 2.058078 2.307304 2.449295 +1.247131 1.381271 1.568357 1.857012 2.157278 2.435014 +1.240254 1.383648 1.580575 1.991473 2.303569 2.411055 +1.286797 1.385847 1.730704 2.067540 2.326906 2.473042 +1.204107 1.337886 1.665492 2.038754 2.231416 2.543395 +1.182343 1.312111 1.522260 1.971028 2.237772 2.483629 +1.095429 1.319910 1.465710 2.032595 2.279936 2.523638 +1.152497 1.294508 1.458307 2.032534 2.306031 2.406760 +0.991441 1.274662 1.428222 1.940576 2.399100 2.509374 +0.850157 1.274723 1.453729 1.893527 2.382294 2.477664 +0.936060 1.313211 1.426739 1.888973 2.551745 2.604392 +0.972592 1.328333 1.432833 2.011050 2.573671 2.613672 +0.909400 1.422756 1.494628 2.073945 2.620634 2.662685 +0.828475 1.431701 1.569493 2.054254 2.622115 2.669741 +0.779249 1.375673 1.476635 1.949187 2.558998 2.622137 +0.815710 1.472687 1.650494 2.000905 2.565206 2.611683 +0.822357 1.333508 1.551653 1.864184 2.595847 2.706122 +0.736497 1.259887 1.490815 1.882220 2.494405 2.619982 +0.902240 1.431002 1.520505 1.910794 2.605395 2.678585 +0.900488 1.363048 1.461814 2.009771 2.665876 2.717180 +1.015394 1.361530 1.474854 1.920438 2.637482 2.702570 +0.950918 1.335184 1.440876 1.874351 2.678915 2.746244 +0.965674 1.306906 1.412895 1.727184 2.656317 2.739472 +1.121335 1.291332 1.412980 1.731394 2.624577 2.735999 +1.135486 1.299970 1.448634 1.635793 2.616713 2.687744 +1.120410 1.248201 1.383680 1.579760 2.397167 2.585237 +1.113415 1.294499 1.482373 1.602789 2.394835 2.634809 +1.241746 1.318174 1.473167 1.577503 2.426003 2.649775 +1.184376 1.272893 1.497747 1.608053 2.144455 2.537267 +1.283135 1.377322 1.543041 1.645177 2.105790 2.490904 +1.138008 1.380756 1.560480 1.640979 2.271006 2.625523 +1.243884 1.351538 1.603070 1.739791 2.038080 2.447512 +1.267258 1.509957 1.641649 1.831984 2.331327 2.472826 +1.276365 1.476401 1.625021 1.930342 2.319377 2.524369 +1.222679 1.559407 1.669982 1.805473 2.326911 2.580278 +1.265218 1.503892 1.830979 2.091536 2.396722 2.569088 +1.256047 1.528877 1.853033 2.106171 2.365139 2.503280 +1.236501 1.479118 1.728297 2.041463 2.528558 2.612900 +1.220644 1.605193 1.713770 1.950925 2.597639 2.649495 +1.255546 1.591871 1.706750 2.062713 2.561381 2.626901 +1.307080 1.580016 1.653547 1.941293 2.552727 2.643706 +1.310968 1.512803 1.656527 1.839190 2.592097 2.677706 +1.188596 1.316082 1.579370 1.690772 2.438500 2.641881 +1.114671 1.235994 1.591973 1.749192 2.359438 2.545213 +1.080067 1.277132 1.727997 2.041411 2.337068 2.549786 +1.032222 1.250210 1.680999 1.998340 2.318533 2.502200 +1.064719 1.159182 1.666731 2.019294 2.256570 2.573467 +1.026313 1.146367 1.672929 2.054063 2.433228 2.615716 +0.942929 1.092789 1.613522 2.077784 2.365142 2.499737 +0.980250 1.254777 1.492003 1.801193 2.445325 2.575711 +0.957395 1.251868 1.378337 1.744574 2.502966 2.665866 +0.840336 1.267995 1.397728 1.827984 2.555867 2.651285 +1.009902 1.175808 1.277770 2.048361 2.637904 2.700904 +0.883840 1.026780 1.146692 1.893681 2.518692 2.610564 +0.997171 1.138289 1.246408 1.837527 2.549820 2.642693 +0.992125 1.178874 1.282272 1.974399 2.559112 2.612968 +1.067589 1.255803 1.359021 1.963939 2.541420 2.596308 +1.086327 1.329068 1.432326 1.928840 2.528332 2.598239 +1.100351 1.345579 1.469529 1.942358 2.469723 2.561680 +1.101019 1.374382 1.561144 1.942560 2.484288 2.552996 +1.177497 1.455165 1.571485 1.943496 2.500309 2.550902 +1.260768 1.477903 1.601611 2.024022 2.487425 2.554237 +1.216439 1.470082 1.639601 1.957212 2.523832 2.588189 +1.257980 1.407199 1.651434 1.910722 2.464200 2.620868 +1.162091 1.436543 1.682166 1.896924 2.447302 2.677069 +1.250215 1.484632 1.653870 1.930473 2.493894 2.633436 +1.237977 1.513389 1.648781 1.880344 2.504094 2.581491 +1.223199 1.412456 1.634083 1.797183 2.451210 2.620618 +1.258745 1.358397 1.627717 1.726099 2.428287 2.621329 +1.234919 1.345606 1.552151 1.708675 2.385742 2.606052 +1.186417 1.341808 1.636911 1.754679 2.429716 2.544394 +1.216260 1.305888 1.632777 1.755770 2.320806 2.583785 +1.165343 1.284152 1.560527 1.682036 2.243217 2.494673 +1.085859 1.215111 1.590602 1.715333 2.231633 2.527227 +1.091652 1.384156 1.655159 1.716563 2.302785 2.535552 +1.060328 1.239077 1.627213 1.737571 2.420162 2.599147 +1.090079 1.394777 1.682485 1.799904 2.331813 2.532862 +1.169038 1.568116 1.785725 2.031553 2.372207 2.497865 +1.241903 1.662080 1.822491 2.169543 2.424542 2.525186 +1.040287 1.690414 1.853098 2.038593 2.472015 2.535969 +0.974879 1.689063 1.850137 2.151312 2.507415 2.562538 +0.879683 1.743838 1.968060 2.161147 2.463916 2.545849 +0.790116 1.794412 2.037297 2.159739 2.508403 2.564883 +0.793374 1.796169 2.060524 2.331075 2.591299 2.648578 +0.859332 1.800464 2.025451 2.200641 2.534316 2.611320 +0.825206 1.895126 2.063579 2.264528 2.514030 2.610797 +0.974068 1.904781 2.002639 2.315848 2.539666 2.595157 +0.961311 1.821283 2.015215 2.274545 2.600786 2.653365 +0.971040 1.737011 1.914953 2.243896 2.572362 2.612602 +0.999552 1.817902 1.953097 2.178591 2.574331 2.626275 +0.977300 1.756036 1.929137 2.135346 2.424209 2.556085 +1.065543 1.747638 1.899169 2.309745 2.587388 2.630589 +1.077057 1.655717 1.868334 2.238603 2.508913 2.571841 +1.077829 1.716423 1.791462 2.266223 2.615485 2.654046 +1.276021 1.713383 1.788825 2.101442 2.625616 2.679590 +1.263173 1.699086 1.776931 2.035107 2.610346 2.653421 +1.297137 1.667668 1.744010 2.030119 2.608062 2.678066 +1.262373 1.626459 1.781159 2.026178 2.636261 2.699179 +1.318031 1.657767 1.763578 1.939043 2.575450 2.705613 +0.980669 1.555891 1.722977 1.978553 2.568958 2.638420 +0.840013 1.463397 1.772781 2.164864 2.566894 2.666228 +0.832158 1.505750 1.937891 2.233974 2.630131 2.694884 +0.745541 1.530097 2.060727 2.162996 2.619130 2.692130 +0.832050 1.597985 2.127678 2.196662 2.528870 2.619304 +0.820544 1.616482 2.044842 2.133557 2.587661 2.668155 +0.789348 1.638569 1.996032 2.212800 2.572934 2.615430 +0.806795 1.742530 2.043915 2.183841 2.603407 2.660269 +0.843597 1.761377 1.998823 2.132969 2.596500 2.673163 +0.927714 1.759399 1.987169 2.201990 2.591677 2.650810 +1.070504 1.767115 1.978295 2.227191 2.642696 2.686380 +1.022852 1.856828 1.989822 2.217218 2.480936 2.574687 +0.886409 1.742690 1.863071 2.054904 2.542328 2.627054 +0.996501 1.553639 1.808061 1.948514 2.516726 2.605745 +1.218221 1.525015 1.878023 2.107205 2.423952 2.578894 +1.274705 1.491779 1.906237 2.101242 2.455724 2.563566 +1.319477 1.587082 1.879825 2.240443 2.439462 2.547992 +1.474513 1.699004 1.929257 2.228217 2.451873 2.563132 +1.545274 1.722709 1.892103 2.169162 2.520241 2.602958 +1.546160 1.668894 1.961486 2.212079 2.505999 2.621266 +1.535625 1.699287 2.016356 2.250824 2.550093 2.645619 +1.583411 1.687746 2.051949 2.332633 2.491721 2.598036 +1.500933 1.594052 1.929231 2.259850 2.422622 2.547761 +1.464918 1.614783 1.881701 2.216729 2.528952 2.623217 +1.406726 1.605026 1.805977 2.222725 2.509009 2.587841 +1.106418 1.527781 1.730182 2.045916 2.549464 2.637497 +1.008151 1.439718 1.665472 1.941372 2.652442 2.751095 +0.971347 1.402084 1.708896 1.953274 2.613325 2.684989 +0.946352 1.501044 1.672151 1.975870 2.527905 2.585573 +0.909229 1.453576 1.713898 2.065638 2.529315 2.613161 +0.975079 1.523288 1.839559 2.138553 2.498690 2.583725 +0.899524 1.552407 1.831637 2.068567 2.544880 2.611180 +0.805175 1.462327 1.860536 2.101344 2.570440 2.654850 +0.859011 1.514531 1.892400 2.012520 2.579679 2.648521 +0.763528 1.522433 1.902539 2.018517 2.556446 2.609582 +0.814387 1.494849 1.941715 2.077981 2.540329 2.612839 +0.853805 1.401871 1.942985 2.088086 2.488394 2.578614 +0.782036 1.348553 1.935300 2.025076 2.516816 2.598046 +0.754386 1.384949 1.900243 1.999656 2.600374 2.663763 +0.746921 1.421143 1.934567 2.038908 2.553273 2.612298 +0.731911 1.450761 1.924508 2.032744 2.497904 2.556491 +0.706741 1.543731 1.876596 1.992525 2.510176 2.565960 +0.852548 1.549952 1.899169 2.226497 2.522787 2.583939 +0.885718 1.656999 1.865791 2.162889 2.467388 2.553769 +0.951271 1.641721 1.813995 2.153059 2.427099 2.499612 +0.928485 1.502784 1.809440 2.224767 2.472400 2.553921 +0.816616 1.391098 1.665580 2.176141 2.510722 2.582819 +0.915934 1.390936 1.767514 2.169548 2.471665 2.652526 +1.115341 1.362311 1.722592 2.033033 2.406363 2.601875 +1.138664 1.252976 1.684517 1.937366 2.384311 2.623900 +1.084318 1.211953 1.633639 1.889936 2.413095 2.626228 +1.126224 1.344921 1.648605 2.071123 2.484189 2.605656 +1.123905 1.461556 1.845099 2.172457 2.462662 2.605139 +1.132557 1.468636 1.740223 2.184934 2.467938 2.580103 +1.148248 1.506173 1.676602 2.049290 2.446774 2.565419 +0.999544 1.404698 1.641769 1.863324 2.523843 2.592114 +0.932167 1.395984 1.709428 1.845739 2.524792 2.599616 +0.870085 1.476327 1.721511 1.897091 2.490256 2.593759 +0.891107 1.429106 1.789728 1.958425 2.519104 2.604987 +0.855550 1.421268 1.900935 2.011013 2.546617 2.609760 +0.895038 1.482579 1.873572 1.974828 2.519429 2.584450 +0.809092 1.486499 1.902272 2.000876 2.518374 2.597261 +0.808211 1.460169 1.881579 1.961398 2.468386 2.616332 +0.774237 1.471857 1.901217 2.013761 2.564870 2.665691 +0.800018 1.576948 1.938176 2.043718 2.494383 2.630097 +0.804705 1.570759 1.889356 1.975489 2.447653 2.555191 +0.840709 1.603377 1.827077 2.026318 2.442892 2.492424 +0.887288 1.536144 1.781616 1.952198 2.500811 2.576512 +0.847527 1.504701 1.792948 1.891589 2.578888 2.637316 +0.959025 1.533821 1.821486 1.979739 2.463750 2.544302 +1.036319 1.640786 1.886024 1.962887 2.358662 2.577756 +0.981142 1.486738 1.733096 1.878277 2.537973 2.610473 +1.046486 1.438515 1.740840 1.850012 2.590883 2.684137 +1.103404 1.489782 1.738241 1.817496 2.588368 2.701052 +1.176925 1.473684 1.732853 1.823270 2.524527 2.733540 +1.173320 1.438383 1.696555 1.792536 2.580785 2.665770 +1.134955 1.421862 1.604070 1.756135 2.617948 2.706644 +1.136007 1.384178 1.699100 1.855319 2.591013 2.683215 +1.201710 1.421935 1.737864 2.011199 2.540959 2.681093 +1.227450 1.624461 2.125226 2.340556 2.593435 2.671453 +1.265133 1.765689 2.131338 2.391774 2.613959 2.699849 +1.342282 1.581411 1.979244 2.297759 2.520391 2.602258 +1.449013 1.725546 2.176279 2.354739 2.538758 2.627319 +1.418726 1.898681 2.206330 2.275600 2.488746 2.586794 +1.555706 1.837600 2.165743 2.346188 2.530178 2.628757 +1.444437 1.790050 1.911014 2.301915 2.468862 2.540557 +1.378052 1.668499 1.845265 2.324889 2.537708 2.601471 +1.394741 1.682710 1.817346 2.075533 2.512120 2.566889 +1.297199 1.655884 1.825405 2.062105 2.513307 2.577371 +1.280659 1.669901 1.824567 2.168209 2.528166 2.601986 +1.306896 1.600808 1.767971 2.095291 2.509869 2.606002 +1.257678 1.559755 1.787804 2.076895 2.540388 2.627179 +1.196849 1.597550 1.817421 2.152662 2.580796 2.651246 +1.235935 1.676643 1.942307 2.326482 2.561542 2.645593 +1.189058 1.818895 2.081496 2.366454 2.608018 2.672086 +1.427589 1.885421 2.264907 2.424220 2.571371 2.651155 +1.714473 1.937868 2.390009 2.457149 2.552016 2.601930 +1.874136 2.073506 2.370468 2.511263 2.709177 2.749495 +1.647818 1.987798 2.281909 2.412099 2.604693 2.674821 +1.596366 1.881529 2.193995 2.380524 2.511918 2.584564 +1.555508 1.775218 2.064094 2.325699 2.512934 2.599262 +1.330054 1.712961 1.917624 2.285900 2.466591 2.579279 +0.990071 1.410874 1.632331 1.965889 2.466882 2.580417 +0.925150 1.299025 1.551401 1.897486 2.498481 2.645212 +0.968080 1.367127 1.520360 1.988159 2.313473 2.546943 +0.974374 1.283811 1.474810 2.078302 2.331089 2.455153 +1.000624 1.299150 1.415675 1.955760 2.261550 2.354258 +0.964045 1.136490 1.305931 1.936406 2.197537 2.299418 +1.013087 1.201143 1.372664 1.820179 2.063576 2.210659 +1.086478 1.216705 1.476655 1.604039 1.855963 2.324503 +1.090160 1.201207 1.460778 1.562225 2.016093 2.458980 +1.133754 1.257469 1.407186 1.787681 2.289532 2.530854 +1.134831 1.341221 1.636293 1.813775 2.219453 2.584652 +0.952747 1.300930 1.616891 1.751014 2.352113 2.547879 +1.078704 1.490043 1.571579 1.800532 2.468175 2.650436 +1.239045 1.333032 1.551379 1.707824 2.242922 2.604251 +1.176517 1.299114 1.588881 1.714081 2.128856 2.533523 +1.135831 1.253056 1.538412 1.634480 2.258093 2.593874 +1.092382 1.253236 1.541772 1.679875 2.423197 2.617584 +1.142663 1.256402 1.528284 1.629676 2.391580 2.589689 +1.172793 1.281248 1.479204 1.608878 2.335938 2.593681 +1.146782 1.251953 1.432916 1.553285 2.238941 2.534180 +1.109946 1.231415 1.412105 1.516055 2.308569 2.599903 +1.120273 1.235535 1.425736 1.509519 2.435529 2.643814 +1.085869 1.189296 1.392718 1.494347 2.129342 2.508989 +1.020500 1.173144 1.440965 1.574421 2.335855 2.524051 +1.040551 1.174338 1.525717 1.693110 2.493748 2.632352 +1.034516 1.205262 1.365087 1.513000 2.471788 2.578008 +1.079383 1.204002 1.332428 1.456604 2.502131 2.665633 +1.088863 1.236949 1.357003 1.564945 2.602020 2.707576 +1.106792 1.262402 1.367273 1.823952 2.598579 2.676300 +1.085013 1.233527 1.311463 1.730333 2.560087 2.690320 +1.069205 1.180224 1.343020 1.474834 2.268046 2.544311 +1.039392 1.375617 1.721445 2.038018 2.463998 2.600812 +1.267853 1.384109 1.659902 1.934021 2.207761 2.424577 +1.225276 1.316621 1.678147 1.819230 2.165345 2.498548 +1.114141 1.283029 1.655518 1.879671 2.352472 2.553537 +1.094762 1.370017 1.799126 2.082377 2.469494 2.578819 +1.041250 1.472757 1.748735 2.047588 2.511699 2.589828 +1.071665 1.456546 1.700524 1.927317 2.441484 2.607003 +0.929006 1.487241 1.669550 1.885619 2.544274 2.628318 +0.844366 1.339712 1.812456 2.300208 2.566012 2.631255 +0.761441 1.279951 1.670446 2.006350 2.526824 2.607557 +0.716643 1.374843 1.843436 2.126958 2.552993 2.613146 +0.749967 1.598458 1.883266 2.050443 2.579184 2.614111 +0.759376 1.596383 1.929103 1.984550 2.566734 2.654207 +0.724977 1.682905 1.888292 2.034796 2.503861 2.565502 +0.812327 1.669865 1.961771 2.102146 2.538781 2.598559 +0.767334 1.594629 1.984319 2.133419 2.501689 2.557813 +0.760230 1.650647 1.928366 2.094047 2.565241 2.596082 +0.766762 1.648062 1.858552 2.078593 2.587079 2.608213 +0.860938 1.629253 1.824855 2.067350 2.563373 2.603209 +0.960953 1.583632 1.752206 2.078444 2.555531 2.628507 +1.007927 1.548004 1.734955 2.185660 2.489350 2.551445 +1.040401 1.471117 1.643519 2.051558 2.508524 2.579168 +1.096025 1.457427 1.604009 1.926200 2.482033 2.552204 +1.130428 1.431534 1.592806 2.014740 2.510652 2.567779 +1.197898 1.465481 1.622929 2.075950 2.507052 2.582750 +1.258831 1.504797 1.659109 1.970653 2.595750 2.685651 +1.315451 1.467446 1.705718 1.898634 2.602572 2.704978 +1.272475 1.431894 1.712848 1.940258 2.650379 2.717166 +1.278865 1.528652 1.796202 1.995202 2.501761 2.587606 +1.458616 1.693943 2.067903 2.264838 2.506857 2.623939 +1.718797 1.909611 2.147601 2.354174 2.485581 2.591269 +1.813873 1.875483 2.097637 2.329683 2.497798 2.596247 +1.744286 1.859449 2.043169 2.284589 2.430897 2.538572 +1.514180 1.808296 1.933791 2.234651 2.462232 2.546237 +1.489264 1.781194 1.908004 2.144484 2.418589 2.513858 +1.434785 1.679793 1.817348 2.105365 2.431372 2.528241 +1.469581 1.589507 1.813510 2.213129 2.440502 2.520511 +1.496287 1.640049 1.893865 2.298621 2.484705 2.576207 +1.333417 1.584728 1.893019 2.121814 2.525345 2.632617 +1.518722 1.735840 1.956529 2.176426 2.465338 2.572342 +1.520953 1.742556 2.010582 2.133578 2.447458 2.566704 +1.458119 1.692227 2.001920 2.120543 2.431042 2.565112 +1.526915 1.662389 2.025135 2.125056 2.537873 2.626810 +1.498303 1.644212 1.960732 2.103288 2.440309 2.572412 +1.415476 1.548286 1.770800 2.099931 2.450265 2.599463 +1.367188 1.460632 1.739482 2.074030 2.551953 2.639997 diff --git a/gr-vocoder/lib/codec2/codebook/lsp8910.txt b/gr-vocoder/lib/codec2/codebook/lsp8910.txt deleted file mode 100644 index 759136bfec..0000000000 --- a/gr-vocoder/lib/codec2/codebook/lsp8910.txt +++ /dev/null @@ -1,65 +0,0 @@ -3 64 -2.048073 2.534502 2.645915 -2.019670 2.269744 2.605462 -1.961101 2.329646 2.562857 -1.968573 2.532712 2.616918 -2.183480 2.514381 2.629582 -2.259379 2.516615 2.620410 -2.172791 2.462460 2.567064 -2.097666 2.303933 2.421685 -2.052990 2.353242 2.546992 -2.043642 2.232362 2.499262 -2.106151 2.393131 2.488401 -2.099167 2.437862 2.558655 -2.013877 2.422875 2.530071 -2.033848 2.483776 2.584598 -2.114474 2.516856 2.602372 -2.229214 2.584056 2.678855 -2.131151 2.584299 2.674845 -1.472721 2.477091 2.630241 -2.010907 2.598415 2.682989 -2.353653 2.524066 2.619773 -2.419897 2.623938 2.699605 -2.319080 2.602148 2.689044 -1.860342 2.503881 2.616576 -1.910517 2.386693 2.610126 -1.748689 2.371809 2.496542 -1.618495 2.403425 2.554956 -1.844073 2.437026 2.533443 -1.924810 2.388543 2.502698 -1.937227 2.258363 2.501697 -1.687554 2.209123 2.545239 -1.851950 2.278628 2.565632 -1.868154 2.330150 2.444883 -1.874180 2.213118 2.351940 -1.757311 2.030626 2.433836 -1.650306 2.152371 2.243421 -1.612794 1.884686 2.339313 -1.745431 2.278895 2.389449 -1.590923 2.304155 2.408510 -1.475982 2.275548 2.509897 -1.508695 2.045463 2.455520 -1.872054 2.061777 2.246202 -1.983947 2.159155 2.445535 -1.745180 2.483765 2.593698 -1.900116 2.079600 2.407479 -1.841672 2.167042 2.486827 -1.932912 2.148464 2.569850 -2.134174 2.363673 2.584252 -2.106094 2.450645 2.638417 -1.954135 2.460313 2.666512 -1.907634 2.573801 2.674025 -1.625579 2.539569 2.656363 -1.785866 2.572616 2.676082 -1.798447 2.376454 2.624298 -2.020033 2.397244 2.619868 -1.946581 2.468791 2.564185 -2.008920 2.342400 2.469132 -1.983846 2.271044 2.395408 -1.988039 2.154150 2.317920 -2.077197 2.216622 2.389101 -2.117255 2.283907 2.512242 -2.177233 2.334622 2.458268 -2.214655 2.425510 2.620013 -2.199931 2.390272 2.520731 -2.271755 2.448682 2.552649 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt1.txt b/gr-vocoder/lib/codec2/codebook/lspdt1.txt new file mode 100644 index 0000000000..ba30880038 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt1.txt @@ -0,0 +1,9 @@ +1 8 +-75 +-50 +-25 + 0 + 25 + 50 + 75 +100 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt10.txt b/gr-vocoder/lib/codec2/codebook/lspdt10.txt new file mode 100644 index 0000000000..e72c16c92d --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt10.txt @@ -0,0 +1,3 @@ +1 2 +-50 + 50 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt2.txt b/gr-vocoder/lib/codec2/codebook/lspdt2.txt new file mode 100644 index 0000000000..ba30880038 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt2.txt @@ -0,0 +1,9 @@ +1 8 +-75 +-50 +-25 + 0 + 25 + 50 + 75 +100 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt3.txt b/gr-vocoder/lib/codec2/codebook/lspdt3.txt new file mode 100644 index 0000000000..7ebefd92d1 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt3.txt @@ -0,0 +1,5 @@ +1 4 +-50 + 0 + 50 + 100 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt4.txt b/gr-vocoder/lib/codec2/codebook/lspdt4.txt new file mode 100644 index 0000000000..7ebefd92d1 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt4.txt @@ -0,0 +1,5 @@ +1 4 +-50 + 0 + 50 + 100 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt5.txt b/gr-vocoder/lib/codec2/codebook/lspdt5.txt new file mode 100644 index 0000000000..7ebefd92d1 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt5.txt @@ -0,0 +1,5 @@ +1 4 +-50 + 0 + 50 + 100 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt6.txt b/gr-vocoder/lib/codec2/codebook/lspdt6.txt new file mode 100644 index 0000000000..7ebefd92d1 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt6.txt @@ -0,0 +1,5 @@ +1 4 +-50 + 0 + 50 + 100 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt7.txt b/gr-vocoder/lib/codec2/codebook/lspdt7.txt new file mode 100644 index 0000000000..e72c16c92d --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt7.txt @@ -0,0 +1,3 @@ +1 2 +-50 + 50 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt8.txt b/gr-vocoder/lib/codec2/codebook/lspdt8.txt new file mode 100644 index 0000000000..e72c16c92d --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt8.txt @@ -0,0 +1,3 @@ +1 2 +-50 + 50 diff --git a/gr-vocoder/lib/codec2/codebook/lspdt9.txt b/gr-vocoder/lib/codec2/codebook/lspdt9.txt new file mode 100644 index 0000000000..e72c16c92d --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspdt9.txt @@ -0,0 +1,3 @@ +1 2 +-50 + 50 diff --git a/gr-vocoder/lib/codec2/codebook/lspjnd5-10.txt b/gr-vocoder/lib/codec2/codebook/lspjnd5-10.txt new file mode 100644 index 0000000000..e4e500c160 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspjnd5-10.txt @@ -0,0 +1,8317 @@ +6 3369 +1400.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1400.0 1900.0 2400.0 2500.0 3200.0 3400.0 +1400.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1400.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1400.0 1900.0 2300.0 2600.0 3200.0 3300.0 +1400.0 1900.0 2100.0 2600.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1600.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1800.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1800.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1900.0 2000.0 2200.0 2600.0 3300.0 3400.0 +1700.0 2000.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2600.0 2900.0 3200.0 3300.0 +1600.0 2000.0 2500.0 2800.0 3200.0 3400.0 +1500.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1400.0 1700.0 2200.0 2400.0 3200.0 3300.0 +1300.0 1700.0 2200.0 2300.0 3200.0 3300.0 +1300.0 1600.0 2200.0 2300.0 3200.0 3300.0 +1200.0 1600.0 2200.0 2400.0 3200.0 3300.0 +1200.0 1600.0 2200.0 2300.0 3200.0 3300.0 +1200.0 1500.0 2200.0 2300.0 3100.0 3300.0 +1200.0 1500.0 2200.0 2300.0 3200.0 3300.0 +1300.0 1500.0 2100.0 2300.0 3000.0 3200.0 +1300.0 1600.0 2000.0 2200.0 3000.0 3200.0 +1400.0 1700.0 2000.0 2300.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2300.0 3200.0 3300.0 +1300.0 1600.0 1900.0 2100.0 3100.0 3200.0 +1200.0 1500.0 2100.0 2300.0 3200.0 3300.0 +1500.0 1800.0 2000.0 2300.0 3000.0 3200.0 +1200.0 1500.0 2200.0 2400.0 3300.0 3400.0 +1200.0 1500.0 2200.0 2400.0 3200.0 3400.0 +1200.0 1500.0 2200.0 2400.0 3200.0 3300.0 +1300.0 1500.0 2300.0 2400.0 3200.0 3300.0 +1300.0 1500.0 2200.0 2500.0 3000.0 3200.0 +1300.0 1600.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1800.0 2400.0 2600.0 3100.0 3200.0 +1700.0 2000.0 2500.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2600.0 2700.0 3100.0 3200.0 +1900.0 2300.0 2600.0 2900.0 3200.0 3300.0 +2000.0 2300.0 2600.0 2900.0 3300.0 3400.0 +1900.0 2300.0 2500.0 2900.0 3300.0 3400.0 +1800.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2500.0 3200.0 3400.0 +1500.0 1800.0 2400.0 2600.0 3100.0 3400.0 +1800.0 2100.0 2600.0 2900.0 3300.0 3500.0 +2000.0 2500.0 2700.0 3000.0 3400.0 3500.0 +2200.0 2500.0 2700.0 3100.0 3300.0 3400.0 +2300.0 2500.0 2700.0 3100.0 3300.0 3400.0 +2100.0 2500.0 2600.0 3000.0 3200.0 3300.0 +2100.0 2400.0 2500.0 3000.0 3200.0 3300.0 +1700.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1700.0 2000.0 2300.0 2800.0 3100.0 3300.0 +1600.0 1900.0 2200.0 2800.0 3000.0 3200.0 +1500.0 1900.0 2100.0 2700.0 3000.0 3200.0 +1400.0 1900.0 2000.0 2600.0 3000.0 3100.0 +1200.0 1600.0 2100.0 2400.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2400.0 3200.0 3400.0 +1600.0 1700.0 2200.0 2400.0 3100.0 3400.0 +1600.0 1700.0 2200.0 2400.0 3200.0 3400.0 +1700.0 1800.0 2300.0 2400.0 3200.0 3400.0 +1700.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2400.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2100.0 2400.0 3000.0 3100.0 +1500.0 1700.0 2100.0 2300.0 3000.0 3100.0 +1400.0 1700.0 2100.0 2500.0 3000.0 3200.0 +1000.0 1700.0 2300.0 2500.0 3200.0 3300.0 +1100.0 1700.0 2400.0 2500.0 3300.0 3400.0 +1500.0 2000.0 2300.0 2600.0 3000.0 3300.0 +1300.0 1600.0 1800.0 2600.0 2900.0 3100.0 +1300.0 1600.0 1900.0 2200.0 2900.0 3000.0 +1500.0 1700.0 2200.0 2500.0 2900.0 3000.0 +1500.0 1600.0 2100.0 2400.0 2900.0 3100.0 +1500.0 1600.0 2000.0 2600.0 3000.0 3100.0 +1600.0 1700.0 2100.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2500.0 3300.0 3400.0 +1700.0 1900.0 2200.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2400.0 2600.0 3000.0 3300.0 +1700.0 2100.0 2400.0 2600.0 3100.0 3300.0 +1700.0 2100.0 2400.0 2600.0 3200.0 3400.0 +1400.0 1600.0 2300.0 2400.0 3300.0 3400.0 +1300.0 1400.0 2100.0 2200.0 2900.0 3200.0 +1000.0 1300.0 2200.0 2300.0 3200.0 3400.0 +1600.0 2000.0 2300.0 2600.0 2800.0 3100.0 +1600.0 2000.0 2300.0 2600.0 2900.0 3200.0 +1600.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1700.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1600.0 1900.0 2300.0 2500.0 3100.0 3400.0 +1500.0 1900.0 2300.0 2600.0 3000.0 3300.0 +1500.0 1900.0 2300.0 2600.0 3100.0 3300.0 +1500.0 2000.0 2300.0 2700.0 3100.0 3300.0 +2000.0 2500.0 2700.0 2900.0 3300.0 3400.0 +2000.0 2400.0 2600.0 2800.0 3300.0 3400.0 +1700.0 2300.0 2600.0 2800.0 3300.0 3400.0 +1400.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1300.0 1600.0 2300.0 2500.0 3200.0 3300.0 +1300.0 1500.0 2000.0 2300.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2400.0 2900.0 3300.0 +1500.0 1700.0 2200.0 2400.0 3000.0 3200.0 +1400.0 1800.0 2200.0 2400.0 3000.0 3300.0 +1400.0 1800.0 2200.0 2400.0 3000.0 3200.0 +1200.0 1500.0 2100.0 2400.0 3100.0 3300.0 +1300.0 1800.0 2200.0 2300.0 3300.0 3400.0 +1300.0 1700.0 2200.0 2400.0 3300.0 3400.0 +1400.0 1500.0 2300.0 2500.0 3100.0 3400.0 +1500.0 1600.0 2300.0 2500.0 3100.0 3300.0 +1500.0 1600.0 2400.0 2500.0 3100.0 3300.0 +1400.0 1800.0 2400.0 2500.0 3000.0 3300.0 +1300.0 1700.0 2100.0 2500.0 3000.0 3200.0 +1300.0 1600.0 2100.0 2500.0 3100.0 3200.0 +1300.0 1700.0 2200.0 2500.0 3100.0 3200.0 +1300.0 1600.0 2200.0 2500.0 3100.0 3300.0 +1300.0 1700.0 2300.0 2600.0 3200.0 3300.0 +1300.0 1700.0 2400.0 2500.0 3200.0 3400.0 +1500.0 1900.0 2500.0 2600.0 3200.0 3400.0 +1500.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1600.0 2100.0 2600.0 2900.0 3400.0 3500.0 +1600.0 1900.0 2500.0 2800.0 3300.0 3400.0 +1500.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1600.0 2000.0 2500.0 2700.0 3100.0 3200.0 +1500.0 1700.0 2400.0 2700.0 3100.0 3200.0 +1500.0 1600.0 2400.0 2600.0 3100.0 3300.0 +1500.0 1600.0 2200.0 2400.0 3000.0 3200.0 +1500.0 1600.0 2200.0 2300.0 3000.0 3200.0 +1400.0 1700.0 2100.0 2300.0 3000.0 3100.0 +1700.0 1800.0 2300.0 2800.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2800.0 3200.0 3300.0 +1800.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1800.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1600.0 2000.0 2300.0 2500.0 3000.0 3200.0 +1500.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1500.0 1700.0 2200.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2400.0 3000.0 3100.0 +1600.0 1700.0 2300.0 2400.0 3000.0 3100.0 +1600.0 1700.0 2300.0 2400.0 3000.0 3200.0 +1600.0 1700.0 2300.0 2400.0 2900.0 3100.0 +1600.0 1700.0 2300.0 2400.0 2900.0 3200.0 +1600.0 1700.0 2300.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2300.0 2500.0 2900.0 3300.0 +1400.0 1500.0 2200.0 2500.0 3000.0 3300.0 +1200.0 1400.0 2300.0 2400.0 3000.0 3300.0 +1100.0 1400.0 2300.0 2400.0 3100.0 3300.0 +1200.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1400.0 2000.0 2400.0 2700.0 3300.0 3400.0 +1600.0 2100.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2300.0 2600.0 2900.0 3300.0 3400.0 +1400.0 2100.0 2400.0 2600.0 3100.0 3200.0 +1300.0 1600.0 2300.0 2500.0 3000.0 3200.0 +1200.0 1500.0 2100.0 2500.0 3000.0 3200.0 +1300.0 1700.0 2100.0 2300.0 2900.0 3200.0 +1500.0 1600.0 2200.0 2400.0 3000.0 3100.0 +1500.0 1600.0 2200.0 2500.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2500.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2500.0 3100.0 3300.0 +1600.0 1700.0 2200.0 2400.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2500.0 3300.0 3400.0 +1700.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1800.0 2000.0 2300.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2700.0 3300.0 3400.0 +1900.0 2000.0 2100.0 2400.0 3300.0 3400.0 +1800.0 2100.0 2400.0 2800.0 3200.0 3400.0 +2000.0 2200.0 2500.0 2700.0 3100.0 3300.0 +2000.0 2300.0 2500.0 2700.0 3100.0 3300.0 +2000.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1900.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1800.0 1900.0 2300.0 2600.0 3300.0 3400.0 +1800.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2600.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2300.0 2600.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1500.0 1800.0 2100.0 2500.0 3100.0 3200.0 +1700.0 2100.0 2400.0 2800.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2900.0 3200.0 3300.0 +1900.0 2100.0 2400.0 2900.0 3200.0 3300.0 +1800.0 2100.0 2400.0 2800.0 3100.0 3200.0 +2000.0 2200.0 2500.0 2800.0 3100.0 3300.0 +2000.0 2200.0 2700.0 2800.0 3100.0 3300.0 +2000.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2000.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2100.0 2600.0 2800.0 3200.0 3400.0 +1800.0 2200.0 2500.0 2700.0 3300.0 3400.0 +1700.0 1900.0 2500.0 2600.0 3200.0 3400.0 +1700.0 1900.0 2400.0 2700.0 3200.0 3400.0 +1500.0 1900.0 2500.0 2600.0 3100.0 3300.0 +1200.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1300.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1200.0 1600.0 2400.0 2600.0 3200.0 3300.0 +1200.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1300.0 2000.0 2400.0 2700.0 3200.0 3300.0 +1200.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1100.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1100.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1000.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1000.0 1500.0 2400.0 2500.0 3100.0 3200.0 +1000.0 1500.0 2300.0 2400.0 3100.0 3200.0 +1000.0 1900.0 2300.0 2500.0 3000.0 3100.0 +1100.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1200.0 1800.0 2300.0 2400.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2400.0 3100.0 3200.0 +1400.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2400.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2400.0 3100.0 3200.0 +1500.0 1800.0 2200.0 2400.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2400.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1800.0 2000.0 2300.0 2800.0 2900.0 3100.0 +1500.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1500.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1500.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1600.0 2000.0 2400.0 2700.0 3300.0 3400.0 +1600.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1700.0 2100.0 2400.0 2600.0 2900.0 3200.0 +1600.0 2000.0 2500.0 2700.0 2900.0 3200.0 +1500.0 1800.0 2400.0 2800.0 3000.0 3200.0 +1500.0 1800.0 2100.0 2400.0 2900.0 3100.0 +1600.0 1900.0 2100.0 2400.0 3100.0 3300.0 +1600.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1800.0 1900.0 2300.0 2400.0 3100.0 3300.0 +1900.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1900.0 2200.0 2600.0 2700.0 3300.0 3400.0 +1900.0 2300.0 2600.0 2700.0 3300.0 3400.0 +1900.0 2300.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2200.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2400.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2300.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2400.0 2600.0 2700.0 3300.0 3400.0 +2000.0 2200.0 2600.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3100.0 3200.0 +1900.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1800.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1800.0 1900.0 2300.0 2500.0 3000.0 3100.0 +1800.0 1900.0 2400.0 2700.0 3000.0 3200.0 +1800.0 1900.0 2500.0 2700.0 3000.0 3200.0 +1800.0 2000.0 2500.0 2700.0 3100.0 3200.0 +2000.0 2300.0 2600.0 2900.0 3100.0 3300.0 +1900.0 2300.0 2700.0 3000.0 3200.0 3300.0 +2000.0 2400.0 2700.0 3000.0 3200.0 3300.0 +2100.0 2500.0 2800.0 3000.0 3200.0 3300.0 +2200.0 2400.0 2800.0 3000.0 3300.0 3400.0 +1900.0 2200.0 2700.0 2900.0 3300.0 3400.0 +2200.0 2400.0 2900.0 3100.0 3300.0 3400.0 +2100.0 2400.0 2800.0 3100.0 3300.0 3400.0 +2200.0 2500.0 2800.0 3100.0 3300.0 3400.0 +2100.0 2400.0 2600.0 2800.0 3300.0 3400.0 +2000.0 2400.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1800.0 1900.0 2400.0 2700.0 3100.0 3200.0 +1800.0 1900.0 2400.0 2700.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2700.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2700.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2700.0 2900.0 3200.0 +1700.0 1900.0 2300.0 2700.0 2900.0 3200.0 +1700.0 1900.0 2200.0 2700.0 3000.0 3200.0 +1700.0 2000.0 2300.0 2800.0 3000.0 3200.0 +1400.0 1700.0 2300.0 2400.0 3300.0 3400.0 +1400.0 1800.0 2300.0 2400.0 3300.0 3400.0 +1400.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1400.0 2100.0 2300.0 2500.0 3300.0 3400.0 +1400.0 2100.0 2300.0 2600.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2700.0 3200.0 3400.0 +1800.0 2100.0 2600.0 2900.0 3200.0 3400.0 +1800.0 2100.0 2600.0 2800.0 3300.0 3400.0 +1800.0 2100.0 2600.0 2700.0 3300.0 3400.0 +1800.0 2000.0 2500.0 2700.0 3300.0 3400.0 +1800.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1800.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1800.0 2200.0 2400.0 2600.0 3300.0 3400.0 +1800.0 2200.0 2400.0 2700.0 3300.0 3400.0 +1900.0 2300.0 2600.0 2900.0 3200.0 3400.0 +1900.0 2200.0 2600.0 2700.0 3200.0 3400.0 +1900.0 2100.0 2600.0 2700.0 3300.0 3400.0 +2000.0 2100.0 2500.0 2700.0 3200.0 3300.0 +2000.0 2100.0 2500.0 2700.0 3300.0 3400.0 +2000.0 2200.0 2500.0 2700.0 3300.0 3400.0 +2000.0 2100.0 2600.0 2700.0 3300.0 3400.0 +2000.0 2100.0 2500.0 2700.0 3400.0 3500.0 +1900.0 2100.0 2500.0 2600.0 3200.0 3400.0 +2000.0 2200.0 2600.0 2700.0 3200.0 3400.0 +2100.0 2300.0 2600.0 2800.0 3300.0 3400.0 +2100.0 2500.0 2700.0 3100.0 3300.0 3400.0 +2100.0 2500.0 2800.0 3100.0 3300.0 3400.0 +2100.0 2300.0 2400.0 2700.0 3200.0 3300.0 +2000.0 2300.0 2500.0 2800.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1600.0 1900.0 2300.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2800.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2400.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2400.0 3100.0 3300.0 +1400.0 1700.0 2300.0 2400.0 3100.0 3300.0 +1400.0 1500.0 2300.0 2400.0 3100.0 3300.0 +1300.0 1500.0 2300.0 2400.0 3100.0 3300.0 +1300.0 1500.0 2400.0 2500.0 3100.0 3300.0 +1300.0 1500.0 2400.0 2500.0 3000.0 3300.0 +1300.0 1500.0 2300.0 2400.0 2900.0 3300.0 +1400.0 1500.0 2400.0 2500.0 2900.0 3300.0 +1500.0 1600.0 2300.0 2500.0 2800.0 3300.0 +1600.0 1700.0 2300.0 2500.0 2800.0 3400.0 +1700.0 1800.0 2300.0 2500.0 2800.0 3300.0 +1800.0 1900.0 2400.0 2500.0 3100.0 3400.0 +1800.0 1900.0 2400.0 2500.0 3200.0 3400.0 +1900.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1900.0 2200.0 2600.0 2900.0 3400.0 3500.0 +1800.0 2200.0 2600.0 2900.0 3300.0 3400.0 +1900.0 2300.0 2600.0 3000.0 3400.0 3500.0 +2000.0 2300.0 2600.0 3000.0 3300.0 3400.0 +1800.0 2200.0 2500.0 2900.0 3200.0 3300.0 +1800.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2800.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2700.0 3100.0 3300.0 +1400.0 1800.0 2300.0 2600.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2400.0 3000.0 3100.0 +1500.0 1800.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2200.0 2500.0 2800.0 3000.0 3300.0 +2000.0 2300.0 2600.0 2800.0 3100.0 3300.0 +2000.0 2300.0 2700.0 2900.0 3100.0 3300.0 +2100.0 2300.0 2700.0 2900.0 3100.0 3300.0 +2000.0 2300.0 2700.0 3000.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2600.0 3300.0 3400.0 +1400.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1300.0 1900.0 2300.0 2600.0 3100.0 3300.0 +1200.0 1600.0 2200.0 2400.0 3000.0 3100.0 +1100.0 1500.0 2200.0 2400.0 3100.0 3200.0 +1100.0 1400.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1500.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1500.0 2300.0 2400.0 3300.0 3400.0 +1300.0 1400.0 2400.0 2500.0 3100.0 3300.0 +1500.0 2200.0 2500.0 2600.0 3100.0 3200.0 +2100.0 2400.0 2700.0 3000.0 3200.0 3300.0 +2200.0 2400.0 2700.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2700.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2700.0 2900.0 3300.0 3400.0 +2000.0 2300.0 2700.0 3000.0 3400.0 3500.0 +2100.0 2400.0 2700.0 3000.0 3400.0 3500.0 +2100.0 2500.0 2700.0 3100.0 3400.0 3500.0 +1900.0 2400.0 2600.0 2800.0 3300.0 3400.0 +1900.0 2100.0 2600.0 2800.0 3300.0 3400.0 +1900.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1900.0 2100.0 2500.0 2600.0 3300.0 3400.0 +1800.0 2200.0 2400.0 2800.0 3300.0 3400.0 +1800.0 2000.0 2400.0 2700.0 3300.0 3400.0 +1900.0 2000.0 2400.0 2700.0 3200.0 3300.0 +2000.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1500.0 2100.0 2200.0 2500.0 3300.0 3400.0 +1400.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1400.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2200.0 2600.0 3100.0 3200.0 +1700.0 2100.0 2400.0 2700.0 3100.0 3300.0 +1800.0 2000.0 2400.0 2700.0 3000.0 3200.0 +1600.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1700.0 2000.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2200.0 2600.0 2900.0 3200.0 +1600.0 1900.0 2300.0 2600.0 2900.0 3200.0 +1600.0 1900.0 2300.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2500.0 3000.0 3200.0 +1600.0 1800.0 2300.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2400.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2500.0 3000.0 3100.0 +1700.0 1800.0 2300.0 2500.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2400.0 3000.0 3200.0 +1700.0 1800.0 2100.0 2300.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2400.0 3000.0 3200.0 +1800.0 2000.0 2200.0 2400.0 3000.0 3200.0 +1800.0 2000.0 2300.0 2500.0 3100.0 3300.0 +1800.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1800.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1700.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1700.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1800.0 2100.0 2500.0 2900.0 3300.0 3400.0 +1800.0 2200.0 2600.0 2800.0 3300.0 3500.0 +1800.0 2100.0 2600.0 2900.0 3300.0 3400.0 +1800.0 2100.0 2600.0 3000.0 3200.0 3300.0 +1800.0 2200.0 2600.0 2900.0 3200.0 3300.0 +1800.0 2100.0 2600.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2400.0 2700.0 3100.0 3200.0 +1700.0 2000.0 2300.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2100.0 2400.0 2600.0 3100.0 3200.0 +1800.0 2100.0 2400.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1800.0 2000.0 2400.0 2700.0 3100.0 3300.0 +1700.0 2000.0 2400.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2300.0 2700.0 3100.0 3300.0 +1700.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2500.0 3000.0 3200.0 +1500.0 1700.0 2100.0 2500.0 2900.0 3100.0 +1500.0 1800.0 2300.0 2600.0 2900.0 3200.0 +1500.0 1900.0 2400.0 2600.0 3000.0 3200.0 +1600.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2400.0 2700.0 3100.0 3300.0 +1600.0 2200.0 2600.0 2900.0 3300.0 3400.0 +1700.0 2200.0 2600.0 3000.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2900.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2900.0 3300.0 3400.0 +1500.0 1800.0 2400.0 2500.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2500.0 3300.0 3400.0 +1500.0 1700.0 2300.0 2400.0 3300.0 3400.0 +1600.0 1800.0 2300.0 2400.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1600.0 1700.0 2400.0 2500.0 2800.0 3300.0 +1600.0 1800.0 2300.0 2500.0 2700.0 3200.0 +1600.0 1700.0 2300.0 2500.0 2700.0 3200.0 +1600.0 1700.0 2200.0 2500.0 2700.0 3100.0 +1600.0 1700.0 2200.0 2500.0 2600.0 3000.0 +1600.0 1700.0 2400.0 2500.0 2700.0 3200.0 +1600.0 1700.0 2400.0 2500.0 2800.0 3200.0 +1700.0 1800.0 2400.0 2600.0 2900.0 3300.0 +1700.0 1800.0 2300.0 2600.0 2800.0 3300.0 +1700.0 1800.0 2400.0 2600.0 3000.0 3400.0 +1700.0 1800.0 2300.0 2500.0 2900.0 3300.0 +1600.0 1700.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1800.0 2000.0 2400.0 3000.0 3200.0 +1400.0 1700.0 2000.0 2300.0 3000.0 3200.0 +1700.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1700.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1800.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2600.0 3300.0 3400.0 +2000.0 2100.0 2200.0 2600.0 3300.0 3400.0 +2000.0 2100.0 2300.0 2600.0 3300.0 3400.0 +2100.0 2200.0 2500.0 2800.0 3300.0 3400.0 +2000.0 2100.0 2300.0 2500.0 3200.0 3300.0 +1900.0 2000.0 2200.0 2600.0 3200.0 3300.0 +1800.0 1900.0 2100.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2100.0 2300.0 3000.0 3200.0 +1500.0 1800.0 2100.0 2400.0 3100.0 3300.0 +1500.0 1700.0 2200.0 2500.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1500.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1800.0 2300.0 2600.0 3000.0 3400.0 3500.0 +1900.0 2300.0 2700.0 3000.0 3400.0 3500.0 +2000.0 2300.0 2800.0 3100.0 3300.0 3400.0 +2100.0 2300.0 2800.0 3100.0 3300.0 3400.0 +2000.0 2300.0 2700.0 3000.0 3200.0 3300.0 +2000.0 2200.0 2600.0 2900.0 3100.0 3300.0 +2000.0 2200.0 2500.0 2800.0 3000.0 3200.0 +2000.0 2200.0 2400.0 2800.0 3100.0 3200.0 +1600.0 2000.0 2400.0 2600.0 3100.0 3200.0 +1400.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1400.0 1900.0 2300.0 2600.0 3000.0 3200.0 +1500.0 2000.0 2400.0 2700.0 2900.0 3200.0 +2000.0 2300.0 2800.0 3000.0 3200.0 3400.0 +2100.0 2300.0 2900.0 3100.0 3300.0 3400.0 +1800.0 2300.0 2600.0 2900.0 3400.0 3500.0 +1700.0 2300.0 2500.0 2900.0 3300.0 3400.0 +1300.0 2000.0 2400.0 2700.0 3300.0 3400.0 +1200.0 1900.0 2300.0 2600.0 3300.0 3400.0 +1200.0 1800.0 2300.0 2600.0 3300.0 3400.0 +1100.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1800.0 2200.0 2600.0 2800.0 3300.0 3400.0 +1800.0 2000.0 2500.0 2700.0 3200.0 3400.0 +1700.0 2100.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2200.0 2600.0 2800.0 3300.0 3400.0 +1800.0 2200.0 2600.0 3000.0 3300.0 3500.0 +1700.0 2100.0 2600.0 2800.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2800.0 3300.0 3500.0 +1800.0 2200.0 2500.0 2900.0 3300.0 3400.0 +2100.0 2200.0 2600.0 2700.0 3100.0 3400.0 +1900.0 2100.0 2500.0 2600.0 3100.0 3400.0 +1900.0 2000.0 2500.0 2600.0 3200.0 3400.0 +1900.0 2000.0 2600.0 2700.0 3200.0 3400.0 +1800.0 1900.0 2500.0 2600.0 3100.0 3400.0 +1600.0 2000.0 2700.0 2800.0 3300.0 3400.0 +1400.0 2000.0 2700.0 2800.0 3300.0 3400.0 +1000.0 1900.0 2700.0 2800.0 3300.0 3400.0 +1000.0 1400.0 2700.0 2900.0 3200.0 3400.0 +1100.0 1500.0 2700.0 2900.0 3200.0 3300.0 +1200.0 1700.0 2400.0 2500.0 3100.0 3300.0 +1300.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1300.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1400.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1500.0 2000.0 2400.0 2700.0 3000.0 3300.0 +1300.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2700.0 2800.0 3300.0 3400.0 +1500.0 1900.0 2700.0 2800.0 3300.0 3400.0 +1400.0 1800.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2300.0 2600.0 2700.0 2900.0 3200.0 +1500.0 1700.0 2400.0 2600.0 2800.0 3300.0 +1600.0 1700.0 2500.0 2700.0 2900.0 3300.0 +1800.0 1900.0 2600.0 2700.0 3200.0 3400.0 +1800.0 1900.0 2600.0 2700.0 3200.0 3300.0 +2000.0 2200.0 2600.0 2800.0 3200.0 3300.0 +2000.0 2100.0 2600.0 2700.0 3200.0 3400.0 +2000.0 2100.0 2500.0 2800.0 3200.0 3400.0 +2000.0 2100.0 2600.0 2700.0 3100.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2600.0 3100.0 3200.0 +1700.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2700.0 3200.0 3400.0 +1900.0 2000.0 2500.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1800.0 2100.0 2500.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2600.0 3200.0 3400.0 +1800.0 1900.0 2400.0 2500.0 3000.0 3300.0 +1800.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1900.0 2100.0 2500.0 2600.0 3200.0 3300.0 +2000.0 2100.0 2500.0 2600.0 3300.0 3400.0 +2000.0 2200.0 2500.0 2600.0 3300.0 3400.0 +2100.0 2200.0 2500.0 2600.0 3300.0 3400.0 +2100.0 2200.0 2500.0 2600.0 3200.0 3400.0 +2100.0 2200.0 2400.0 2500.0 3200.0 3400.0 +2000.0 2100.0 2400.0 2500.0 3200.0 3400.0 +1800.0 1900.0 2400.0 2600.0 3200.0 3400.0 +1800.0 1900.0 2500.0 2600.0 3200.0 3400.0 +1800.0 2300.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2400.0 2800.0 3000.0 3300.0 3500.0 +1900.0 2300.0 2800.0 3100.0 3300.0 3400.0 +2000.0 2300.0 2700.0 2900.0 3200.0 3400.0 +1800.0 2000.0 2600.0 2900.0 3300.0 3400.0 +1700.0 2000.0 2500.0 2600.0 3200.0 3400.0 +1600.0 2100.0 2500.0 2600.0 3300.0 3400.0 +1500.0 2100.0 2500.0 2600.0 3300.0 3400.0 +1500.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1400.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1300.0 2000.0 2600.0 2800.0 3300.0 3400.0 +1500.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1600.0 2000.0 2500.0 2700.0 3200.0 3400.0 +1600.0 2000.0 2500.0 2600.0 3200.0 3400.0 +1600.0 2000.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1600.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1500.0 1700.0 2200.0 2400.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2500.0 2900.0 3200.0 +1300.0 1700.0 2200.0 2500.0 3000.0 3300.0 +1200.0 1700.0 2200.0 2600.0 3000.0 3200.0 +1100.0 1700.0 2300.0 2600.0 3100.0 3300.0 +1200.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1100.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1200.0 2200.0 2400.0 2700.0 3300.0 3400.0 +1200.0 2300.0 2500.0 2700.0 3300.0 3400.0 +1200.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1200.0 2300.0 2600.0 2800.0 3300.0 3400.0 +1100.0 1800.0 2500.0 2600.0 3400.0 3500.0 +1300.0 1700.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1800.0 2500.0 2600.0 3200.0 3400.0 +1500.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1500.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1800.0 1900.0 2500.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2400.0 2500.0 3200.0 3300.0 +2000.0 2100.0 2300.0 2500.0 3300.0 3400.0 +1500.0 1900.0 2400.0 2800.0 3100.0 3300.0 +1200.0 1700.0 2500.0 2600.0 3300.0 3400.0 +1300.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1400.0 1800.0 2500.0 2700.0 3300.0 3400.0 +1300.0 1700.0 2400.0 2700.0 3200.0 3400.0 +1100.0 2100.0 2600.0 2700.0 3300.0 3400.0 +1200.0 2100.0 2600.0 2700.0 3300.0 3400.0 +1200.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1200.0 2100.0 2500.0 2600.0 3300.0 3400.0 +1200.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1200.0 2200.0 2500.0 2700.0 3400.0 3500.0 +1400.0 1800.0 2400.0 2600.0 3100.0 3400.0 +1400.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1500.0 1800.0 2400.0 2700.0 3100.0 3300.0 +1500.0 1900.0 2400.0 2600.0 3200.0 3400.0 +1600.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1900.0 2200.0 2400.0 2600.0 3300.0 3400.0 +2000.0 2200.0 2400.0 2600.0 3200.0 3300.0 +2000.0 2100.0 2400.0 2500.0 3200.0 3300.0 +2100.0 2200.0 2500.0 2600.0 3200.0 3300.0 +2100.0 2200.0 2500.0 2700.0 3200.0 3300.0 +2000.0 2100.0 2400.0 2600.0 3100.0 3200.0 +1500.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1500.0 1900.0 2300.0 2400.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2400.0 3100.0 3300.0 +1400.0 1800.0 2300.0 2400.0 3100.0 3300.0 +1400.0 1900.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1700.0 2200.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2200.0 2500.0 3000.0 3200.0 +1300.0 1700.0 2400.0 2600.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2500.0 3200.0 3300.0 +1400.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1100.0 1500.0 2300.0 2400.0 3200.0 3400.0 +1000.0 1600.0 2500.0 2600.0 3300.0 3400.0 +1000.0 1700.0 2500.0 2600.0 3300.0 3400.0 +1000.0 1800.0 2600.0 2700.0 3300.0 3400.0 +1000.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1000.0 1800.0 2800.0 2900.0 3300.0 3400.0 +1400.0 1600.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1700.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1700.0 2500.0 2600.0 3000.0 3400.0 +1700.0 1800.0 2500.0 2600.0 3000.0 3400.0 +1700.0 1800.0 2400.0 2600.0 2800.0 3300.0 +1700.0 1800.0 2400.0 2600.0 2900.0 3400.0 +1700.0 1800.0 2500.0 2600.0 3200.0 3400.0 +1700.0 1800.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1800.0 2500.0 2600.0 3200.0 3400.0 +1600.0 1800.0 2600.0 2700.0 3200.0 3400.0 +1600.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1600.0 2000.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2300.0 2800.0 3000.0 3300.0 3400.0 +1800.0 2100.0 2800.0 3100.0 3300.0 3400.0 +1900.0 2100.0 2700.0 2900.0 3300.0 3400.0 +1800.0 2000.0 2600.0 2800.0 3200.0 3400.0 +1700.0 1900.0 2500.0 2800.0 3100.0 3300.0 +1700.0 1800.0 2400.0 2600.0 3000.0 3300.0 +1700.0 1800.0 2500.0 2700.0 3000.0 3400.0 +1700.0 1900.0 2600.0 2700.0 3100.0 3400.0 +1600.0 1900.0 2600.0 2700.0 3000.0 3300.0 +1700.0 2000.0 2600.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1700.0 1900.0 2600.0 2800.0 3200.0 3300.0 +1600.0 1900.0 2600.0 2800.0 3200.0 3400.0 +1200.0 1800.0 2700.0 2800.0 3200.0 3400.0 +1100.0 1700.0 2700.0 2800.0 3200.0 3300.0 +1500.0 1800.0 2600.0 2700.0 3100.0 3400.0 +1500.0 1800.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1800.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1800.0 2400.0 2500.0 3100.0 3400.0 +1500.0 1700.0 2400.0 2500.0 3000.0 3400.0 +1400.0 1600.0 2400.0 2500.0 3000.0 3400.0 +1400.0 1600.0 2400.0 2600.0 2900.0 3300.0 +1200.0 1700.0 2600.0 2700.0 3100.0 3300.0 +1200.0 1800.0 2600.0 2700.0 3200.0 3400.0 +1100.0 1900.0 2600.0 2700.0 3200.0 3400.0 +1400.0 1800.0 2500.0 2700.0 3200.0 3400.0 +1700.0 1900.0 2500.0 2600.0 2900.0 3300.0 +1600.0 1700.0 2500.0 2700.0 3000.0 3400.0 +1400.0 1500.0 2500.0 2700.0 3200.0 3400.0 +1400.0 1700.0 2500.0 2700.0 3000.0 3300.0 +1800.0 2000.0 2200.0 2600.0 2900.0 3200.0 +1900.0 2100.0 2400.0 2600.0 3100.0 3300.0 +1900.0 2300.0 2400.0 2700.0 3200.0 3300.0 +1800.0 2200.0 2400.0 2700.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2400.0 3000.0 3200.0 +1500.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1500.0 1900.0 2100.0 2400.0 3100.0 3200.0 +1400.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1300.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1200.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1200.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1100.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1200.0 2200.0 2500.0 2600.0 3300.0 3400.0 +1500.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1800.0 1900.0 2300.0 2400.0 3300.0 3400.0 +2100.0 2200.0 2400.0 2600.0 3300.0 3400.0 +2200.0 2300.0 2600.0 2700.0 3300.0 3400.0 +2200.0 2300.0 2600.0 2800.0 3300.0 3400.0 +2100.0 2300.0 2500.0 2800.0 3100.0 3300.0 +2200.0 2300.0 2600.0 2700.0 3100.0 3400.0 +2100.0 2200.0 2600.0 2700.0 3200.0 3400.0 +1900.0 2300.0 2600.0 2900.0 3100.0 3300.0 +2000.0 2300.0 2600.0 2900.0 3200.0 3300.0 +2200.0 2300.0 2700.0 2900.0 3300.0 3400.0 +2000.0 2300.0 2500.0 2900.0 3300.0 3400.0 +1500.0 1700.0 2200.0 2600.0 3100.0 3300.0 +1500.0 1700.0 2200.0 2600.0 3000.0 3300.0 +1500.0 1800.0 2200.0 2600.0 3100.0 3300.0 +1500.0 1800.0 2000.0 2300.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2300.0 3200.0 3300.0 +1600.0 1900.0 2100.0 2300.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1800.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1800.0 2000.0 2400.0 2500.0 3200.0 3400.0 +1800.0 2000.0 2400.0 2600.0 3100.0 3400.0 +1800.0 1900.0 2400.0 2600.0 3100.0 3400.0 +1400.0 1600.0 2500.0 2600.0 2900.0 3300.0 +1300.0 1500.0 2500.0 2600.0 2900.0 3300.0 +1300.0 1700.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1900.0 2400.0 2800.0 3100.0 3200.0 +1500.0 2000.0 2400.0 2800.0 3100.0 3300.0 +1100.0 1700.0 2600.0 2700.0 3200.0 3400.0 +1100.0 1800.0 2600.0 2700.0 3300.0 3400.0 +1100.0 1800.0 2700.0 2800.0 3300.0 3400.0 +1700.0 2000.0 2600.0 2700.0 3100.0 3400.0 +1700.0 2100.0 2500.0 2600.0 3000.0 3200.0 +1700.0 2200.0 2600.0 2700.0 3100.0 3200.0 +1700.0 2000.0 2500.0 2600.0 3000.0 3200.0 +1700.0 1900.0 2500.0 2600.0 3000.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3000.0 3300.0 +2000.0 2200.0 2400.0 2600.0 3300.0 3400.0 +1800.0 2100.0 2400.0 2500.0 3300.0 3400.0 +1700.0 2100.0 2400.0 2500.0 3300.0 3400.0 +1500.0 2100.0 2400.0 2500.0 3300.0 3400.0 +1600.0 2100.0 2400.0 2500.0 3300.0 3400.0 +1700.0 2000.0 2300.0 2400.0 3300.0 3400.0 +1700.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1800.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1900.0 2000.0 2400.0 2500.0 3100.0 3400.0 +1900.0 2000.0 2400.0 2500.0 3000.0 3400.0 +1900.0 2000.0 2300.0 2400.0 2800.0 3300.0 +1800.0 2000.0 2200.0 2400.0 2600.0 3200.0 +1900.0 2000.0 2300.0 2500.0 2800.0 3200.0 +1700.0 2000.0 2300.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2800.0 3200.0 3300.0 +1700.0 2000.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2000.0 2600.0 2900.0 3300.0 3400.0 +1700.0 1800.0 2500.0 2700.0 3200.0 3400.0 +1600.0 1700.0 2400.0 2600.0 2900.0 3300.0 +1600.0 1700.0 2500.0 2600.0 2900.0 3300.0 +1600.0 1800.0 2600.0 2700.0 3100.0 3400.0 +1600.0 1700.0 2600.0 2700.0 3000.0 3300.0 +1600.0 1700.0 2600.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2800.0 3200.0 3400.0 +2100.0 2500.0 2700.0 3000.0 3300.0 3400.0 +2100.0 2400.0 2700.0 2900.0 3300.0 3400.0 +2200.0 2500.0 2700.0 3000.0 3300.0 3400.0 +2200.0 2500.0 2800.0 2900.0 3400.0 3500.0 +2200.0 2500.0 2800.0 2900.0 3300.0 3500.0 +2100.0 2500.0 2700.0 2800.0 3300.0 3400.0 +2100.0 2400.0 2700.0 2900.0 3200.0 3400.0 +2100.0 2300.0 2600.0 2800.0 3100.0 3400.0 +2100.0 2200.0 2500.0 2700.0 3100.0 3400.0 +2200.0 2300.0 2500.0 2700.0 3200.0 3400.0 +1900.0 2100.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1900.0 2400.0 2500.0 3100.0 3300.0 +1400.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1200.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1100.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1100.0 1700.0 2600.0 2700.0 3300.0 3400.0 +1300.0 1600.0 2500.0 2600.0 3100.0 3400.0 +1500.0 1600.0 2400.0 2500.0 3000.0 3400.0 +1600.0 1700.0 2400.0 2500.0 3100.0 3400.0 +1900.0 2000.0 2300.0 2500.0 2900.0 3400.0 +1900.0 2000.0 2400.0 2500.0 2800.0 3300.0 +1900.0 2000.0 2500.0 2700.0 3300.0 3400.0 +1900.0 2000.0 2500.0 2800.0 3300.0 3400.0 +2000.0 2200.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2200.0 2700.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2700.0 2900.0 3200.0 3300.0 +2000.0 2300.0 2700.0 2900.0 3200.0 3300.0 +2200.0 2600.0 2700.0 2900.0 3300.0 3400.0 +2100.0 2400.0 2700.0 2800.0 3300.0 3400.0 +2100.0 2200.0 2500.0 2700.0 3300.0 3400.0 +1900.0 2100.0 2400.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1500.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1200.0 1900.0 2400.0 2500.0 3300.0 3500.0 +1200.0 1600.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2100.0 2600.0 2900.0 3300.0 3400.0 +1800.0 2200.0 2700.0 3000.0 3300.0 3400.0 +1800.0 2200.0 2800.0 3000.0 3300.0 3400.0 +1700.0 2100.0 2600.0 2900.0 3200.0 3400.0 +1700.0 2000.0 2600.0 2800.0 3200.0 3400.0 +1600.0 1800.0 2500.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2500.0 2600.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2600.0 3200.0 3300.0 +1500.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2500.0 3200.0 3400.0 +1400.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1400.0 1800.0 2300.0 2400.0 3200.0 3400.0 +1600.0 1900.0 2500.0 2600.0 3200.0 3400.0 +1500.0 1900.0 2600.0 2700.0 3200.0 3400.0 +1500.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1400.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1400.0 1900.0 2600.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2600.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2600.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2700.0 2900.0 3200.0 3300.0 +2000.0 2100.0 2500.0 2700.0 3200.0 3400.0 +2000.0 2100.0 2400.0 2600.0 3100.0 3400.0 +2000.0 2100.0 2300.0 2600.0 3000.0 3300.0 +1900.0 2000.0 2300.0 2500.0 3000.0 3400.0 +1800.0 1900.0 2300.0 2400.0 3000.0 3400.0 +1600.0 1800.0 2300.0 2400.0 3000.0 3400.0 +1400.0 1700.0 2400.0 2500.0 2900.0 3400.0 +1300.0 1700.0 2400.0 2500.0 3100.0 3400.0 +1400.0 1700.0 2300.0 2600.0 3100.0 3300.0 +1200.0 1600.0 2400.0 2500.0 3200.0 3300.0 +1200.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2400.0 2600.0 3000.0 3300.0 +2000.0 2300.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2300.0 2900.0 3100.0 3400.0 3500.0 +1900.0 2100.0 2700.0 3000.0 3300.0 3400.0 +1800.0 1900.0 2300.0 2700.0 3100.0 3300.0 +1800.0 1900.0 2200.0 2500.0 3100.0 3300.0 +1700.0 1800.0 2100.0 2400.0 3000.0 3300.0 +1700.0 1800.0 2200.0 2400.0 3100.0 3300.0 +1400.0 1900.0 2100.0 2300.0 3200.0 3300.0 +1300.0 1800.0 2000.0 2300.0 3200.0 3300.0 +1300.0 1800.0 1900.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2100.0 2600.0 3200.0 3300.0 +2000.0 2100.0 2400.0 2500.0 3100.0 3400.0 +2100.0 2200.0 2400.0 2500.0 3100.0 3400.0 +2100.0 2400.0 2800.0 2900.0 3100.0 3300.0 +2000.0 2200.0 2600.0 2900.0 3200.0 3300.0 +2100.0 2200.0 2700.0 2800.0 3200.0 3300.0 +2000.0 2100.0 2700.0 2800.0 3200.0 3300.0 +2000.0 2100.0 2600.0 2800.0 3200.0 3400.0 +1900.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1800.0 1900.0 2500.0 2700.0 3300.0 3400.0 +2000.0 2100.0 2600.0 2700.0 3200.0 3300.0 +2000.0 2100.0 2600.0 2700.0 3100.0 3400.0 +1900.0 2100.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1800.0 2000.0 2600.0 2700.0 3300.0 3500.0 +1700.0 1900.0 2500.0 2700.0 3200.0 3400.0 +1800.0 2100.0 2700.0 2900.0 3200.0 3400.0 +1900.0 2200.0 2600.0 2900.0 3200.0 3300.0 +1900.0 2200.0 2700.0 2900.0 3200.0 3400.0 +1800.0 2200.0 2700.0 3000.0 3200.0 3400.0 +1800.0 2100.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2200.0 2600.0 2900.0 3300.0 3500.0 +1700.0 2100.0 2500.0 2800.0 3400.0 3500.0 +1600.0 1900.0 2400.0 2600.0 3200.0 3400.0 +1600.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1700.0 2000.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1700.0 2000.0 2300.0 2400.0 2900.0 3200.0 +1900.0 2000.0 2600.0 2700.0 3100.0 3200.0 +1900.0 2000.0 2600.0 2700.0 3100.0 3400.0 +1800.0 2000.0 2600.0 2700.0 3100.0 3300.0 +1400.0 1800.0 2300.0 2600.0 3000.0 3200.0 +1300.0 1800.0 2200.0 2500.0 3100.0 3300.0 +1300.0 1900.0 2200.0 2600.0 3100.0 3300.0 +1400.0 1800.0 2100.0 2500.0 3000.0 3200.0 +1300.0 1600.0 1700.0 2500.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2400.0 3100.0 3200.0 +1300.0 1600.0 1800.0 2300.0 3100.0 3200.0 +1500.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1500.0 1900.0 2500.0 2600.0 3000.0 3200.0 +1800.0 2200.0 2600.0 2800.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2400.0 2700.0 3100.0 3300.0 +1800.0 1900.0 2500.0 2700.0 3100.0 3300.0 +1800.0 1900.0 2600.0 2700.0 3000.0 3300.0 +2100.0 2200.0 2600.0 2700.0 3200.0 3300.0 +2100.0 2200.0 2600.0 2700.0 3300.0 3400.0 +1900.0 2100.0 2300.0 2500.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2800.0 3100.0 3300.0 +1600.0 2100.0 2500.0 2700.0 3100.0 3300.0 +1500.0 1900.0 2400.0 2700.0 3100.0 3300.0 +1200.0 1700.0 1800.0 2100.0 3200.0 3400.0 +1400.0 1700.0 1800.0 2200.0 3300.0 3400.0 +1600.0 1800.0 1900.0 2400.0 3200.0 3300.0 +1700.0 1900.0 2000.0 2500.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2400.0 2900.0 3100.0 +1800.0 2000.0 2200.0 2400.0 2800.0 3200.0 +1900.0 2100.0 2300.0 2600.0 2900.0 3300.0 +1900.0 2100.0 2300.0 2600.0 3200.0 3400.0 +2000.0 2100.0 2400.0 2500.0 3300.0 3400.0 +1800.0 1900.0 2400.0 2500.0 3200.0 3500.0 +1700.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1800.0 2000.0 2600.0 3000.0 3300.0 3400.0 +1900.0 2000.0 2500.0 2700.0 2900.0 3200.0 +1900.0 2000.0 2500.0 2700.0 2900.0 3100.0 +1900.0 2000.0 2400.0 2600.0 2900.0 3200.0 +1700.0 2000.0 2300.0 2600.0 2900.0 3200.0 +1800.0 2000.0 2300.0 2600.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2600.0 2900.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3000.0 3300.0 +1900.0 2000.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1800.0 2200.0 2600.0 3000.0 3300.0 +1600.0 1800.0 2200.0 2500.0 3000.0 3300.0 +1700.0 1900.0 2300.0 2600.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2600.0 3000.0 3200.0 +1800.0 1900.0 2400.0 2500.0 3000.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3200.0 3400.0 +1600.0 1700.0 2400.0 2600.0 3100.0 3300.0 +1600.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1600.0 2400.0 2500.0 3200.0 3400.0 +1400.0 1600.0 2400.0 2500.0 3200.0 3400.0 +1300.0 1600.0 2400.0 2500.0 3200.0 3300.0 +1400.0 2000.0 2500.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2200.0 2500.0 3000.0 3300.0 +1700.0 1900.0 2300.0 2500.0 3100.0 3300.0 +2000.0 2100.0 2400.0 2600.0 3100.0 3300.0 +2000.0 2200.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2000.0 2400.0 2500.0 3200.0 3400.0 +2100.0 2200.0 2300.0 2400.0 3200.0 3400.0 +2000.0 2100.0 2300.0 2500.0 3000.0 3400.0 +1600.0 1800.0 2100.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2200.0 2700.0 3200.0 3300.0 +1800.0 1900.0 2400.0 2800.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2800.0 3200.0 3400.0 +1700.0 2100.0 2600.0 2900.0 3300.0 3500.0 +1800.0 2200.0 2600.0 2900.0 3300.0 3500.0 +1700.0 2200.0 2600.0 2900.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2800.0 3200.0 3400.0 +1700.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1700.0 1800.0 2600.0 2700.0 3100.0 3400.0 +1700.0 1800.0 2600.0 2700.0 3200.0 3400.0 +1700.0 1900.0 2700.0 2800.0 3200.0 3400.0 +1600.0 1900.0 2700.0 2800.0 3200.0 3300.0 +1400.0 1900.0 2800.0 2900.0 3200.0 3300.0 +1600.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2600.0 2700.0 3200.0 3400.0 +1700.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1700.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1700.0 1800.0 2500.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2000.0 2400.0 2800.0 3300.0 3400.0 +1600.0 1800.0 2100.0 2400.0 3100.0 3200.0 +1700.0 1800.0 2000.0 2700.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2700.0 3100.0 3200.0 +1800.0 2000.0 2200.0 2700.0 3100.0 3200.0 +1900.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2300.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2400.0 2700.0 3100.0 3200.0 +2000.0 2100.0 2400.0 2700.0 3100.0 3200.0 +2000.0 2200.0 2400.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1800.0 2100.0 2200.0 2600.0 3100.0 3200.0 +1600.0 2000.0 2200.0 2600.0 3100.0 3200.0 +1500.0 2000.0 2200.0 2700.0 3100.0 3200.0 +1500.0 1900.0 2200.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2200.0 2600.0 3100.0 3200.0 +1800.0 2100.0 2600.0 2700.0 3100.0 3300.0 +1700.0 2100.0 2600.0 2700.0 3100.0 3300.0 +1500.0 1800.0 2600.0 2700.0 3200.0 3400.0 +1200.0 1400.0 2500.0 2700.0 3200.0 3400.0 +1400.0 1700.0 2400.0 2600.0 3200.0 3400.0 +1400.0 1600.0 2400.0 2600.0 3100.0 3400.0 +1500.0 1700.0 2500.0 2600.0 3000.0 3300.0 +1600.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2600.0 3000.0 3400.0 +2000.0 2100.0 2500.0 2600.0 3000.0 3300.0 +2100.0 2200.0 2500.0 2600.0 3100.0 3400.0 +2200.0 2300.0 2500.0 2600.0 3100.0 3400.0 +1400.0 1900.0 2300.0 2400.0 2800.0 3200.0 +1400.0 1900.0 2300.0 2400.0 2700.0 3100.0 +1500.0 1700.0 2300.0 2400.0 2800.0 3200.0 +1600.0 1700.0 2100.0 2500.0 3000.0 3300.0 +1700.0 2000.0 2400.0 2800.0 3000.0 3300.0 +1800.0 2000.0 2600.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1800.0 2000.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1800.0 2200.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2100.0 2600.0 2800.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2700.0 3000.0 3300.0 +1800.0 1900.0 2500.0 2700.0 3000.0 3300.0 +1900.0 2000.0 2500.0 2700.0 3100.0 3300.0 +1900.0 2000.0 2500.0 2700.0 3100.0 3400.0 +1700.0 1900.0 2600.0 2800.0 3200.0 3400.0 +1600.0 1900.0 2600.0 2800.0 3300.0 3400.0 +1500.0 1800.0 2500.0 2700.0 3300.0 3400.0 +1500.0 1900.0 2400.0 2500.0 3200.0 3400.0 +1200.0 1800.0 2200.0 2300.0 3100.0 3200.0 +1400.0 1900.0 2300.0 2600.0 3000.0 3300.0 +1300.0 1400.0 2300.0 2400.0 2800.0 3100.0 +1300.0 1400.0 2300.0 2500.0 3000.0 3200.0 +1300.0 1600.0 2400.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2400.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2400.0 2600.0 3000.0 3200.0 +1500.0 1700.0 2400.0 2600.0 2900.0 3200.0 +1600.0 1800.0 2400.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2500.0 2700.0 3000.0 3300.0 +1900.0 2100.0 2600.0 2700.0 3000.0 3300.0 +1900.0 2100.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2100.0 2400.0 2700.0 3100.0 3300.0 +2000.0 2200.0 2400.0 2700.0 3100.0 3300.0 +1900.0 2300.0 2600.0 2700.0 3000.0 3200.0 +2000.0 2200.0 2500.0 2600.0 3000.0 3200.0 +1900.0 2000.0 2500.0 2600.0 3000.0 3300.0 +1800.0 2000.0 2400.0 2600.0 3000.0 3300.0 +1500.0 1900.0 2300.0 2500.0 2700.0 3000.0 +1500.0 2000.0 2400.0 2500.0 2700.0 3100.0 +1200.0 1900.0 2300.0 2500.0 2800.0 3000.0 +1300.0 1800.0 2200.0 2300.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2500.0 3100.0 3200.0 +2100.0 2200.0 2600.0 2700.0 3100.0 3300.0 +2100.0 2200.0 2600.0 2700.0 3000.0 3300.0 +2000.0 2200.0 2600.0 2700.0 3100.0 3300.0 +2000.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2300.0 2400.0 3100.0 3300.0 +1500.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1600.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2100.0 2600.0 2900.0 3100.0 +1400.0 1700.0 1900.0 2300.0 2800.0 3000.0 +1500.0 1700.0 1900.0 2200.0 2800.0 2900.0 +1500.0 1700.0 2000.0 2200.0 2900.0 3000.0 +1500.0 1700.0 2100.0 2300.0 2900.0 3000.0 +1500.0 1800.0 2200.0 2300.0 3000.0 3100.0 +1500.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1600.0 1800.0 2300.0 2400.0 3100.0 3200.0 +1600.0 1800.0 2300.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1600.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1700.0 2300.0 2500.0 2900.0 3300.0 +1800.0 2100.0 2500.0 2600.0 3200.0 3300.0 +1900.0 2100.0 2400.0 2500.0 3100.0 3400.0 +1900.0 2100.0 2200.0 2500.0 3100.0 3300.0 +1700.0 1800.0 2200.0 2500.0 2900.0 3300.0 +1700.0 1800.0 2400.0 2500.0 3000.0 3300.0 +1600.0 1700.0 2400.0 2500.0 3100.0 3300.0 +1500.0 1700.0 2400.0 2500.0 3100.0 3300.0 +1400.0 1700.0 2500.0 2600.0 3100.0 3200.0 +1300.0 1600.0 2500.0 2600.0 3100.0 3200.0 +1200.0 1600.0 2500.0 2600.0 3100.0 3200.0 +1100.0 1700.0 2600.0 2700.0 3100.0 3200.0 +1100.0 1500.0 2600.0 2700.0 3100.0 3200.0 +1100.0 1500.0 2600.0 2700.0 3100.0 3300.0 +1100.0 1500.0 2500.0 2700.0 3000.0 3300.0 +1000.0 1600.0 2600.0 2700.0 3100.0 3300.0 +1300.0 1600.0 2600.0 2700.0 3100.0 3300.0 +1300.0 1600.0 2600.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2500.0 2600.0 3100.0 3300.0 +1700.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1800.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2500.0 2700.0 3100.0 3400.0 +1800.0 2100.0 2500.0 2700.0 3100.0 3300.0 +1900.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2200.0 2400.0 2600.0 3100.0 3300.0 +1900.0 2300.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2000.0 2200.0 2400.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2300.0 3200.0 3300.0 +1400.0 1600.0 2200.0 2400.0 3100.0 3200.0 +1100.0 1500.0 2300.0 2500.0 3000.0 3100.0 +1400.0 1700.0 2500.0 2700.0 3200.0 3300.0 +1500.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1800.0 2100.0 2500.0 2800.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2500.0 3200.0 3400.0 +1700.0 1900.0 2300.0 2500.0 3200.0 3400.0 +1800.0 2100.0 2500.0 2800.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2800.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2800.0 3100.0 3400.0 +1700.0 2100.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2100.0 2600.0 2700.0 3300.0 3500.0 +1900.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1600.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1400.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2400.0 3000.0 3100.0 +1300.0 1700.0 2300.0 2500.0 3000.0 3100.0 +1600.0 1700.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2300.0 2400.0 3100.0 3300.0 +2200.0 2300.0 2600.0 2800.0 3200.0 3400.0 +2100.0 2300.0 2500.0 2900.0 3200.0 3300.0 +2200.0 2300.0 2500.0 2900.0 3200.0 3300.0 +2000.0 2300.0 2500.0 2700.0 3200.0 3300.0 +2200.0 2400.0 2500.0 2700.0 3200.0 3300.0 +2200.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2500.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2600.0 2700.0 3100.0 3300.0 +1500.0 1800.0 2600.0 2700.0 3100.0 3300.0 +1600.0 1700.0 2600.0 2700.0 2900.0 3300.0 +1600.0 1700.0 2600.0 2800.0 3000.0 3300.0 +1700.0 2000.0 2700.0 2800.0 3100.0 3400.0 +1600.0 1900.0 2500.0 2700.0 3000.0 3300.0 +1800.0 2200.0 2800.0 2900.0 3300.0 3400.0 +2000.0 2500.0 2800.0 2900.0 3400.0 3500.0 +2000.0 2400.0 2800.0 2900.0 3400.0 3500.0 +2000.0 2300.0 2700.0 2800.0 3200.0 3400.0 +1600.0 1700.0 2400.0 2600.0 3200.0 3300.0 +1500.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1400.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1400.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1700.0 2500.0 2600.0 3100.0 3300.0 +1300.0 1500.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1400.0 2400.0 2500.0 3100.0 3300.0 +1200.0 1500.0 2400.0 2500.0 3100.0 3300.0 +1200.0 1600.0 2400.0 2500.0 3100.0 3300.0 +1200.0 1700.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1200.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1200.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1200.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1200.0 1700.0 2400.0 2500.0 3100.0 3200.0 +1200.0 1600.0 2400.0 2500.0 3000.0 3200.0 +1200.0 1600.0 2400.0 2500.0 2900.0 3100.0 +1200.0 1700.0 2400.0 2500.0 3000.0 3300.0 +1300.0 1700.0 2400.0 2500.0 3100.0 3300.0 +1200.0 1700.0 2400.0 2500.0 3000.0 3100.0 +1200.0 1700.0 2300.0 2400.0 3000.0 3100.0 +1600.0 2000.0 2300.0 2600.0 3000.0 3300.0 +1400.0 1600.0 1900.0 2200.0 3000.0 3100.0 +1400.0 1600.0 1800.0 2100.0 3000.0 3100.0 +1300.0 1500.0 1600.0 2000.0 3100.0 3200.0 +1300.0 1500.0 1700.0 1900.0 3100.0 3200.0 +1400.0 1600.0 1700.0 1900.0 3100.0 3200.0 +1600.0 1700.0 2000.0 2100.0 3100.0 3200.0 +1600.0 1800.0 2100.0 2200.0 3100.0 3200.0 +1800.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2700.0 3100.0 3400.0 +1900.0 2000.0 2500.0 2600.0 3000.0 3400.0 +1800.0 2100.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2300.0 2600.0 2800.0 3300.0 3500.0 +1600.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2500.0 2600.0 3100.0 3300.0 +1300.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1400.0 1800.0 2600.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2500.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1900.0 2000.0 2500.0 2700.0 2900.0 3300.0 +2000.0 2100.0 2400.0 2600.0 2900.0 3200.0 +2000.0 2100.0 2400.0 2600.0 3000.0 3300.0 +2100.0 2200.0 2400.0 2600.0 3000.0 3300.0 +2000.0 2100.0 2500.0 2600.0 3100.0 3400.0 +1900.0 2000.0 2400.0 2600.0 3000.0 3400.0 +1800.0 1900.0 2300.0 2500.0 2900.0 3400.0 +1700.0 1800.0 2500.0 2700.0 3100.0 3400.0 +1700.0 1900.0 2500.0 2700.0 3100.0 3400.0 +1800.0 1900.0 2700.0 2800.0 3200.0 3400.0 +2100.0 2200.0 2600.0 2800.0 3100.0 3400.0 +2200.0 2300.0 2600.0 2800.0 3100.0 3400.0 +1800.0 2300.0 2500.0 2700.0 3100.0 3300.0 +1500.0 2000.0 2400.0 2500.0 2800.0 3100.0 +1600.0 2000.0 2400.0 2500.0 2800.0 3100.0 +1600.0 2000.0 2400.0 2500.0 2800.0 3200.0 +1600.0 2000.0 2400.0 2500.0 2900.0 3300.0 +1800.0 2200.0 2500.0 2600.0 3000.0 3300.0 +2100.0 2300.0 2500.0 2600.0 3100.0 3300.0 +2100.0 2200.0 2600.0 2700.0 3100.0 3200.0 +1800.0 1900.0 2600.0 2700.0 3100.0 3200.0 +1800.0 1900.0 2600.0 2700.0 3100.0 3300.0 +1700.0 1800.0 2600.0 2700.0 3100.0 3300.0 +1700.0 1800.0 2600.0 2700.0 3200.0 3300.0 +1600.0 1700.0 2600.0 2700.0 3200.0 3400.0 +1600.0 1700.0 2500.0 2700.0 3200.0 3300.0 +1500.0 1800.0 2400.0 2500.0 3000.0 3300.0 +1500.0 1900.0 2300.0 2500.0 3000.0 3200.0 +1700.0 2100.0 2300.0 2600.0 3100.0 3300.0 +1800.0 2000.0 2700.0 2800.0 3100.0 3300.0 +1700.0 1800.0 2500.0 2700.0 2900.0 3300.0 +1600.0 1800.0 2500.0 2700.0 3000.0 3300.0 +1700.0 1800.0 2400.0 2600.0 3100.0 3300.0 +1700.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1800.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2500.0 3200.0 3300.0 +2000.0 2100.0 2300.0 2500.0 3200.0 3400.0 +2000.0 2100.0 2200.0 2400.0 3200.0 3400.0 +2000.0 2100.0 2300.0 2400.0 3100.0 3400.0 +1700.0 1900.0 2400.0 2500.0 3200.0 3400.0 +1700.0 1900.0 2400.0 2500.0 3100.0 3400.0 +1700.0 1800.0 2400.0 2600.0 3300.0 3400.0 +1700.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1600.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1700.0 1900.0 2600.0 2800.0 3100.0 3300.0 +1700.0 2100.0 2600.0 2700.0 3300.0 3400.0 +1800.0 2000.0 2400.0 2500.0 3100.0 3300.0 +2000.0 2100.0 2300.0 2400.0 3200.0 3400.0 +1400.0 1900.0 2300.0 2400.0 3000.0 3300.0 +1400.0 2000.0 2300.0 2500.0 3000.0 3100.0 +1400.0 1700.0 2500.0 2600.0 3100.0 3300.0 +1300.0 1600.0 2400.0 2600.0 3100.0 3300.0 +1300.0 1600.0 2400.0 2500.0 3200.0 3400.0 +1500.0 2000.0 2500.0 2700.0 3200.0 3400.0 +1800.0 2100.0 2500.0 2900.0 3200.0 3400.0 +1800.0 2200.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2000.0 2500.0 2900.0 3300.0 3400.0 +1700.0 2100.0 2600.0 2900.0 3400.0 3500.0 +1500.0 1900.0 2400.0 2800.0 3300.0 3400.0 +1800.0 2100.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2000.0 2600.0 2800.0 3300.0 3400.0 +1700.0 2100.0 2600.0 2800.0 3200.0 3400.0 +1900.0 2200.0 2600.0 2800.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2100.0 2700.0 2800.0 3300.0 3400.0 +1700.0 2100.0 2700.0 2800.0 3200.0 3400.0 +1800.0 2200.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2200.0 2600.0 2700.0 3300.0 3400.0 +1800.0 2300.0 2600.0 2700.0 3300.0 3400.0 +1900.0 2300.0 2500.0 2700.0 3300.0 3400.0 +1800.0 2200.0 2500.0 2800.0 3200.0 3400.0 +1800.0 2200.0 2500.0 2700.0 3100.0 3300.0 +1700.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1800.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1800.0 2000.0 2200.0 2500.0 3300.0 3400.0 +1800.0 2000.0 2200.0 2600.0 3300.0 3400.0 +1500.0 1800.0 1900.0 2400.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2500.0 3200.0 3300.0 +1500.0 1800.0 1900.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2400.0 3300.0 3400.0 +1500.0 1700.0 2200.0 2600.0 3000.0 3200.0 +1400.0 1700.0 2000.0 2600.0 3000.0 3200.0 +1500.0 1900.0 2400.0 2600.0 3100.0 3200.0 +1400.0 1900.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1600.0 2500.0 2700.0 3100.0 3300.0 +1200.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1800.0 2300.0 2400.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2300.0 3200.0 3300.0 +1800.0 1900.0 2200.0 2300.0 3300.0 3400.0 +1800.0 2100.0 2300.0 2400.0 2900.0 3200.0 +1900.0 2100.0 2300.0 2500.0 3000.0 3300.0 +1900.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1600.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1700.0 2300.0 2400.0 3200.0 3300.0 +1500.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1600.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2200.0 2500.0 2700.0 3300.0 3400.0 +1800.0 2300.0 2500.0 2700.0 3300.0 3400.0 +1800.0 2400.0 2500.0 2900.0 3300.0 3400.0 +1900.0 2400.0 2600.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2700.0 3000.0 3400.0 3500.0 +1800.0 2100.0 2500.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2900.0 3200.0 3400.0 +1800.0 2100.0 2600.0 2800.0 3100.0 3400.0 +1800.0 2200.0 2700.0 2800.0 3200.0 3400.0 +1800.0 2300.0 2700.0 2900.0 3300.0 3500.0 +1400.0 2000.0 2600.0 2700.0 3200.0 3400.0 +1300.0 1800.0 2200.0 2300.0 3000.0 3100.0 +1300.0 1700.0 2100.0 2200.0 3100.0 3200.0 +1400.0 1700.0 2000.0 2200.0 3000.0 3100.0 +1400.0 1600.0 2000.0 2100.0 3000.0 3100.0 +1500.0 1800.0 2000.0 2300.0 3100.0 3200.0 +1600.0 1800.0 2000.0 2300.0 3100.0 3200.0 +1600.0 1800.0 2000.0 2200.0 3100.0 3200.0 +1700.0 2000.0 2200.0 2300.0 3000.0 3200.0 +1700.0 2100.0 2400.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2600.0 2800.0 3000.0 3200.0 +1700.0 1900.0 2600.0 2700.0 3200.0 3400.0 +1600.0 1700.0 2400.0 2600.0 3200.0 3400.0 +1600.0 1700.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2100.0 2500.0 2800.0 3200.0 3300.0 +1700.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1700.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2500.0 3100.0 3300.0 +1500.0 1900.0 2100.0 2400.0 3100.0 3300.0 +1500.0 1600.0 2000.0 2300.0 3000.0 3200.0 +1500.0 1700.0 2100.0 2500.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2700.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2600.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2500.0 3000.0 3200.0 +1400.0 1700.0 2400.0 2500.0 3000.0 3200.0 +1200.0 1500.0 2500.0 2600.0 3000.0 3100.0 +1100.0 1900.0 2600.0 2700.0 3000.0 3100.0 +1500.0 2000.0 2700.0 2800.0 3200.0 3400.0 +1700.0 2100.0 2700.0 2800.0 3300.0 3400.0 +1800.0 2200.0 2700.0 2800.0 3300.0 3400.0 +1800.0 2400.0 2700.0 2800.0 3200.0 3300.0 +1800.0 2300.0 2500.0 2600.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2400.0 3000.0 3200.0 +1400.0 1600.0 1800.0 2200.0 3000.0 3100.0 +1300.0 1600.0 1700.0 2100.0 3000.0 3100.0 +1200.0 1400.0 1600.0 2400.0 3000.0 3100.0 +1300.0 1500.0 1600.0 2100.0 3000.0 3100.0 +1400.0 1600.0 1700.0 2100.0 3000.0 3100.0 +1400.0 1700.0 2100.0 2300.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2300.0 3100.0 3200.0 +1400.0 1600.0 2200.0 2300.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2400.0 3100.0 3200.0 +1400.0 1700.0 2300.0 2400.0 3100.0 3200.0 +1400.0 1600.0 2300.0 2400.0 3100.0 3200.0 +1400.0 1600.0 2200.0 2300.0 3000.0 3200.0 +1500.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1700.0 2000.0 2700.0 2800.0 3200.0 3400.0 +2100.0 2400.0 2800.0 2900.0 3200.0 3400.0 +2000.0 2500.0 2700.0 2800.0 3400.0 3500.0 +2100.0 2600.0 2800.0 2900.0 3400.0 3500.0 +2000.0 2500.0 2700.0 2800.0 3300.0 3400.0 +1900.0 2100.0 2700.0 2800.0 3200.0 3400.0 +2100.0 2200.0 2700.0 2800.0 3200.0 3400.0 +2100.0 2200.0 2700.0 2900.0 3300.0 3400.0 +2200.0 2300.0 2700.0 2800.0 3200.0 3400.0 +1700.0 2100.0 2400.0 2700.0 3200.0 3400.0 +1600.0 2100.0 2400.0 2600.0 2900.0 3200.0 +1500.0 2100.0 2400.0 2500.0 2800.0 3100.0 +1600.0 2100.0 2400.0 2500.0 2800.0 3200.0 +1600.0 2100.0 2400.0 2500.0 2900.0 3200.0 +1600.0 2100.0 2400.0 2500.0 3000.0 3200.0 +1600.0 2100.0 2300.0 2500.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2600.0 3100.0 3300.0 +1700.0 1900.0 2300.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2500.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2200.0 2500.0 3100.0 3300.0 +1500.0 1700.0 1900.0 2200.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2100.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2300.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2400.0 3200.0 3300.0 +1500.0 1700.0 1800.0 2400.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2200.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2100.0 3200.0 3300.0 +1500.0 1600.0 1900.0 2000.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2100.0 3200.0 3300.0 +1600.0 1700.0 2000.0 2100.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2300.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1700.0 2000.0 2400.0 2600.0 3000.0 3100.0 +1700.0 2100.0 2400.0 2600.0 3000.0 3100.0 +1600.0 2000.0 2400.0 2600.0 2900.0 3100.0 +1800.0 2200.0 2600.0 2800.0 3000.0 3200.0 +2000.0 2400.0 2500.0 2800.0 3100.0 3200.0 +2100.0 2500.0 2600.0 2800.0 3200.0 3300.0 +2200.0 2500.0 2700.0 3000.0 3200.0 3300.0 +2100.0 2500.0 2700.0 3000.0 3200.0 3300.0 +2200.0 2500.0 2600.0 3000.0 3200.0 3300.0 +2200.0 2500.0 2600.0 2900.0 3200.0 3300.0 +2200.0 2400.0 2600.0 2800.0 3100.0 3300.0 +2000.0 2300.0 2500.0 2700.0 3100.0 3200.0 +2000.0 2200.0 2500.0 2700.0 3100.0 3200.0 +2000.0 2300.0 2500.0 2800.0 3100.0 3200.0 +2000.0 2300.0 2400.0 2800.0 3100.0 3200.0 +2100.0 2200.0 2500.0 2800.0 3100.0 3200.0 +2000.0 2100.0 2500.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2400.0 3100.0 3300.0 +1500.0 1600.0 1800.0 2100.0 3200.0 3300.0 +1500.0 1700.0 1800.0 2100.0 3200.0 3300.0 +1500.0 1700.0 1800.0 2300.0 3200.0 3300.0 +2000.0 2200.0 2400.0 2600.0 3000.0 3200.0 +2000.0 2400.0 2600.0 2800.0 3100.0 3300.0 +2000.0 2400.0 2500.0 2700.0 3100.0 3300.0 +1800.0 2200.0 2500.0 2600.0 3100.0 3300.0 +1600.0 1800.0 2400.0 2500.0 3000.0 3200.0 +1500.0 1800.0 2400.0 2500.0 3000.0 3100.0 +1800.0 2000.0 2200.0 2700.0 3000.0 3300.0 +1600.0 1900.0 2100.0 2600.0 3000.0 3200.0 +1500.0 1700.0 1900.0 2300.0 3000.0 3100.0 +1500.0 1700.0 1900.0 2200.0 3000.0 3100.0 +1600.0 1700.0 2200.0 2400.0 2900.0 3000.0 +1600.0 1800.0 2200.0 2400.0 2900.0 3000.0 +1800.0 2300.0 2600.0 2700.0 3200.0 3400.0 +1800.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1800.0 1900.0 2400.0 2600.0 3300.0 3400.0 +1700.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1600.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2400.0 2600.0 3100.0 3200.0 +2000.0 2100.0 2500.0 2600.0 3200.0 3300.0 +2100.0 2200.0 2400.0 2600.0 3200.0 3400.0 +1700.0 2000.0 2400.0 2600.0 3100.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1600.0 1900.0 2200.0 2500.0 3000.0 3100.0 +1500.0 1800.0 2000.0 2300.0 3000.0 3100.0 +1500.0 1700.0 1900.0 2100.0 2900.0 3000.0 +1400.0 1600.0 2400.0 2700.0 2900.0 3100.0 +1400.0 1600.0 2300.0 2600.0 3000.0 3100.0 +1500.0 1600.0 2300.0 2500.0 2900.0 3100.0 +1600.0 1700.0 2400.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2400.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2600.0 3100.0 3200.0 +1700.0 2100.0 2400.0 2600.0 3100.0 3200.0 +1600.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2200.0 2300.0 3100.0 3300.0 +1400.0 1600.0 2200.0 2300.0 3200.0 3300.0 +1300.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1200.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1200.0 1700.0 2400.0 2500.0 3300.0 3400.0 +1500.0 1700.0 2300.0 2500.0 3100.0 3200.0 +1900.0 2000.0 2300.0 2400.0 3200.0 3300.0 +2200.0 2300.0 2500.0 2700.0 3200.0 3300.0 +2100.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1300.0 1900.0 2300.0 2400.0 3100.0 3300.0 +1800.0 2000.0 2400.0 2700.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2400.0 3000.0 3300.0 +1600.0 2000.0 2400.0 2700.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2600.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2600.0 3000.0 3300.0 +1800.0 2100.0 2400.0 2500.0 3100.0 3300.0 +1700.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1600.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2300.0 3200.0 3400.0 +1400.0 1600.0 2200.0 2300.0 3200.0 3400.0 +1300.0 1500.0 2200.0 2300.0 3200.0 3300.0 +1200.0 1600.0 2300.0 2400.0 3300.0 3400.0 +1200.0 1500.0 2300.0 2400.0 3200.0 3400.0 +1200.0 1400.0 2300.0 2400.0 3100.0 3400.0 +1300.0 1500.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2300.0 2600.0 2700.0 3300.0 3400.0 +1800.0 2400.0 2700.0 3000.0 3300.0 3400.0 +1800.0 2300.0 2700.0 2800.0 3200.0 3300.0 +1800.0 2200.0 2500.0 2600.0 3300.0 3400.0 +1700.0 1900.0 2400.0 2600.0 3200.0 3400.0 +1700.0 1800.0 2200.0 2500.0 3200.0 3400.0 +1500.0 1700.0 2300.0 2500.0 3100.0 3300.0 +1400.0 1700.0 2200.0 2400.0 3000.0 3200.0 +1300.0 1600.0 2200.0 2300.0 3000.0 3100.0 +1300.0 1900.0 2200.0 2400.0 2900.0 3100.0 +1400.0 1900.0 2300.0 2400.0 3000.0 3100.0 +1400.0 1900.0 2300.0 2500.0 2900.0 3100.0 +1400.0 1800.0 2400.0 2600.0 2800.0 3100.0 +1600.0 2000.0 2500.0 2700.0 3100.0 3300.0 +1500.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1500.0 2100.0 2600.0 2900.0 3300.0 3400.0 +1800.0 2300.0 2600.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2600.0 2700.0 3300.0 3400.0 +2000.0 2200.0 2500.0 2700.0 3000.0 3100.0 +2000.0 2300.0 2600.0 2800.0 3100.0 3200.0 +2100.0 2400.0 2500.0 2900.0 3200.0 3300.0 +2100.0 2300.0 2500.0 2800.0 3100.0 3200.0 +1900.0 2200.0 2300.0 2700.0 3100.0 3200.0 +1200.0 1900.0 2000.0 2300.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2100.0 3200.0 3300.0 +1400.0 1600.0 1700.0 2100.0 3200.0 3300.0 +1400.0 1600.0 1700.0 2200.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2600.0 2900.0 3100.0 +1900.0 2300.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2700.0 2900.0 3200.0 3400.0 +1800.0 2100.0 2700.0 2800.0 3100.0 3400.0 +1800.0 2100.0 2600.0 2800.0 3000.0 3200.0 +1800.0 2100.0 2700.0 2800.0 3200.0 3400.0 +1400.0 1600.0 2600.0 2700.0 3000.0 3300.0 +1400.0 1500.0 2600.0 2700.0 3000.0 3400.0 +1300.0 1400.0 2400.0 2800.0 3000.0 3300.0 +1800.0 2200.0 2600.0 2900.0 3200.0 3400.0 +1600.0 2100.0 2600.0 2900.0 3200.0 3400.0 +1200.0 1700.0 2500.0 2600.0 3000.0 3100.0 +1200.0 1800.0 2300.0 2600.0 3000.0 3100.0 +1200.0 1800.0 2300.0 2500.0 3000.0 3100.0 +1300.0 1700.0 2400.0 2500.0 3000.0 3100.0 +1500.0 1800.0 2400.0 2500.0 2900.0 3000.0 +1600.0 2300.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2200.0 2700.0 2900.0 3100.0 3200.0 +1900.0 2200.0 2800.0 2900.0 3100.0 3200.0 +1900.0 2300.0 2800.0 2900.0 3200.0 3300.0 +2200.0 2500.0 2800.0 3000.0 3300.0 3400.0 +2100.0 2500.0 2800.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2700.0 2800.0 3300.0 3500.0 +1900.0 2200.0 2600.0 2800.0 3300.0 3400.0 +1900.0 2100.0 2700.0 2800.0 3300.0 3400.0 +1700.0 1900.0 2600.0 2700.0 3000.0 3300.0 +1600.0 1700.0 2500.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2600.0 2800.0 3100.0 3300.0 +1800.0 1900.0 2500.0 2800.0 3000.0 3300.0 +1900.0 2000.0 2600.0 2800.0 3100.0 3400.0 +2000.0 2100.0 2500.0 2700.0 3000.0 3300.0 +2100.0 2200.0 2500.0 2700.0 3000.0 3300.0 +2100.0 2200.0 2500.0 2800.0 3000.0 3300.0 +2000.0 2100.0 2400.0 2700.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2600.0 2800.0 3100.0 +1700.0 2000.0 2500.0 2700.0 3100.0 3300.0 +1700.0 2100.0 2700.0 2800.0 3100.0 3300.0 +1500.0 1700.0 2400.0 2600.0 3100.0 3400.0 +1500.0 1600.0 2400.0 2500.0 3000.0 3300.0 +1400.0 1600.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1500.0 2300.0 2600.0 3100.0 3300.0 +1500.0 1600.0 2400.0 2600.0 2900.0 3200.0 +1600.0 1700.0 2300.0 2600.0 3000.0 3200.0 +1600.0 1700.0 2300.0 2700.0 3000.0 3200.0 +1700.0 1800.0 2400.0 2600.0 3000.0 3200.0 +1600.0 1700.0 2300.0 2500.0 3100.0 3200.0 +1500.0 1600.0 2200.0 2400.0 3100.0 3200.0 +1300.0 1800.0 2200.0 2400.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2400.0 3000.0 3200.0 +1200.0 1700.0 2300.0 2400.0 2900.0 3100.0 +1200.0 1800.0 2400.0 2500.0 2900.0 3200.0 +1200.0 1800.0 2300.0 2500.0 3100.0 3200.0 +1300.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1300.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1200.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1200.0 1500.0 2400.0 2500.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2400.0 2700.0 3000.0 3300.0 +1800.0 2000.0 2300.0 2600.0 3000.0 3300.0 +1900.0 2000.0 2300.0 2400.0 3200.0 3500.0 +1900.0 2000.0 2300.0 2400.0 3100.0 3400.0 +1800.0 2000.0 2300.0 2500.0 3200.0 3400.0 +1700.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1800.0 2100.0 2500.0 2800.0 3100.0 3400.0 +1800.0 2000.0 2500.0 2800.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2600.0 3100.0 3300.0 +1700.0 2100.0 2500.0 2700.0 3100.0 3400.0 +1600.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1500.0 2200.0 2400.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2300.0 2700.0 3300.0 3400.0 +1400.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1600.0 2000.0 2300.0 2600.0 3300.0 3400.0 +1600.0 2100.0 2300.0 2600.0 3300.0 3400.0 +1700.0 1900.0 2300.0 2600.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2400.0 3300.0 3400.0 +1900.0 2000.0 2200.0 2400.0 3300.0 3400.0 +1700.0 1800.0 2200.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2100.0 2500.0 3000.0 3200.0 +1500.0 1700.0 2100.0 2500.0 3000.0 3200.0 +1500.0 1600.0 2100.0 2500.0 3000.0 3200.0 +1500.0 1700.0 2200.0 2700.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1700.0 1800.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2100.0 2500.0 3100.0 3300.0 +2000.0 2300.0 2700.0 2800.0 3100.0 3300.0 +2200.0 2500.0 2900.0 3000.0 3200.0 3300.0 +2300.0 2500.0 2900.0 3000.0 3200.0 3300.0 +1400.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1600.0 2000.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1900.0 2000.0 2400.0 3200.0 3300.0 +1300.0 1800.0 2000.0 2400.0 3300.0 3400.0 +1400.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1800.0 2200.0 2600.0 3000.0 3300.0 3400.0 +1900.0 2200.0 2800.0 2900.0 3300.0 3400.0 +2000.0 2500.0 2900.0 3100.0 3200.0 3300.0 +2000.0 2400.0 2900.0 3000.0 3300.0 3400.0 +2100.0 2400.0 2800.0 3000.0 3200.0 3300.0 +2000.0 2400.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2600.0 2800.0 3200.0 3300.0 +1500.0 1900.0 2300.0 2700.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2600.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2500.0 3200.0 3400.0 +1100.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1000.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1000.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1000.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1100.0 1900.0 2400.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2700.0 3100.0 3400.0 +1700.0 2100.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2200.0 2600.0 2800.0 3100.0 3300.0 +2100.0 2200.0 2600.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2400.0 2700.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2600.0 3100.0 3200.0 +1400.0 1500.0 1800.0 2800.0 3200.0 3300.0 +1300.0 1500.0 1700.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2400.0 2700.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2300.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2200.0 2600.0 3000.0 3200.0 +1200.0 1600.0 1800.0 2000.0 3100.0 3400.0 +1100.0 1600.0 2400.0 2500.0 3000.0 3300.0 +1400.0 1700.0 2300.0 2400.0 2900.0 3200.0 +1700.0 2000.0 2300.0 2700.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2400.0 3000.0 3400.0 +1700.0 1800.0 2300.0 2400.0 2900.0 3400.0 +1700.0 1800.0 2300.0 2400.0 2800.0 3300.0 +1800.0 1900.0 2300.0 2400.0 2800.0 3200.0 +1800.0 1900.0 2300.0 2400.0 3000.0 3300.0 +1800.0 1900.0 2300.0 2400.0 2900.0 3300.0 +1700.0 1800.0 2200.0 2300.0 2600.0 3200.0 +1700.0 1800.0 2200.0 2300.0 2700.0 3200.0 +1700.0 1800.0 2300.0 2400.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2400.0 3100.0 3400.0 +1700.0 1800.0 2200.0 2400.0 3200.0 3400.0 +1700.0 1900.0 2200.0 2400.0 3300.0 3400.0 +1800.0 1900.0 2200.0 2400.0 3200.0 3400.0 +1800.0 1900.0 2300.0 2400.0 3200.0 3400.0 +1800.0 1900.0 2300.0 2400.0 3100.0 3400.0 +1800.0 2000.0 2200.0 2400.0 3200.0 3300.0 +1800.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1700.0 1800.0 2000.0 2200.0 3200.0 3300.0 +1400.0 1700.0 1800.0 2200.0 3200.0 3300.0 +1400.0 1800.0 2100.0 2500.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2300.0 2500.0 2900.0 3200.0 +1800.0 2200.0 2500.0 2700.0 3000.0 3300.0 +2000.0 2400.0 2700.0 2800.0 3100.0 3300.0 +2200.0 2500.0 2800.0 2900.0 3200.0 3300.0 +1500.0 2300.0 2500.0 2900.0 3300.0 3400.0 +1500.0 1700.0 2300.0 2600.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2600.0 3000.0 3300.0 +1600.0 1700.0 2200.0 2300.0 3200.0 3400.0 +1600.0 1700.0 2200.0 2300.0 3300.0 3400.0 +1200.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1000.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1000.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1300.0 1700.0 2200.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2500.0 2700.0 3000.0 3200.0 +1300.0 1900.0 2400.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2700.0 3100.0 3200.0 +1700.0 2100.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2400.0 2500.0 3200.0 3400.0 +1600.0 2000.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2300.0 2400.0 3000.0 3200.0 +1500.0 1900.0 2200.0 2300.0 3000.0 3200.0 +1500.0 2000.0 2200.0 2400.0 3100.0 3200.0 +1400.0 2000.0 2200.0 2400.0 3100.0 3200.0 +1300.0 2000.0 2200.0 2500.0 3100.0 3200.0 +1100.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1000.0 2000.0 2400.0 2500.0 3100.0 3200.0 +1000.0 1700.0 2400.0 2500.0 3100.0 3200.0 +1000.0 1600.0 2400.0 2500.0 3100.0 3200.0 +1100.0 1600.0 2400.0 2500.0 3100.0 3200.0 +1100.0 1600.0 2400.0 2600.0 3100.0 3200.0 +1100.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1100.0 1500.0 2500.0 2600.0 3200.0 3300.0 +1100.0 1500.0 2500.0 2600.0 3100.0 3200.0 +1200.0 1400.0 2400.0 2600.0 3100.0 3200.0 +1300.0 1700.0 2300.0 2400.0 3200.0 3300.0 +1300.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1400.0 1900.0 2300.0 2400.0 3100.0 3300.0 +1500.0 1700.0 2300.0 2400.0 3000.0 3200.0 +1500.0 1700.0 2300.0 2400.0 3000.0 3300.0 +2100.0 2300.0 2800.0 3000.0 3300.0 3400.0 +2200.0 2400.0 2900.0 3000.0 3200.0 3300.0 +2100.0 2300.0 2900.0 3000.0 3300.0 3400.0 +2000.0 2300.0 2600.0 3000.0 3200.0 3300.0 +1300.0 1600.0 2200.0 2600.0 3100.0 3300.0 +1000.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1000.0 2100.0 2400.0 2600.0 3300.0 3400.0 +1300.0 1700.0 1900.0 2100.0 3100.0 3200.0 +1500.0 1800.0 2000.0 2400.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2100.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2500.0 3300.0 3400.0 +1700.0 1900.0 2100.0 2500.0 2900.0 3200.0 +1600.0 1900.0 2100.0 2300.0 2800.0 3200.0 +1200.0 1700.0 2200.0 2600.0 3000.0 3300.0 +1200.0 1700.0 2300.0 2600.0 3100.0 3300.0 +1600.0 2100.0 2400.0 2700.0 3100.0 3300.0 +1500.0 2000.0 2400.0 2600.0 3100.0 3400.0 +2100.0 2200.0 2700.0 3000.0 3200.0 3300.0 +2100.0 2200.0 2700.0 2900.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2600.0 2900.0 3200.0 +1400.0 1600.0 1800.0 2900.0 3200.0 3300.0 +1600.0 1700.0 1900.0 2500.0 3100.0 3200.0 +1700.0 1800.0 2000.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2300.0 3100.0 3200.0 +2300.0 2500.0 2800.0 2900.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2800.0 3200.0 3300.0 +1500.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2400.0 3100.0 3300.0 +1600.0 1800.0 2200.0 2300.0 3000.0 3300.0 +1700.0 1800.0 2200.0 2300.0 3000.0 3300.0 +1700.0 1900.0 2200.0 2400.0 3100.0 3300.0 +1700.0 1900.0 2200.0 2400.0 3100.0 3400.0 +1700.0 1800.0 2200.0 2400.0 3100.0 3400.0 +1500.0 1800.0 2300.0 2400.0 2900.0 3300.0 +1500.0 1700.0 2200.0 2400.0 3100.0 3400.0 +1400.0 1700.0 2200.0 2300.0 3100.0 3400.0 +1600.0 1900.0 2500.0 2700.0 3200.0 3400.0 +1500.0 1800.0 2400.0 2600.0 3000.0 3300.0 +1400.0 2100.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1800.0 2100.0 2300.0 3200.0 3300.0 +1800.0 2100.0 2600.0 2900.0 3100.0 3200.0 +2000.0 2400.0 2900.0 3100.0 3300.0 3400.0 +1500.0 1800.0 2200.0 2400.0 3300.0 3400.0 +1500.0 2000.0 2100.0 2700.0 3300.0 3400.0 +1600.0 1800.0 2000.0 2400.0 2900.0 3100.0 +1600.0 1800.0 2200.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2100.0 2600.0 3000.0 3200.0 +1600.0 1900.0 2100.0 2400.0 3000.0 3300.0 +1600.0 2000.0 2200.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2100.0 2400.0 3300.0 3400.0 +1400.0 1700.0 2200.0 2600.0 3000.0 3200.0 +1300.0 1600.0 2200.0 2500.0 3000.0 3200.0 +1300.0 1500.0 2100.0 2500.0 3000.0 3300.0 +1200.0 1600.0 1700.0 2400.0 3300.0 3400.0 +1300.0 1600.0 1700.0 2500.0 3300.0 3400.0 +1300.0 1600.0 1700.0 2500.0 3200.0 3300.0 +1400.0 1700.0 1800.0 2500.0 3200.0 3300.0 +1500.0 1800.0 2000.0 2500.0 3200.0 3300.0 +1500.0 1900.0 2000.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2400.0 3200.0 3300.0 +1600.0 1900.0 2100.0 2400.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2200.0 3000.0 3300.0 +1400.0 1600.0 2100.0 2200.0 3000.0 3200.0 +1400.0 1800.0 2100.0 2300.0 3000.0 3200.0 +1600.0 2100.0 2300.0 2700.0 3100.0 3300.0 +1200.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1600.0 2100.0 2200.0 2600.0 3300.0 3400.0 +1300.0 2000.0 2200.0 2500.0 3300.0 3400.0 +1300.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1300.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2800.0 3100.0 3300.0 +1900.0 2200.0 2500.0 2900.0 3100.0 3300.0 +2000.0 2100.0 2600.0 2800.0 3200.0 3300.0 +2000.0 2100.0 2700.0 2900.0 3200.0 3300.0 +1000.0 1900.0 2400.0 2600.0 3300.0 3400.0 +1000.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1000.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1000.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1000.0 1800.0 2400.0 2600.0 3300.0 3400.0 +1000.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1400.0 1700.0 2200.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2500.0 3000.0 3300.0 +1300.0 1800.0 2100.0 2400.0 3200.0 3300.0 +1100.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1100.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1100.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1100.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1100.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1200.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2400.0 3300.0 3400.0 +1500.0 1800.0 2200.0 2300.0 3300.0 3400.0 +1700.0 2200.0 2700.0 3000.0 3300.0 3400.0 +1900.0 2200.0 2800.0 3000.0 3200.0 3300.0 +1900.0 2200.0 2500.0 3000.0 3200.0 3300.0 +1600.0 2100.0 2300.0 2700.0 3300.0 3400.0 +1600.0 2000.0 2300.0 2700.0 3300.0 3400.0 +1600.0 2100.0 2500.0 3000.0 3300.0 3400.0 +1600.0 2200.0 2600.0 3000.0 3300.0 3400.0 +1900.0 2400.0 2900.0 3100.0 3300.0 3400.0 +2100.0 2500.0 2900.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2900.0 3000.0 3200.0 3300.0 +1700.0 2200.0 2400.0 2900.0 3200.0 3300.0 +1300.0 1800.0 2100.0 2500.0 3200.0 3300.0 +1500.0 1600.0 1800.0 2300.0 3000.0 3200.0 +1500.0 1600.0 1900.0 2000.0 3000.0 3300.0 +1400.0 1800.0 2200.0 2600.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2400.0 2900.0 3100.0 +1500.0 1700.0 2100.0 2400.0 2900.0 3100.0 +1400.0 1700.0 2100.0 2400.0 3000.0 3200.0 +1400.0 1700.0 2300.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2600.0 3200.0 3300.0 +1000.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1400.0 1900.0 2000.0 2500.0 3200.0 3300.0 +1600.0 1900.0 2100.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2300.0 2500.0 3200.0 3300.0 +2200.0 2400.0 2800.0 3000.0 3200.0 3300.0 +1900.0 2300.0 2400.0 2700.0 3100.0 3200.0 +1900.0 2200.0 2300.0 2600.0 3100.0 3200.0 +1900.0 2100.0 2300.0 2800.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2700.0 3200.0 3300.0 +1900.0 2200.0 2500.0 2700.0 3100.0 3300.0 +1700.0 1800.0 2200.0 2500.0 3300.0 3400.0 +1700.0 1900.0 2200.0 2700.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2700.0 3300.0 3400.0 +1800.0 2000.0 2400.0 2800.0 3300.0 3400.0 +1800.0 2000.0 2300.0 2600.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1900.0 2100.0 2400.0 2600.0 3200.0 3300.0 +2000.0 2200.0 2400.0 2700.0 3200.0 3300.0 +2100.0 2200.0 2500.0 2900.0 3200.0 3300.0 +2200.0 2300.0 2600.0 2900.0 3200.0 3300.0 +2200.0 2300.0 2700.0 2900.0 3100.0 3300.0 +2100.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2600.0 2800.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2700.0 3000.0 3200.0 +1800.0 2000.0 2400.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2200.0 2500.0 3100.0 3200.0 +1300.0 1900.0 2100.0 2300.0 3100.0 3300.0 +1200.0 1600.0 2100.0 2200.0 3200.0 3400.0 +1100.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1400.0 1700.0 2100.0 2300.0 3100.0 3300.0 +1400.0 1900.0 2200.0 2500.0 3300.0 3400.0 +1300.0 1800.0 2200.0 2700.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2600.0 3200.0 3300.0 +1400.0 2000.0 2200.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2200.0 2600.0 3300.0 3400.0 +1400.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1400.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1400.0 1800.0 2200.0 2300.0 3000.0 3300.0 +1400.0 1800.0 2200.0 2300.0 3100.0 3300.0 +1400.0 1800.0 2100.0 2300.0 3200.0 3400.0 +1500.0 2000.0 2400.0 2700.0 3300.0 3400.0 +1700.0 2100.0 2500.0 3000.0 3300.0 3400.0 +1400.0 1900.0 2300.0 2800.0 3200.0 3300.0 +1400.0 2000.0 2200.0 2400.0 3200.0 3300.0 +1200.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1200.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1200.0 2000.0 2200.0 2500.0 3300.0 3400.0 +1700.0 2100.0 2300.0 2400.0 3200.0 3400.0 +1400.0 1600.0 1800.0 2500.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2200.0 2500.0 3100.0 3300.0 +2000.0 2100.0 2500.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2200.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2300.0 3200.0 3400.0 +1600.0 1800.0 2000.0 2300.0 3200.0 3400.0 +1600.0 1800.0 2100.0 2300.0 3200.0 3400.0 +1500.0 1800.0 2000.0 2300.0 3300.0 3400.0 +1500.0 1700.0 1900.0 2400.0 3300.0 3400.0 +1600.0 1900.0 2000.0 2700.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2600.0 3100.0 3300.0 +1700.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1700.0 2000.0 2400.0 2700.0 3100.0 3200.0 +2300.0 2400.0 2700.0 3000.0 3200.0 3300.0 +2200.0 2400.0 2600.0 2900.0 3200.0 3300.0 +2200.0 2400.0 2500.0 2800.0 3200.0 3300.0 +2100.0 2400.0 2500.0 2800.0 3200.0 3300.0 +2000.0 2400.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2300.0 2400.0 2800.0 3200.0 3300.0 +1900.0 2300.0 2600.0 2700.0 3100.0 3300.0 +2000.0 2400.0 2800.0 2900.0 3200.0 3300.0 +1700.0 2200.0 2500.0 2800.0 3200.0 3400.0 +1500.0 2100.0 2400.0 2600.0 3100.0 3300.0 +1500.0 1900.0 2300.0 2500.0 3200.0 3400.0 +1400.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1700.0 2400.0 2600.0 3200.0 3300.0 +1100.0 1700.0 2400.0 2600.0 3300.0 3400.0 +1100.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1100.0 1800.0 2400.0 2500.0 3200.0 3300.0 +1100.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1100.0 2100.0 2500.0 2600.0 3200.0 3300.0 +1100.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1000.0 2200.0 2600.0 2700.0 3200.0 3300.0 +1100.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1100.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2500.0 2900.0 3200.0 +1600.0 1700.0 2200.0 2600.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2600.0 2800.0 3000.0 +1500.0 1700.0 2100.0 2500.0 2800.0 3000.0 +1500.0 1600.0 2200.0 2500.0 2800.0 3100.0 +1500.0 1600.0 2300.0 2600.0 2800.0 3100.0 +1400.0 1500.0 2300.0 2700.0 2900.0 3100.0 +1400.0 1500.0 2200.0 2700.0 2800.0 3100.0 +1400.0 1600.0 2000.0 2700.0 2900.0 3100.0 +1500.0 1700.0 2200.0 2700.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2700.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2700.0 3000.0 3300.0 +1700.0 1800.0 2200.0 2700.0 2900.0 3200.0 +1800.0 1900.0 2200.0 2700.0 2900.0 3100.0 +1700.0 1900.0 2200.0 2600.0 2900.0 3000.0 +1800.0 2000.0 2300.0 2700.0 2900.0 3100.0 +1800.0 2000.0 2300.0 2800.0 3000.0 3200.0 +1800.0 2000.0 2400.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2800.0 3000.0 3200.0 +1500.0 1700.0 2200.0 2500.0 3000.0 3100.0 +1700.0 2100.0 2400.0 2800.0 3100.0 3200.0 +1800.0 2200.0 2700.0 2900.0 3400.0 3500.0 +1900.0 2400.0 2700.0 2900.0 3400.0 3500.0 +2000.0 2400.0 2600.0 2900.0 3300.0 3400.0 +1900.0 2400.0 2500.0 2800.0 3200.0 3300.0 +1900.0 2300.0 2500.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1600.0 1700.0 2300.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2400.0 2600.0 2900.0 3100.0 +1600.0 2100.0 2600.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2700.0 3000.0 3200.0 3300.0 +1700.0 2300.0 2800.0 2900.0 3200.0 3300.0 +1700.0 2300.0 2700.0 3000.0 3200.0 3300.0 +1600.0 2100.0 2700.0 2900.0 3300.0 3400.0 +1200.0 1600.0 2400.0 2600.0 3000.0 3300.0 +1100.0 1400.0 2400.0 2700.0 2900.0 3100.0 +1200.0 1800.0 2200.0 2500.0 3100.0 3300.0 +1200.0 1700.0 2200.0 2500.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2500.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2500.0 2800.0 3100.0 +2000.0 2200.0 2400.0 2500.0 2800.0 3100.0 +2000.0 2200.0 2400.0 2600.0 2800.0 3200.0 +2000.0 2100.0 2500.0 2700.0 3100.0 3400.0 +1900.0 2000.0 2600.0 2700.0 3100.0 3300.0 +1900.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1900.0 2400.0 2700.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2800.0 2900.0 3200.0 3400.0 +1900.0 2000.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2100.0 2400.0 2700.0 3000.0 3200.0 +1900.0 2100.0 2400.0 2800.0 3100.0 3200.0 +1900.0 2100.0 2400.0 2800.0 3300.0 3400.0 +1500.0 1800.0 2100.0 2600.0 3100.0 3300.0 +1600.0 1800.0 2100.0 2200.0 3000.0 3300.0 +1800.0 2100.0 2300.0 2500.0 3000.0 3200.0 +2000.0 2100.0 2300.0 2500.0 3000.0 3300.0 +2000.0 2100.0 2300.0 2500.0 2900.0 3300.0 +2000.0 2100.0 2300.0 2400.0 2900.0 3300.0 +1600.0 1800.0 2300.0 2500.0 2900.0 3200.0 +1700.0 1900.0 2400.0 2700.0 3000.0 3200.0 +1700.0 2000.0 2400.0 2600.0 3000.0 3300.0 +1600.0 2000.0 2300.0 2700.0 3000.0 3200.0 +1500.0 1800.0 2300.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2400.0 2800.0 3000.0 +1800.0 2000.0 2400.0 2500.0 2900.0 3200.0 +1800.0 2000.0 2400.0 2600.0 3000.0 3200.0 +1900.0 2000.0 2400.0 2500.0 3000.0 3200.0 +1900.0 2000.0 2300.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2400.0 2900.0 3200.0 +1800.0 1900.0 2200.0 2300.0 2900.0 3200.0 +1600.0 1800.0 2200.0 2400.0 3100.0 3300.0 +1600.0 2000.0 2400.0 2700.0 3100.0 3200.0 +1800.0 2100.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2200.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2300.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2300.0 2400.0 2700.0 3000.0 3200.0 +2100.0 2200.0 2400.0 2500.0 3000.0 3300.0 +1900.0 2000.0 2300.0 2600.0 2800.0 3300.0 +1900.0 2000.0 2400.0 2700.0 3100.0 3300.0 +1500.0 2000.0 2400.0 2700.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2800.0 3000.0 3300.0 +1900.0 2000.0 2400.0 2700.0 2900.0 3200.0 +2000.0 2200.0 2400.0 2700.0 2900.0 3200.0 +2100.0 2200.0 2400.0 2700.0 2900.0 3200.0 +2100.0 2300.0 2400.0 2600.0 2800.0 3200.0 +1300.0 2000.0 2300.0 2500.0 2700.0 3100.0 +1800.0 1900.0 2100.0 2400.0 2900.0 3100.0 +1700.0 1900.0 2100.0 2500.0 2900.0 3100.0 +1800.0 1900.0 2300.0 2600.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2600.0 2800.0 3200.0 +1700.0 1800.0 2300.0 2600.0 2800.0 3100.0 +1700.0 1800.0 2300.0 2700.0 2800.0 3200.0 +1500.0 1700.0 2300.0 2600.0 3000.0 3300.0 +1400.0 1700.0 2200.0 2500.0 3000.0 3300.0 +1400.0 1600.0 2200.0 2300.0 3000.0 3300.0 +1400.0 1600.0 2200.0 2400.0 2800.0 3300.0 +1500.0 1600.0 2200.0 2400.0 2900.0 3300.0 +1500.0 1600.0 2200.0 2400.0 2800.0 3300.0 +1500.0 1700.0 2200.0 2500.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2400.0 2700.0 3000.0 3200.0 +1600.0 2000.0 2500.0 2800.0 3000.0 3300.0 +2000.0 2200.0 2500.0 2600.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1500.0 1700.0 1800.0 2300.0 3300.0 3400.0 +1400.0 1600.0 1800.0 2000.0 3200.0 3400.0 +1400.0 1600.0 1800.0 1900.0 3100.0 3400.0 +1400.0 1600.0 1900.0 2000.0 2900.0 3300.0 +1400.0 1500.0 1900.0 2000.0 2900.0 3200.0 +1900.0 2200.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2200.0 2500.0 2700.0 3000.0 3200.0 +1800.0 2200.0 2600.0 2700.0 3100.0 3200.0 +2000.0 2300.0 2700.0 2800.0 3200.0 3300.0 +2100.0 2200.0 2600.0 2800.0 3000.0 3300.0 +2100.0 2200.0 2500.0 2700.0 3100.0 3300.0 +1700.0 1800.0 2000.0 2100.0 2800.0 3200.0 +1600.0 1700.0 1900.0 2000.0 2800.0 3200.0 +1400.0 1500.0 1800.0 1900.0 2800.0 3200.0 +1400.0 1800.0 2100.0 2400.0 3000.0 3200.0 +1600.0 1900.0 2300.0 2600.0 3000.0 3300.0 +1600.0 1900.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2400.0 2700.0 3000.0 3200.0 +1600.0 1900.0 2400.0 2700.0 3000.0 3300.0 +1500.0 1900.0 2400.0 2700.0 3000.0 3300.0 +1100.0 1400.0 2500.0 2800.0 3000.0 3300.0 +1100.0 1300.0 2300.0 2800.0 3000.0 3200.0 +1400.0 1500.0 2100.0 2700.0 2900.0 3100.0 +1500.0 1600.0 2100.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2600.0 2800.0 3100.0 +1800.0 2000.0 2300.0 2600.0 2800.0 3000.0 +1900.0 2100.0 2300.0 2600.0 2800.0 3100.0 +2000.0 2100.0 2300.0 2600.0 2800.0 3100.0 +2000.0 2100.0 2400.0 2500.0 2800.0 3200.0 +1900.0 2100.0 2300.0 2500.0 2800.0 3200.0 +1800.0 1900.0 2300.0 2500.0 2800.0 3300.0 +1700.0 1800.0 2300.0 2500.0 3000.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3000.0 3200.0 +1500.0 1900.0 2200.0 2600.0 3100.0 3300.0 +1300.0 1500.0 1800.0 1900.0 2900.0 3200.0 +1300.0 1500.0 1800.0 1900.0 2900.0 3300.0 +1300.0 1500.0 1800.0 1900.0 2800.0 3200.0 +1400.0 1500.0 1700.0 1900.0 2800.0 3200.0 +1400.0 1500.0 1700.0 1800.0 2800.0 3200.0 +1700.0 2000.0 2400.0 2500.0 3100.0 3300.0 +2100.0 2400.0 2700.0 2800.0 3300.0 3500.0 +1800.0 2300.0 2700.0 2900.0 3200.0 3400.0 +1700.0 2300.0 2700.0 2900.0 3300.0 3400.0 +1700.0 2100.0 2700.0 2900.0 3300.0 3400.0 +1800.0 2400.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2500.0 2800.0 3000.0 3300.0 3400.0 +2000.0 2500.0 2800.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2700.0 3000.0 3200.0 3400.0 +1900.0 2300.0 2700.0 3000.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2700.0 2900.0 3200.0 +1800.0 2000.0 2400.0 2700.0 2900.0 3100.0 +1900.0 2000.0 2300.0 2700.0 2900.0 3000.0 +1900.0 2000.0 2400.0 2700.0 2900.0 3100.0 +1800.0 1900.0 2400.0 2700.0 2900.0 3100.0 +1800.0 1900.0 2300.0 2700.0 2800.0 3100.0 +1800.0 1900.0 2300.0 2600.0 2800.0 3100.0 +1500.0 1800.0 2400.0 2700.0 3200.0 3400.0 +1600.0 1800.0 2500.0 2700.0 3100.0 3400.0 +1500.0 1700.0 2400.0 2700.0 3000.0 3300.0 +1400.0 1500.0 2400.0 2700.0 2900.0 3200.0 +1300.0 1500.0 2300.0 2700.0 2900.0 3100.0 +1400.0 1600.0 2100.0 2600.0 2800.0 3000.0 +1500.0 1600.0 2100.0 2600.0 2800.0 3000.0 +1400.0 1600.0 2200.0 2400.0 3000.0 3200.0 +1300.0 1600.0 2200.0 2500.0 2900.0 3200.0 +1300.0 1700.0 2200.0 2600.0 3000.0 3300.0 +1300.0 1700.0 2200.0 2700.0 3100.0 3200.0 +1200.0 1400.0 2200.0 2700.0 2900.0 3100.0 +1100.0 1400.0 2300.0 2700.0 2900.0 3100.0 +1100.0 1300.0 2400.0 2800.0 3000.0 3200.0 +1200.0 1600.0 2300.0 2600.0 3100.0 3200.0 +1500.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1800.0 2100.0 2400.0 2800.0 3200.0 3300.0 +1600.0 2100.0 2400.0 2800.0 3200.0 3300.0 +1600.0 2000.0 2500.0 2900.0 3200.0 3300.0 +1800.0 2000.0 2500.0 2900.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2800.0 3100.0 3300.0 +1600.0 1800.0 2400.0 2700.0 3100.0 3300.0 +1500.0 1600.0 2200.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2200.0 2500.0 2800.0 3200.0 +1400.0 1600.0 2100.0 2500.0 2800.0 3100.0 +1200.0 1400.0 2200.0 2500.0 2700.0 3100.0 +1100.0 1400.0 2400.0 2800.0 2900.0 3100.0 +1400.0 1700.0 2300.0 2600.0 2900.0 3200.0 +1500.0 1800.0 2300.0 2500.0 2900.0 3300.0 +1500.0 1700.0 2000.0 2100.0 3000.0 3300.0 +1500.0 1700.0 2000.0 2200.0 3100.0 3300.0 +1500.0 1700.0 2100.0 2300.0 3100.0 3200.0 +1600.0 1900.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2300.0 2800.0 3100.0 3300.0 3400.0 +1800.0 2200.0 2700.0 2900.0 3200.0 3400.0 +1700.0 2200.0 2700.0 2800.0 3200.0 3400.0 +1500.0 1800.0 2600.0 2700.0 3000.0 3200.0 +1500.0 1700.0 2300.0 2700.0 2800.0 3100.0 +1400.0 1500.0 2100.0 2200.0 2700.0 3200.0 +1400.0 1500.0 2000.0 2100.0 2600.0 3100.0 +1300.0 1500.0 1900.0 2000.0 2500.0 3100.0 +1400.0 1500.0 1800.0 1900.0 2700.0 3200.0 +1500.0 1600.0 2000.0 2100.0 2600.0 3100.0 +1700.0 1800.0 2000.0 2200.0 2600.0 3100.0 +1700.0 1800.0 2100.0 2200.0 2700.0 3100.0 +1600.0 2000.0 2400.0 2500.0 3000.0 3200.0 +2000.0 2200.0 2500.0 2900.0 3100.0 3300.0 +1900.0 2200.0 2400.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2200.0 2400.0 2700.0 3300.0 +1700.0 1800.0 2300.0 2400.0 2800.0 3200.0 +1800.0 1900.0 2300.0 2500.0 2800.0 3200.0 +1900.0 2100.0 2400.0 2500.0 3000.0 3300.0 +2100.0 2200.0 2500.0 2600.0 3000.0 3300.0 +2000.0 2100.0 2500.0 2700.0 2900.0 3200.0 +1700.0 1900.0 2200.0 2700.0 2800.0 3100.0 +1800.0 1900.0 2400.0 2700.0 2800.0 3200.0 +1800.0 1900.0 2400.0 2700.0 2900.0 3200.0 +1700.0 1800.0 2200.0 2700.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2700.0 3000.0 3200.0 +1900.0 2100.0 2500.0 2900.0 3100.0 3300.0 +1700.0 2000.0 2500.0 2700.0 3200.0 3400.0 +1900.0 2200.0 2700.0 3000.0 3300.0 3400.0 +2000.0 2400.0 2800.0 3100.0 3400.0 3500.0 +2100.0 2400.0 2600.0 2900.0 3200.0 3300.0 +2100.0 2400.0 2500.0 2700.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1700.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1500.0 1600.0 1800.0 1900.0 2600.0 3100.0 +1500.0 1600.0 1900.0 2000.0 2500.0 3100.0 +1600.0 1700.0 2000.0 2100.0 2500.0 3100.0 +1800.0 2100.0 2300.0 2500.0 2800.0 3200.0 +1900.0 2100.0 2300.0 2500.0 2700.0 3200.0 +2000.0 2200.0 2400.0 2600.0 2900.0 3300.0 +2000.0 2200.0 2400.0 2600.0 2900.0 3200.0 +2000.0 2100.0 2400.0 2500.0 2900.0 3300.0 +1800.0 2200.0 2500.0 2900.0 3400.0 3500.0 +1800.0 2300.0 2500.0 2900.0 3300.0 3400.0 +2000.0 2300.0 2500.0 2800.0 3000.0 3300.0 +1800.0 2000.0 2400.0 2500.0 2800.0 3300.0 +1100.0 1400.0 2600.0 2800.0 3000.0 3200.0 +1300.0 1500.0 2200.0 2700.0 2900.0 3200.0 +1400.0 1600.0 2200.0 2700.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2600.0 3100.0 3200.0 +1500.0 1800.0 2200.0 2400.0 3100.0 3300.0 +1700.0 1800.0 2200.0 2500.0 3000.0 3300.0 +1700.0 1800.0 2200.0 2600.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2600.0 3000.0 3200.0 +1700.0 1800.0 2400.0 2700.0 3000.0 3100.0 +1600.0 1700.0 2500.0 2800.0 3000.0 3200.0 +1400.0 1500.0 2200.0 2700.0 2900.0 3100.0 +1300.0 1400.0 2100.0 2700.0 2900.0 3200.0 +1500.0 1900.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2500.0 2700.0 3100.0 +1600.0 1700.0 2200.0 2500.0 2800.0 3200.0 +1600.0 1800.0 2100.0 2500.0 2900.0 3200.0 +1600.0 1800.0 2100.0 2600.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2800.0 3100.0 3300.0 +1800.0 2100.0 2400.0 2700.0 3000.0 3300.0 +2000.0 2100.0 2500.0 2800.0 3000.0 3200.0 +1800.0 2000.0 2500.0 2700.0 3000.0 3200.0 +1600.0 1900.0 2300.0 2700.0 2900.0 3200.0 +1600.0 1900.0 2100.0 2500.0 2800.0 3100.0 +1700.0 1900.0 2100.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2100.0 2600.0 2800.0 3000.0 +1600.0 1700.0 2000.0 2600.0 2800.0 3000.0 +1400.0 1700.0 2200.0 2700.0 3000.0 3200.0 +1500.0 1800.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2300.0 2600.0 3000.0 3300.0 +1600.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1600.0 1900.0 2300.0 2600.0 3100.0 3300.0 +1200.0 1300.0 2100.0 2700.0 3000.0 3100.0 +1300.0 1400.0 2100.0 2700.0 2900.0 3100.0 +1300.0 1400.0 2200.0 2700.0 2900.0 3100.0 +1300.0 1400.0 2100.0 2600.0 2800.0 3100.0 +1300.0 1500.0 2100.0 2600.0 2800.0 3100.0 +1500.0 1600.0 1900.0 2500.0 2900.0 3100.0 +1500.0 1700.0 2100.0 2700.0 2900.0 3200.0 +1600.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2800.0 3200.0 3400.0 +1700.0 2000.0 2400.0 2800.0 3200.0 3400.0 +1600.0 1700.0 2200.0 2400.0 2800.0 3300.0 +1500.0 1600.0 2200.0 2400.0 3000.0 3300.0 +1500.0 1700.0 2300.0 2700.0 3100.0 3300.0 +1400.0 1500.0 2000.0 2600.0 2900.0 3100.0 +1400.0 1500.0 2100.0 2500.0 2800.0 3100.0 +1400.0 1700.0 2200.0 2600.0 3000.0 3300.0 +1000.0 1500.0 2600.0 2800.0 3100.0 3400.0 +1300.0 1500.0 2500.0 2700.0 2900.0 3300.0 +1500.0 1600.0 2200.0 2600.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2400.0 2700.0 3200.0 +1700.0 1800.0 2100.0 2400.0 2600.0 3100.0 +1600.0 1700.0 2100.0 2400.0 2700.0 3200.0 +1600.0 1900.0 2300.0 2700.0 3000.0 3300.0 +1500.0 1600.0 2000.0 2400.0 3000.0 3300.0 +1600.0 1800.0 2300.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2400.0 2600.0 3200.0 3400.0 +1600.0 1800.0 2400.0 2600.0 3200.0 3400.0 +1700.0 1800.0 2300.0 2600.0 3000.0 3300.0 +1700.0 1800.0 2100.0 2500.0 2900.0 3200.0 +1800.0 1900.0 2100.0 2600.0 2800.0 3000.0 +1800.0 1900.0 2200.0 2600.0 2800.0 3000.0 +1800.0 1900.0 2200.0 2600.0 2900.0 3100.0 +1700.0 1800.0 2100.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2100.0 2700.0 2900.0 3100.0 +1400.0 1600.0 2100.0 2700.0 2900.0 3200.0 +1200.0 1600.0 2200.0 2400.0 3000.0 3300.0 +1600.0 1900.0 2300.0 2700.0 3100.0 3400.0 +1200.0 1800.0 2300.0 2700.0 3100.0 3300.0 +1600.0 2000.0 2400.0 2800.0 3100.0 3300.0 +1700.0 1900.0 2100.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2600.0 3100.0 3400.0 +1900.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1900.0 2100.0 2300.0 2700.0 3100.0 3300.0 +1200.0 1400.0 2200.0 2800.0 3000.0 3100.0 +1800.0 2100.0 2400.0 2700.0 3200.0 3400.0 +1600.0 2100.0 2500.0 2800.0 3100.0 3300.0 +1600.0 2000.0 2500.0 2800.0 3200.0 3300.0 +1700.0 2000.0 2500.0 2800.0 3200.0 3400.0 +1700.0 1900.0 2700.0 2800.0 3100.0 3400.0 +1600.0 1800.0 2400.0 2600.0 3100.0 3400.0 +1600.0 1800.0 2300.0 2500.0 3100.0 3400.0 +1600.0 1800.0 2200.0 2500.0 3100.0 3400.0 +1600.0 1800.0 2100.0 2300.0 3100.0 3400.0 +1500.0 1700.0 2000.0 2200.0 3000.0 3300.0 +1500.0 1600.0 1900.0 2000.0 3000.0 3200.0 +1300.0 1500.0 1700.0 1900.0 2800.0 3200.0 +1800.0 2000.0 2300.0 2600.0 3000.0 3200.0 +1700.0 2000.0 2200.0 2600.0 3000.0 3200.0 +1600.0 1900.0 2400.0 2600.0 3000.0 3300.0 +1300.0 1700.0 2100.0 2400.0 2900.0 3200.0 +1600.0 1800.0 2400.0 2600.0 3000.0 3300.0 +1300.0 1600.0 2200.0 2300.0 2900.0 3200.0 +1300.0 1400.0 2100.0 2200.0 3000.0 3200.0 +1300.0 1500.0 1800.0 2000.0 3000.0 3200.0 +1300.0 1400.0 1800.0 1900.0 2800.0 3200.0 +1300.0 1700.0 2200.0 2500.0 3000.0 3200.0 +1200.0 1800.0 2300.0 2600.0 3200.0 3300.0 +1400.0 1900.0 2300.0 2700.0 3100.0 3300.0 +1500.0 2000.0 2400.0 2600.0 3000.0 3300.0 +1600.0 2000.0 2500.0 2600.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2700.0 3100.0 3300.0 +1600.0 2000.0 2500.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2300.0 2600.0 2800.0 3200.0 +1300.0 1500.0 2000.0 2600.0 2700.0 3000.0 +1300.0 1500.0 2200.0 2600.0 2800.0 3100.0 +1400.0 1500.0 2100.0 2600.0 2800.0 3100.0 +1400.0 1500.0 2100.0 2600.0 2800.0 3000.0 +1500.0 1600.0 2000.0 2500.0 2700.0 3000.0 +1500.0 1700.0 2000.0 2500.0 2700.0 3000.0 +1600.0 1700.0 2000.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2100.0 2500.0 2900.0 3100.0 +1700.0 1900.0 2100.0 2500.0 2900.0 3000.0 +1800.0 2000.0 2200.0 2600.0 2800.0 3000.0 +1800.0 2100.0 2300.0 2600.0 2800.0 3100.0 +1800.0 2100.0 2300.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2200.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2300.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2300.0 2600.0 2800.0 3100.0 +1700.0 1900.0 2200.0 2600.0 2800.0 3000.0 +1700.0 1800.0 2100.0 2500.0 2700.0 3000.0 +1500.0 1700.0 2200.0 2400.0 2800.0 3300.0 +1500.0 1900.0 2300.0 2500.0 3100.0 3300.0 +1700.0 1800.0 2200.0 2800.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2700.0 3000.0 3200.0 +1900.0 2100.0 2400.0 2600.0 3000.0 3200.0 +2000.0 2200.0 2400.0 2700.0 3000.0 3200.0 +1900.0 2300.0 2400.0 2700.0 3100.0 3300.0 +1500.0 1600.0 1800.0 2000.0 3100.0 3300.0 +1200.0 1400.0 1900.0 2500.0 2900.0 3100.0 +1600.0 1700.0 2000.0 2100.0 2900.0 3300.0 +1700.0 1800.0 2100.0 2200.0 2900.0 3300.0 +1800.0 1900.0 2200.0 2300.0 3000.0 3300.0 +1900.0 2000.0 2200.0 2300.0 3100.0 3300.0 +2000.0 2100.0 2300.0 2500.0 3100.0 3400.0 +1900.0 2100.0 2300.0 2500.0 3000.0 3200.0 +1800.0 2000.0 2300.0 2400.0 2900.0 3200.0 +1900.0 2200.0 2600.0 2800.0 3100.0 3300.0 +2000.0 2400.0 2600.0 2700.0 3200.0 3400.0 +1800.0 2200.0 2600.0 2700.0 3100.0 3300.0 +1600.0 2100.0 2600.0 2700.0 3100.0 3300.0 +1600.0 2100.0 2500.0 2800.0 3200.0 3400.0 +1900.0 2200.0 2500.0 2800.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2800.0 3300.0 3400.0 +1700.0 1900.0 2600.0 2800.0 3100.0 3400.0 +1600.0 1700.0 2400.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2200.0 2500.0 2800.0 3200.0 +1400.0 1600.0 2300.0 2500.0 2900.0 3200.0 +1400.0 1500.0 2300.0 2600.0 2900.0 3200.0 +1300.0 1500.0 2400.0 2600.0 3000.0 3300.0 +1200.0 1400.0 2400.0 2600.0 2900.0 3300.0 +1200.0 1300.0 2300.0 2600.0 2800.0 3200.0 +1200.0 1300.0 2300.0 2600.0 2800.0 3100.0 +1200.0 1400.0 2300.0 2600.0 2800.0 3200.0 +1200.0 1400.0 2300.0 2500.0 2800.0 3200.0 +1200.0 1400.0 2300.0 2500.0 2700.0 3200.0 +1300.0 1400.0 2300.0 2500.0 2700.0 3200.0 +1300.0 1400.0 2300.0 2400.0 2900.0 3200.0 +1300.0 1600.0 2300.0 2400.0 2900.0 3200.0 +1600.0 1700.0 2200.0 2500.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2500.0 2900.0 3200.0 +1600.0 1800.0 2300.0 2400.0 2900.0 3200.0 +1600.0 1800.0 2200.0 2400.0 2900.0 3200.0 +1700.0 1900.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2300.0 2600.0 2900.0 3200.0 +1600.0 1800.0 2500.0 2700.0 2900.0 3200.0 +1600.0 1900.0 2500.0 2800.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2800.0 3000.0 3200.0 +1400.0 1700.0 2400.0 2700.0 2900.0 3200.0 +1400.0 1500.0 2200.0 2600.0 2800.0 3100.0 +1300.0 1500.0 2300.0 2600.0 2800.0 3100.0 +1200.0 1400.0 2300.0 2500.0 2700.0 3100.0 +1300.0 1600.0 2200.0 2600.0 3000.0 3300.0 +1200.0 1600.0 2500.0 2700.0 3100.0 3400.0 +1300.0 1800.0 2400.0 2700.0 3200.0 3400.0 +1300.0 1700.0 2300.0 2700.0 3100.0 3300.0 +1300.0 1700.0 2200.0 2500.0 3100.0 3300.0 +1300.0 1600.0 2200.0 2600.0 2900.0 3200.0 +1400.0 1600.0 2200.0 2700.0 2800.0 3100.0 +1600.0 1700.0 2200.0 2700.0 3100.0 3200.0 +1800.0 2000.0 2400.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2400.0 2800.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2300.0 2700.0 3000.0 3300.0 +1800.0 1900.0 2600.0 2800.0 3300.0 3400.0 +1900.0 2100.0 2300.0 2600.0 2900.0 3100.0 +1900.0 2200.0 2400.0 2700.0 3000.0 3100.0 +1800.0 2300.0 2400.0 2700.0 3000.0 3100.0 +1800.0 2300.0 2400.0 2600.0 3100.0 3200.0 +2000.0 2300.0 2400.0 2700.0 3100.0 3200.0 +2100.0 2300.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2100.0 2500.0 2700.0 3000.0 3200.0 +1900.0 2000.0 2300.0 2700.0 2900.0 3100.0 +1600.0 1800.0 2200.0 2500.0 2700.0 3000.0 +1500.0 1800.0 2300.0 2500.0 2700.0 3000.0 +1500.0 1800.0 2200.0 2500.0 2700.0 3000.0 +1600.0 1800.0 2300.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2400.0 2700.0 3000.0 3200.0 +1700.0 1800.0 2500.0 2700.0 3000.0 3200.0 +1700.0 1800.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1700.0 2400.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2400.0 2600.0 2800.0 3200.0 +1500.0 1700.0 2400.0 2500.0 2800.0 3200.0 +1400.0 1600.0 2400.0 2500.0 3000.0 3300.0 +1500.0 1700.0 2300.0 2400.0 2900.0 3200.0 +1500.0 1800.0 2200.0 2400.0 2800.0 3000.0 +1600.0 1900.0 2200.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2300.0 2600.0 2900.0 3000.0 +1600.0 2000.0 2300.0 2500.0 2900.0 3100.0 +1600.0 1800.0 2100.0 2300.0 2900.0 3100.0 +1300.0 1500.0 2200.0 2400.0 3000.0 3200.0 +1300.0 1500.0 2200.0 2400.0 2900.0 3200.0 +1300.0 1500.0 2200.0 2500.0 2900.0 3200.0 +1400.0 1500.0 2300.0 2500.0 2900.0 3200.0 +1600.0 1700.0 2100.0 2500.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2600.0 2800.0 3100.0 +1700.0 1800.0 2100.0 2500.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2600.0 2900.0 3100.0 +1700.0 1900.0 2300.0 2600.0 2900.0 3200.0 +1800.0 2100.0 2300.0 2600.0 2900.0 3200.0 +1800.0 2100.0 2300.0 2700.0 2900.0 3200.0 +1900.0 2200.0 2400.0 2700.0 2900.0 3200.0 +1900.0 2100.0 2300.0 2700.0 2900.0 3100.0 +1900.0 2000.0 2300.0 2600.0 2800.0 3100.0 +1900.0 2200.0 2500.0 2800.0 3100.0 3300.0 +1900.0 2200.0 2400.0 2800.0 3000.0 3200.0 +1900.0 2200.0 2400.0 2700.0 2900.0 3100.0 +1900.0 2300.0 2400.0 2800.0 3100.0 3200.0 +2000.0 2300.0 2500.0 2800.0 3100.0 3300.0 +1900.0 2400.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2000.0 2200.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2100.0 2400.0 2900.0 3200.0 +1500.0 1600.0 2200.0 2400.0 2700.0 3200.0 +1300.0 1400.0 2200.0 2500.0 2700.0 3200.0 +1200.0 1500.0 2500.0 2700.0 3000.0 3300.0 +1300.0 1600.0 2400.0 2600.0 3000.0 3300.0 +2000.0 2200.0 2600.0 2700.0 3000.0 3300.0 +2100.0 2300.0 2500.0 2700.0 3000.0 3300.0 +2100.0 2300.0 2600.0 2700.0 3000.0 3300.0 +2000.0 2200.0 2600.0 2700.0 3000.0 3200.0 +1800.0 2300.0 2500.0 2600.0 2900.0 3200.0 +1800.0 2300.0 2500.0 2700.0 2900.0 3100.0 +1800.0 2200.0 2400.0 2600.0 2900.0 3200.0 +1800.0 2200.0 2400.0 2600.0 2800.0 3100.0 +1800.0 2200.0 2300.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2200.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2800.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2800.0 3000.0 3300.0 +1600.0 1800.0 2300.0 2800.0 3000.0 3300.0 +1400.0 1700.0 2200.0 2500.0 2800.0 2900.0 +1400.0 1700.0 2100.0 2500.0 2900.0 3200.0 +1700.0 2000.0 2200.0 2800.0 3200.0 3300.0 +1800.0 1900.0 2200.0 2700.0 2900.0 3200.0 +1800.0 2000.0 2200.0 2700.0 2900.0 3100.0 +1800.0 2000.0 2200.0 2700.0 2800.0 3000.0 +1800.0 2000.0 2200.0 2700.0 2800.0 3100.0 +1600.0 1900.0 2100.0 2600.0 2900.0 3200.0 +2000.0 2100.0 2600.0 2900.0 3000.0 3200.0 +2000.0 2200.0 2700.0 2900.0 3100.0 3300.0 +2000.0 2200.0 2400.0 2800.0 3000.0 3200.0 +2000.0 2200.0 2300.0 2700.0 3000.0 3200.0 +1700.0 2200.0 2400.0 2600.0 2900.0 3100.0 +1800.0 2200.0 2400.0 2700.0 3000.0 3200.0 +1900.0 2300.0 2500.0 2700.0 3000.0 3200.0 +1900.0 2300.0 2500.0 2700.0 2900.0 3100.0 +1900.0 2300.0 2500.0 2800.0 3000.0 3200.0 +1900.0 2300.0 2500.0 2700.0 2900.0 3200.0 +1800.0 2200.0 2400.0 2700.0 2900.0 3100.0 +1800.0 2000.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1700.0 2100.0 2800.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2500.0 3000.0 3100.0 +1400.0 1800.0 2300.0 2500.0 3000.0 3100.0 +1400.0 1800.0 2300.0 2500.0 2900.0 3100.0 +1600.0 1800.0 2500.0 2800.0 3100.0 3200.0 +1700.0 2000.0 2400.0 2700.0 3200.0 3400.0 +1700.0 2000.0 2500.0 2800.0 3100.0 3400.0 +1500.0 1700.0 2300.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2200.0 2600.0 2800.0 3200.0 +1500.0 1700.0 2200.0 2600.0 2900.0 3300.0 +1400.0 1700.0 2200.0 2600.0 2900.0 3300.0 +1200.0 1500.0 2200.0 2300.0 3100.0 3400.0 +1200.0 1600.0 2300.0 2400.0 3200.0 3300.0 +1200.0 1700.0 2300.0 2400.0 3100.0 3300.0 +1100.0 1700.0 2400.0 2500.0 3100.0 3300.0 +1100.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1100.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1000.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1000.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1100.0 1600.0 2400.0 2500.0 3200.0 3300.0 +1100.0 1600.0 2300.0 2400.0 3200.0 3300.0 +1300.0 1600.0 2300.0 2500.0 3100.0 3300.0 +1400.0 1700.0 2300.0 2500.0 3100.0 3300.0 +2000.0 2100.0 2500.0 2600.0 3200.0 3400.0 +1700.0 2100.0 2600.0 2800.0 3100.0 3200.0 +1800.0 2200.0 2700.0 2900.0 3100.0 3300.0 +2100.0 2400.0 2700.0 2900.0 3200.0 3300.0 +2100.0 2500.0 2700.0 2900.0 3300.0 3400.0 +2100.0 2400.0 2600.0 2800.0 3200.0 3400.0 +1700.0 1900.0 2400.0 2600.0 2900.0 3000.0 +1600.0 1900.0 2400.0 2500.0 2800.0 2900.0 +1300.0 2000.0 2400.0 2500.0 2900.0 3200.0 +1500.0 2000.0 2400.0 2500.0 2900.0 3100.0 +1600.0 2000.0 2400.0 2600.0 3000.0 3100.0 +1700.0 1900.0 2500.0 2600.0 3100.0 3200.0 +1600.0 1800.0 2600.0 2700.0 3300.0 3400.0 +1500.0 1600.0 2600.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2600.0 2700.0 3200.0 3400.0 +1500.0 2100.0 2600.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2700.0 2900.0 3300.0 3400.0 +1700.0 2300.0 2700.0 2800.0 3300.0 3400.0 +1800.0 2300.0 2700.0 2800.0 3300.0 3400.0 +1400.0 1700.0 2500.0 2600.0 3000.0 3300.0 +1400.0 1800.0 2500.0 2600.0 3000.0 3300.0 +1800.0 2200.0 2700.0 2900.0 3300.0 3400.0 +1800.0 2300.0 2600.0 2900.0 3300.0 3400.0 +1400.0 1900.0 2500.0 2600.0 3200.0 3400.0 +1400.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1400.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1200.0 2000.0 2400.0 2700.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2500.0 3100.0 3200.0 +1200.0 1700.0 2300.0 2500.0 3000.0 3100.0 +1200.0 1800.0 2400.0 2500.0 3000.0 3100.0 +1100.0 2100.0 2300.0 2600.0 3000.0 3100.0 +1400.0 1800.0 2200.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2400.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2400.0 2600.0 3300.0 3400.0 +1600.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1600.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1500.0 2400.0 2700.0 2800.0 3100.0 3300.0 +1300.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1400.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1600.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1600.0 2100.0 2300.0 2500.0 3000.0 3100.0 +1800.0 2100.0 2400.0 2700.0 2900.0 3200.0 +1500.0 1700.0 2000.0 2600.0 3200.0 3300.0 +1400.0 1700.0 2000.0 2400.0 3200.0 3300.0 +1400.0 1900.0 2200.0 2500.0 3100.0 3300.0 +1500.0 1900.0 2200.0 2500.0 3100.0 3300.0 +1200.0 1900.0 2500.0 2600.0 3100.0 3300.0 +1000.0 1700.0 2600.0 2800.0 3300.0 3400.0 +1200.0 1500.0 2400.0 2700.0 2900.0 3200.0 +1700.0 2100.0 2400.0 2800.0 3200.0 3400.0 +1700.0 2000.0 2600.0 2800.0 3100.0 3400.0 +1700.0 2000.0 2600.0 2700.0 3000.0 3300.0 +1500.0 1700.0 2500.0 2700.0 3000.0 3300.0 +1600.0 2000.0 2600.0 2800.0 3100.0 3300.0 +1500.0 2000.0 2500.0 2800.0 3200.0 3400.0 +1400.0 1800.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2600.0 2900.0 3200.0 3400.0 +1700.0 2200.0 2600.0 2800.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1500.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1400.0 1800.0 2500.0 2700.0 3000.0 3300.0 +1300.0 1600.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1700.0 2500.0 2600.0 3300.0 3400.0 +1500.0 1700.0 2400.0 2500.0 3200.0 3400.0 +1900.0 2000.0 2300.0 2500.0 3200.0 3400.0 +1600.0 1900.0 2100.0 2500.0 3000.0 3200.0 +1600.0 2100.0 2500.0 2800.0 3200.0 3300.0 +1400.0 2000.0 2400.0 2700.0 3200.0 3300.0 +900.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1100.0 1600.0 2700.0 2800.0 3200.0 3400.0 +1200.0 1600.0 2600.0 2800.0 3200.0 3400.0 +1300.0 1700.0 2500.0 2700.0 3100.0 3300.0 +1400.0 1700.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1800.0 2300.0 2500.0 3100.0 3200.0 +1400.0 2100.0 2400.0 2600.0 2900.0 3100.0 +1300.0 2000.0 2400.0 2600.0 3100.0 3200.0 +1200.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2500.0 3100.0 3300.0 +1600.0 2000.0 2400.0 2600.0 3200.0 3400.0 +1800.0 2000.0 2300.0 2500.0 3100.0 3400.0 +1700.0 1900.0 2300.0 2400.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2400.0 2900.0 3300.0 +1600.0 1800.0 2300.0 2400.0 3000.0 3300.0 +1600.0 1700.0 2300.0 2400.0 3000.0 3300.0 +1600.0 1700.0 2300.0 2400.0 2800.0 3200.0 +1600.0 1700.0 2300.0 2400.0 2900.0 3300.0 +1500.0 1700.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1600.0 2500.0 2700.0 3100.0 3300.0 +1300.0 1500.0 2500.0 2700.0 3100.0 3300.0 +1300.0 1600.0 2400.0 2700.0 3000.0 3400.0 +1800.0 2300.0 2600.0 2800.0 3100.0 3300.0 +1800.0 2200.0 2500.0 2800.0 3100.0 3300.0 +1700.0 2100.0 2500.0 2700.0 3000.0 3300.0 +1600.0 1900.0 2500.0 2700.0 2900.0 3200.0 +1700.0 2000.0 2500.0 2700.0 3000.0 3200.0 +1700.0 2300.0 2600.0 2700.0 3200.0 3400.0 +1400.0 1700.0 1900.0 2200.0 3200.0 3300.0 +1200.0 1900.0 2100.0 2600.0 3100.0 3200.0 +1200.0 1900.0 2200.0 2700.0 3100.0 3200.0 +1200.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1100.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1200.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1200.0 1800.0 2300.0 2600.0 3200.0 3400.0 +1200.0 1600.0 2400.0 2700.0 3200.0 3400.0 +1200.0 1500.0 2400.0 2600.0 3000.0 3200.0 +1300.0 1500.0 2100.0 2500.0 2700.0 3000.0 +1200.0 1800.0 2400.0 2600.0 3100.0 3200.0 +1200.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1700.0 2400.0 2700.0 3100.0 3300.0 3400.0 +2000.0 2500.0 2700.0 3100.0 3400.0 3500.0 +1900.0 2400.0 2700.0 3100.0 3400.0 3500.0 +1900.0 2200.0 2700.0 3100.0 3300.0 3400.0 +1800.0 2200.0 2700.0 3100.0 3300.0 3400.0 +1500.0 1700.0 2100.0 2500.0 3200.0 3300.0 +1400.0 1800.0 2100.0 2600.0 3200.0 3300.0 +1200.0 1700.0 2000.0 2300.0 3300.0 3400.0 +1300.0 1500.0 1600.0 2300.0 3100.0 3200.0 +1500.0 1900.0 2400.0 2600.0 3000.0 3300.0 +1500.0 2000.0 2400.0 2500.0 2800.0 3200.0 +1400.0 2000.0 2400.0 2500.0 2900.0 3200.0 +1300.0 1600.0 1700.0 2300.0 3300.0 3400.0 +1300.0 1600.0 1700.0 2100.0 3200.0 3400.0 +2000.0 2200.0 2500.0 2900.0 3300.0 3400.0 +2100.0 2300.0 2500.0 2700.0 3300.0 3400.0 +1900.0 2200.0 2400.0 2700.0 3300.0 3400.0 +1500.0 1900.0 2200.0 2400.0 3000.0 3300.0 +1500.0 1900.0 2400.0 2700.0 3300.0 3400.0 +1500.0 1700.0 2500.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2500.0 2600.0 3100.0 3400.0 +1600.0 2000.0 2400.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2600.0 3000.0 3100.0 +1500.0 1800.0 2200.0 2600.0 3000.0 3100.0 +1500.0 1900.0 2400.0 2500.0 3000.0 3200.0 +1200.0 1500.0 2400.0 2600.0 3200.0 3300.0 +1500.0 2000.0 2500.0 2700.0 3100.0 3300.0 +1700.0 2100.0 2500.0 2900.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1400.0 2000.0 2300.0 2500.0 3200.0 3400.0 +1200.0 1900.0 2200.0 2400.0 3300.0 3400.0 +1200.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1200.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1200.0 1700.0 2300.0 2400.0 3300.0 3400.0 +1200.0 1600.0 2200.0 2300.0 3300.0 3400.0 +1200.0 1600.0 2200.0 2400.0 3300.0 3400.0 +1300.0 1600.0 2100.0 2400.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2600.0 2900.0 3200.0 +2100.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1600.0 1800.0 2300.0 2500.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2500.0 3100.0 3300.0 +1400.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1800.0 2400.0 2600.0 3100.0 3300.0 +1300.0 1800.0 2400.0 2700.0 3200.0 3300.0 +1100.0 1800.0 2400.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2500.0 2600.0 2900.0 3200.0 +1500.0 2100.0 2500.0 2600.0 2900.0 3200.0 +1500.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1300.0 1900.0 2400.0 2800.0 3100.0 3300.0 +1300.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1300.0 1800.0 2600.0 2700.0 3100.0 3400.0 +1300.0 1700.0 2600.0 2700.0 3100.0 3300.0 +1300.0 1700.0 2600.0 2700.0 3100.0 3400.0 +1400.0 1900.0 2400.0 2600.0 2900.0 3100.0 +1500.0 1800.0 2300.0 2600.0 2900.0 3100.0 +1600.0 1900.0 2400.0 2600.0 3000.0 3200.0 +1700.0 2000.0 2600.0 2900.0 3100.0 3300.0 +1800.0 2300.0 2500.0 2800.0 3200.0 3400.0 +1900.0 2300.0 2600.0 2900.0 3300.0 3400.0 +1600.0 1900.0 2500.0 2600.0 3000.0 3100.0 +1600.0 1900.0 2500.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2200.0 2500.0 3200.0 3300.0 +1500.0 1900.0 2200.0 2500.0 3300.0 3400.0 +1500.0 1800.0 2200.0 2400.0 3200.0 3400.0 +1500.0 1800.0 2100.0 2400.0 3200.0 3400.0 +1600.0 1800.0 2100.0 2200.0 3200.0 3400.0 +1700.0 1800.0 2100.0 2400.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2400.0 2700.0 3100.0 +1600.0 1900.0 2400.0 2500.0 3000.0 3300.0 +1600.0 2100.0 2500.0 2600.0 3200.0 3400.0 +1200.0 2000.0 2400.0 2500.0 3400.0 3500.0 +1200.0 1600.0 2300.0 2400.0 3200.0 3400.0 +1400.0 1900.0 2400.0 2500.0 3000.0 3200.0 +1300.0 1800.0 2100.0 2500.0 3100.0 3300.0 +1300.0 1700.0 2300.0 2500.0 3100.0 3300.0 +1300.0 1700.0 2200.0 2400.0 3200.0 3300.0 +1300.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1700.0 1900.0 2400.0 2600.0 3300.0 3400.0 +1700.0 1900.0 2500.0 2700.0 3000.0 3100.0 +1700.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2500.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2400.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2400.0 2600.0 3100.0 3300.0 +1500.0 1700.0 2400.0 2600.0 3100.0 3300.0 +1300.0 1700.0 2400.0 2600.0 3100.0 3300.0 +1300.0 1700.0 2400.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2300.0 2600.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2600.0 3300.0 3400.0 +1500.0 1800.0 2300.0 2500.0 3300.0 3400.0 +1500.0 1700.0 2200.0 2400.0 3300.0 3400.0 +1800.0 2200.0 2400.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2600.0 3200.0 3300.0 +1900.0 2000.0 2200.0 2500.0 3300.0 3400.0 +1900.0 2100.0 2300.0 2600.0 3300.0 3400.0 +1800.0 1900.0 2200.0 2600.0 3100.0 3300.0 +1100.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1000.0 1700.0 2700.0 2800.0 3200.0 3300.0 +1000.0 1800.0 2600.0 2700.0 3000.0 3100.0 +1200.0 2000.0 2600.0 2800.0 3200.0 3300.0 +1200.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1200.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1200.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1300.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1300.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1400.0 1900.0 2300.0 2600.0 3300.0 3400.0 +2200.0 2400.0 2500.0 2900.0 3200.0 3300.0 +2100.0 2200.0 2400.0 2800.0 3200.0 3300.0 +2000.0 2200.0 2400.0 2800.0 3200.0 3300.0 +1900.0 2100.0 2400.0 2800.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2400.0 2800.0 3000.0 +1600.0 1900.0 2300.0 2400.0 2900.0 3300.0 +1800.0 2100.0 2400.0 2500.0 3100.0 3200.0 +1800.0 2300.0 2500.0 2700.0 3200.0 3300.0 +1800.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1500.0 1900.0 2100.0 2700.0 3000.0 3100.0 +1500.0 1700.0 1800.0 2600.0 3300.0 3400.0 +1500.0 1700.0 1800.0 2500.0 3300.0 3400.0 +1300.0 1500.0 1600.0 2500.0 3200.0 3300.0 +1300.0 1500.0 1700.0 2400.0 3000.0 3100.0 +1600.0 2000.0 2500.0 2700.0 3300.0 3400.0 +2000.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1800.0 2000.0 2200.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2100.0 2600.0 3200.0 3300.0 +1700.0 2000.0 2100.0 2700.0 3200.0 3300.0 +1700.0 2100.0 2200.0 2700.0 3200.0 3300.0 +1700.0 2200.0 2400.0 2700.0 3200.0 3300.0 +1700.0 2200.0 2400.0 2600.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2600.0 3200.0 3300.0 +1800.0 2400.0 2600.0 3000.0 3300.0 3400.0 +1800.0 2400.0 2800.0 3100.0 3300.0 3400.0 +1900.0 2400.0 2800.0 3100.0 3300.0 3500.0 +1900.0 2300.0 2800.0 3000.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2600.0 3000.0 3100.0 +1500.0 1700.0 1900.0 2500.0 3300.0 3400.0 +1200.0 1700.0 2200.0 2300.0 3100.0 3300.0 +1100.0 1500.0 2300.0 2400.0 3000.0 3300.0 +1200.0 1600.0 2300.0 2400.0 3100.0 3300.0 +1200.0 1600.0 2300.0 2400.0 3100.0 3400.0 +1300.0 1600.0 2200.0 2400.0 3200.0 3300.0 +1500.0 1600.0 2100.0 2400.0 3000.0 3300.0 +1600.0 1700.0 2100.0 2400.0 3100.0 3300.0 +1500.0 1600.0 2100.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2200.0 2600.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2200.0 2500.0 2900.0 3200.0 +1300.0 1600.0 2200.0 2600.0 3000.0 3200.0 +1700.0 2000.0 2400.0 2800.0 3000.0 3100.0 +1700.0 2100.0 2400.0 2700.0 3000.0 3100.0 +1800.0 2200.0 2500.0 2800.0 3000.0 3200.0 +1700.0 2100.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2200.0 2500.0 2700.0 3200.0 3400.0 +1600.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2400.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2300.0 3300.0 3400.0 +1400.0 1600.0 1800.0 2200.0 3300.0 3400.0 +1500.0 1600.0 1900.0 2600.0 3000.0 3200.0 +1500.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1200.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1900.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1800.0 2100.0 2300.0 2600.0 3300.0 3400.0 +1700.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1600.0 2100.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1500.0 2100.0 2500.0 2600.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2500.0 2900.0 3100.0 +1800.0 2000.0 2500.0 2800.0 3000.0 3200.0 +1400.0 1600.0 2100.0 2600.0 3000.0 3300.0 +1700.0 2000.0 2400.0 2700.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1700.0 2100.0 2600.0 2700.0 3000.0 3300.0 +1800.0 2100.0 2500.0 2700.0 3100.0 3200.0 +2200.0 2300.0 2500.0 2800.0 3200.0 3300.0 +2100.0 2300.0 2500.0 2800.0 3200.0 3300.0 +2000.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2400.0 2700.0 3100.0 3400.0 +1300.0 1800.0 2100.0 2500.0 3100.0 3200.0 +1300.0 1800.0 2200.0 2800.0 3100.0 3200.0 +1300.0 2000.0 2200.0 2600.0 3200.0 3300.0 +1900.0 2100.0 2400.0 2500.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1500.0 1900.0 2400.0 2600.0 3300.0 3400.0 +1500.0 1800.0 2400.0 2600.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2600.0 3200.0 3400.0 +1400.0 1700.0 2400.0 2600.0 3100.0 3300.0 +1400.0 1900.0 2500.0 2600.0 2900.0 3200.0 +1400.0 1900.0 2400.0 2700.0 3000.0 3200.0 +1400.0 1900.0 2400.0 2600.0 3000.0 3100.0 +1400.0 1900.0 2300.0 2500.0 2700.0 3000.0 +1300.0 1800.0 2200.0 2500.0 3300.0 3400.0 +1300.0 1800.0 2200.0 2400.0 3300.0 3400.0 +1300.0 1700.0 2100.0 2400.0 3200.0 3400.0 +1400.0 1900.0 2300.0 2600.0 3100.0 3300.0 +1900.0 2200.0 2400.0 2800.0 3100.0 3200.0 +1600.0 2200.0 2400.0 2700.0 3300.0 3400.0 +1600.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1700.0 2000.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2300.0 2500.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2400.0 3200.0 3300.0 +1800.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1900.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2500.0 2600.0 3100.0 3300.0 +1400.0 1900.0 2300.0 2500.0 2800.0 3200.0 +1400.0 1900.0 2300.0 2500.0 2900.0 3300.0 +1400.0 1600.0 2300.0 2500.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2500.0 3100.0 3200.0 +2000.0 2200.0 2500.0 2700.0 3000.0 3300.0 +1600.0 2100.0 2600.0 2900.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2500.0 3100.0 3200.0 +1200.0 2100.0 2600.0 2700.0 3200.0 3300.0 +1100.0 2100.0 2600.0 2800.0 3200.0 3300.0 +1000.0 2000.0 2800.0 2900.0 3100.0 3200.0 +1600.0 1900.0 2100.0 2500.0 3000.0 3100.0 +1700.0 1900.0 2200.0 2500.0 3000.0 3100.0 +1700.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1400.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1300.0 2000.0 2200.0 2400.0 3100.0 3200.0 +1200.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1200.0 1800.0 2300.0 2600.0 3100.0 3200.0 +1300.0 1600.0 2300.0 2700.0 3100.0 3200.0 +1300.0 1700.0 2300.0 2700.0 3100.0 3200.0 +1100.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1300.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1800.0 2100.0 2600.0 3300.0 3400.0 +1500.0 1900.0 2100.0 2500.0 2800.0 3000.0 +1500.0 2000.0 2200.0 2500.0 3000.0 3100.0 +1500.0 2000.0 2200.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1600.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2600.0 2900.0 3100.0 +1900.0 2300.0 2600.0 2800.0 3100.0 3200.0 +2000.0 2400.0 2700.0 2800.0 3100.0 3200.0 +1300.0 1800.0 2000.0 2400.0 3100.0 3200.0 +1100.0 1700.0 2100.0 2400.0 3100.0 3200.0 +1300.0 1600.0 2100.0 2500.0 3000.0 3100.0 +1200.0 1700.0 2200.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2100.0 2300.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2200.0 3200.0 3300.0 +1700.0 1900.0 2100.0 2300.0 3200.0 3300.0 +1800.0 1900.0 2400.0 2800.0 3100.0 3200.0 +2000.0 2300.0 2800.0 3000.0 3100.0 3300.0 +2100.0 2300.0 2700.0 3000.0 3200.0 3300.0 +2100.0 2300.0 2600.0 2900.0 3200.0 3300.0 +2200.0 2400.0 2700.0 2800.0 3200.0 3300.0 +1700.0 2000.0 2300.0 2500.0 3000.0 3100.0 +1600.0 2000.0 2300.0 2400.0 2800.0 3200.0 +1700.0 2100.0 2300.0 2400.0 2900.0 3200.0 +1400.0 1800.0 2300.0 2600.0 3000.0 3300.0 +1500.0 2200.0 2400.0 2700.0 3100.0 3200.0 +1500.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1600.0 2400.0 2500.0 3100.0 3400.0 +1600.0 2200.0 2500.0 2800.0 3300.0 3400.0 +1600.0 2000.0 2500.0 2800.0 3300.0 3400.0 +1400.0 1700.0 2400.0 2500.0 3200.0 3400.0 +1400.0 1600.0 2400.0 2600.0 3200.0 3300.0 +1400.0 1700.0 2300.0 2500.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2400.0 2800.0 3200.0 +1500.0 2000.0 2300.0 2400.0 2700.0 3200.0 +1400.0 1900.0 2300.0 2500.0 3000.0 3300.0 +1200.0 1400.0 2300.0 2600.0 2900.0 3100.0 +1500.0 2000.0 2300.0 2500.0 3000.0 3200.0 +1800.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1500.0 1800.0 2400.0 2600.0 3000.0 3200.0 +1200.0 1500.0 2200.0 2400.0 3000.0 3100.0 +1500.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1700.0 2000.0 2600.0 2800.0 3200.0 3300.0 +1500.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1700.0 1800.0 2000.0 2300.0 3000.0 3100.0 +1600.0 1900.0 2300.0 2500.0 2800.0 3100.0 +1600.0 1800.0 2300.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1700.0 2200.0 2400.0 3000.0 3300.0 +1500.0 1700.0 2300.0 2500.0 3200.0 3400.0 +1500.0 1700.0 2300.0 2400.0 2800.0 3300.0 +1600.0 1700.0 2200.0 2400.0 2600.0 3200.0 +1700.0 1800.0 2200.0 2400.0 2900.0 3300.0 +1900.0 2100.0 2400.0 2500.0 3100.0 3300.0 +1900.0 2000.0 2400.0 2500.0 3100.0 3300.0 +1900.0 2300.0 2500.0 2900.0 3200.0 3300.0 +2200.0 2400.0 2700.0 3100.0 3300.0 3400.0 +2200.0 2400.0 2800.0 3100.0 3300.0 3400.0 +1500.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2300.0 3100.0 3300.0 +1700.0 2000.0 2600.0 2900.0 3200.0 3400.0 +1500.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1300.0 1600.0 2000.0 2500.0 3000.0 3200.0 +1800.0 2000.0 2200.0 2500.0 3000.0 3100.0 +1200.0 1800.0 2200.0 2400.0 3100.0 3200.0 +1300.0 1500.0 2100.0 2200.0 3100.0 3200.0 +1400.0 1900.0 2200.0 2300.0 3200.0 3300.0 +1900.0 2300.0 2600.0 3000.0 3200.0 3400.0 +1900.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2600.0 2900.0 3100.0 3300.0 +1200.0 1500.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1900.0 2300.0 2400.0 2600.0 3100.0 +1500.0 1600.0 2100.0 2400.0 2900.0 3200.0 +1400.0 1600.0 2200.0 2600.0 2900.0 3200.0 +1700.0 1800.0 2100.0 2300.0 3000.0 3100.0 +1700.0 1900.0 2100.0 2300.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2300.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2300.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2300.0 3100.0 3300.0 +1700.0 2100.0 2400.0 2900.0 3300.0 3400.0 +1600.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1500.0 2000.0 2400.0 2600.0 3100.0 3200.0 +1600.0 2000.0 2300.0 2500.0 2800.0 3000.0 +1500.0 1700.0 1800.0 2200.0 2800.0 2900.0 +1500.0 1700.0 1900.0 2100.0 2700.0 2800.0 +1600.0 2000.0 2300.0 2500.0 3000.0 3300.0 +1900.0 2300.0 2500.0 2800.0 3100.0 3200.0 +2200.0 2400.0 2600.0 3000.0 3200.0 3300.0 +2300.0 2500.0 2800.0 3100.0 3300.0 3400.0 +1900.0 2400.0 2700.0 3000.0 3400.0 3500.0 +1900.0 2400.0 2600.0 3000.0 3400.0 3500.0 +1800.0 2300.0 2700.0 3100.0 3400.0 3500.0 +1800.0 2300.0 2700.0 3000.0 3300.0 3400.0 +1400.0 1700.0 2200.0 2500.0 3200.0 3400.0 +1600.0 1900.0 2500.0 2600.0 3100.0 3300.0 +2000.0 2300.0 2600.0 2800.0 3300.0 3400.0 +1900.0 2200.0 2500.0 2800.0 3300.0 3400.0 +1700.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1600.0 1700.0 2300.0 2500.0 3200.0 3400.0 +1600.0 1700.0 2300.0 2400.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2600.0 3300.0 3400.0 +1500.0 1700.0 2300.0 2700.0 3300.0 3400.0 +1400.0 1800.0 2300.0 2400.0 3100.0 3400.0 +1500.0 2000.0 2300.0 2400.0 2900.0 3200.0 +1500.0 1900.0 2300.0 2400.0 2800.0 3200.0 +1300.0 1800.0 2200.0 2500.0 3000.0 3100.0 +1200.0 1700.0 2200.0 2300.0 3200.0 3300.0 +1200.0 1700.0 2200.0 2400.0 3200.0 3300.0 +1100.0 1700.0 2200.0 2400.0 3200.0 3300.0 +1100.0 1700.0 2300.0 2500.0 3100.0 3200.0 +1100.0 1700.0 2300.0 2600.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2600.0 3000.0 3200.0 +1300.0 1900.0 2300.0 2600.0 3000.0 3300.0 +1300.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1400.0 2000.0 2500.0 2800.0 3200.0 3300.0 +1200.0 1600.0 2400.0 2700.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2500.0 3100.0 3200.0 +1500.0 1600.0 2200.0 2600.0 3000.0 3200.0 +1500.0 1600.0 2200.0 2500.0 3000.0 3300.0 +1200.0 1600.0 2400.0 2600.0 3200.0 3400.0 +1000.0 2300.0 2800.0 2900.0 3100.0 3200.0 +900.0 1700.0 2700.0 2800.0 3200.0 3300.0 +1500.0 1700.0 2400.0 2500.0 3100.0 3200.0 +1500.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1400.0 1900.0 2400.0 2500.0 2900.0 3100.0 +1600.0 2100.0 2400.0 2600.0 3000.0 3100.0 +1700.0 1900.0 2300.0 2500.0 3000.0 3100.0 +2100.0 2400.0 2600.0 2900.0 3100.0 3300.0 +2200.0 2400.0 2700.0 2900.0 3200.0 3300.0 +2100.0 2200.0 2700.0 2800.0 3100.0 3300.0 +2000.0 2100.0 2300.0 2600.0 3100.0 3300.0 +1800.0 2000.0 2100.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2500.0 2900.0 3000.0 +1800.0 1900.0 2300.0 2400.0 3000.0 3100.0 +1800.0 1900.0 2200.0 2400.0 3000.0 3100.0 +1800.0 2000.0 2200.0 2500.0 3100.0 3200.0 +1800.0 2000.0 2300.0 2800.0 3100.0 3200.0 +1800.0 2000.0 2400.0 2800.0 3100.0 3200.0 +1800.0 2000.0 2400.0 2800.0 3000.0 3100.0 +1700.0 1900.0 2300.0 2700.0 2900.0 3100.0 +1700.0 1900.0 2200.0 2700.0 2900.0 3100.0 +1600.0 1800.0 2000.0 2600.0 2800.0 3000.0 +1500.0 1700.0 2000.0 2500.0 2900.0 3100.0 +1700.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2400.0 3100.0 3300.0 +1800.0 2000.0 2300.0 2500.0 3000.0 3100.0 +1800.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1400.0 1600.0 2100.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2000.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2000.0 2400.0 3200.0 3300.0 +1200.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1100.0 1700.0 2100.0 2300.0 3000.0 3100.0 +1300.0 1500.0 1700.0 2000.0 2900.0 3100.0 +1600.0 1900.0 2200.0 2400.0 2900.0 3100.0 +1700.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1700.0 1800.0 2100.0 2500.0 3100.0 3300.0 +2000.0 2300.0 2500.0 2700.0 3100.0 3400.0 +1900.0 2200.0 2500.0 2600.0 3000.0 3300.0 +1900.0 2000.0 2300.0 2400.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2400.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2400.0 3000.0 3100.0 +1500.0 1600.0 2500.0 2600.0 2900.0 3300.0 +1500.0 1700.0 2500.0 2600.0 3100.0 3200.0 +1900.0 2300.0 2500.0 2800.0 3200.0 3300.0 +1400.0 1600.0 2000.0 2600.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2600.0 3000.0 3100.0 +1800.0 1900.0 2400.0 2900.0 3100.0 3300.0 +1800.0 1900.0 2500.0 2900.0 3100.0 3300.0 +1600.0 1800.0 2100.0 2700.0 3000.0 3200.0 +1700.0 2000.0 2300.0 2700.0 2900.0 3200.0 +1600.0 2000.0 2400.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2300.0 2500.0 3300.0 3400.0 +1400.0 1600.0 2200.0 2400.0 3100.0 3300.0 +1500.0 1600.0 2200.0 2500.0 3200.0 3400.0 +1600.0 1700.0 2300.0 2400.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2500.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2500.0 3200.0 3300.0 +1700.0 2100.0 2300.0 2400.0 3100.0 3300.0 +1600.0 2000.0 2400.0 2500.0 3000.0 3300.0 +1500.0 1800.0 2300.0 2400.0 2900.0 3200.0 +1600.0 2000.0 2400.0 2800.0 3200.0 3400.0 +1900.0 2200.0 2600.0 2800.0 3200.0 3400.0 +1900.0 2200.0 2500.0 2800.0 3100.0 3400.0 +1300.0 1800.0 2400.0 2600.0 3100.0 3400.0 +1300.0 1500.0 2400.0 2500.0 2900.0 3300.0 +1300.0 1700.0 2500.0 2600.0 3100.0 3200.0 +1300.0 1700.0 2600.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1700.0 1900.0 2100.0 2600.0 3200.0 3300.0 +1700.0 2000.0 2100.0 2300.0 3200.0 3300.0 +2000.0 2100.0 2400.0 2600.0 3200.0 3400.0 +2100.0 2200.0 2500.0 2700.0 3200.0 3400.0 +1800.0 1900.0 2500.0 2700.0 3200.0 3400.0 +1700.0 2000.0 2500.0 2700.0 3300.0 3400.0 +1400.0 1900.0 2500.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1600.0 2000.0 2300.0 2600.0 3000.0 3200.0 +1600.0 1900.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2100.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2200.0 2500.0 2700.0 3100.0 +1400.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1300.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1300.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1800.0 2100.0 2500.0 2700.0 3000.0 3300.0 +1800.0 2100.0 2400.0 2700.0 3100.0 3300.0 +1900.0 2100.0 2500.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2400.0 3200.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1900.0 2000.0 2700.0 2800.0 3200.0 3400.0 +1900.0 2000.0 2600.0 2900.0 3100.0 3300.0 +2000.0 2200.0 2800.0 2900.0 3300.0 3400.0 +2000.0 2100.0 2700.0 2800.0 3300.0 3400.0 +1900.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1600.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1400.0 1900.0 2100.0 2400.0 3200.0 3300.0 +1200.0 1900.0 2100.0 2400.0 3100.0 3200.0 +1200.0 1800.0 2100.0 2500.0 2900.0 3200.0 +1300.0 1700.0 1900.0 2400.0 2800.0 2900.0 +1900.0 2300.0 2600.0 3000.0 3200.0 3300.0 +1800.0 2300.0 2600.0 3000.0 3300.0 3400.0 +1800.0 2200.0 2500.0 2800.0 3300.0 3500.0 +1700.0 1900.0 2300.0 2400.0 3200.0 3400.0 +1800.0 1900.0 2400.0 2500.0 3100.0 3300.0 +2100.0 2200.0 2400.0 2500.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2800.0 3100.0 3200.0 +2000.0 2300.0 2600.0 2700.0 3100.0 3300.0 +2100.0 2200.0 2500.0 2600.0 3100.0 3300.0 +2000.0 2200.0 2300.0 2500.0 3100.0 3300.0 +1800.0 1900.0 2100.0 2300.0 3200.0 3300.0 +1800.0 1900.0 2100.0 2400.0 3300.0 3400.0 +1700.0 1800.0 2200.0 2300.0 3300.0 3400.0 +1700.0 1800.0 2200.0 2300.0 3200.0 3400.0 +1600.0 1700.0 2200.0 2300.0 2900.0 3400.0 +1400.0 1600.0 2500.0 2600.0 3100.0 3200.0 +1300.0 1400.0 2400.0 2600.0 3000.0 3100.0 +1300.0 1500.0 2400.0 2500.0 3000.0 3200.0 +1300.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1300.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2400.0 3300.0 3400.0 +1000.0 1500.0 2500.0 2600.0 3200.0 3400.0 +1000.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1700.0 2200.0 2600.0 3000.0 3200.0 +900.0 1800.0 2400.0 2600.0 3300.0 3400.0 +900.0 1800.0 2300.0 2400.0 3300.0 3400.0 +1000.0 1600.0 2300.0 2400.0 3300.0 3400.0 +1400.0 1900.0 2200.0 2600.0 3300.0 3400.0 +1500.0 1900.0 2300.0 2600.0 3300.0 3400.0 +1300.0 2000.0 2200.0 2500.0 3000.0 3200.0 +1100.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1100.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1100.0 1900.0 2400.0 2700.0 3200.0 3300.0 +1300.0 2000.0 2200.0 2400.0 3200.0 3300.0 +1800.0 2100.0 2400.0 2800.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2700.0 3300.0 3400.0 +1700.0 2000.0 2300.0 2700.0 3200.0 3400.0 +1200.0 1600.0 2500.0 2600.0 3200.0 3400.0 +1100.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1500.0 1600.0 2400.0 2700.0 2900.0 3200.0 +1500.0 1800.0 2500.0 2700.0 3100.0 3400.0 +1600.0 1900.0 2600.0 2800.0 3100.0 3300.0 +1700.0 1800.0 2600.0 2700.0 3000.0 3300.0 +1700.0 1800.0 2500.0 2600.0 2900.0 3200.0 +1700.0 1800.0 2500.0 2600.0 3000.0 3300.0 +1600.0 1700.0 2500.0 2600.0 3000.0 3300.0 +1700.0 2000.0 2400.0 2700.0 3100.0 3400.0 +1700.0 1800.0 2400.0 2600.0 2900.0 3200.0 +1800.0 1900.0 2500.0 2600.0 2900.0 3200.0 +1700.0 1800.0 2200.0 2500.0 2700.0 3200.0 +1700.0 1800.0 2300.0 2500.0 2800.0 3200.0 +1500.0 1600.0 2000.0 2400.0 2600.0 2900.0 +1200.0 1300.0 2100.0 2400.0 2600.0 3200.0 +1700.0 2200.0 2500.0 2900.0 3200.0 3400.0 +1700.0 2200.0 2600.0 2900.0 3400.0 3500.0 +1700.0 2100.0 2700.0 2900.0 3400.0 3500.0 +1500.0 1800.0 2400.0 2600.0 3100.0 3300.0 +1100.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1700.0 2600.0 2700.0 3200.0 3400.0 +1400.0 1900.0 2600.0 2800.0 3200.0 3300.0 +1600.0 2000.0 2500.0 2900.0 3300.0 3400.0 +1500.0 1700.0 2500.0 2700.0 3100.0 3300.0 +1800.0 2000.0 2500.0 2700.0 2900.0 3300.0 +1900.0 2000.0 2600.0 2700.0 2900.0 3300.0 +1900.0 2100.0 2400.0 2700.0 2900.0 3200.0 +1900.0 2000.0 2500.0 2700.0 3000.0 3300.0 +1900.0 2000.0 2400.0 2700.0 3000.0 3300.0 +1700.0 1900.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1900.0 2500.0 2600.0 3200.0 3500.0 +1900.0 2100.0 2600.0 2900.0 3200.0 3400.0 +2100.0 2300.0 2700.0 2900.0 3200.0 3300.0 +1600.0 2000.0 2200.0 2400.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2400.0 2900.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2800.0 3200.0 +1900.0 2200.0 2500.0 2700.0 3000.0 3200.0 +1900.0 2300.0 2600.0 2700.0 3100.0 3200.0 +1800.0 2400.0 2600.0 2900.0 3200.0 3300.0 +1800.0 2300.0 2500.0 2900.0 3200.0 3300.0 +1600.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1500.0 1700.0 2200.0 2400.0 2900.0 3200.0 +1500.0 1600.0 2200.0 2300.0 2800.0 3200.0 +1400.0 1500.0 2100.0 2200.0 2800.0 3200.0 +1400.0 1500.0 2100.0 2300.0 2800.0 3200.0 +1400.0 1500.0 2200.0 2400.0 2700.0 3100.0 +1700.0 1900.0 2400.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2400.0 2700.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2700.0 2900.0 3300.0 +2000.0 2100.0 2400.0 2700.0 3000.0 3300.0 +1400.0 1600.0 2500.0 2700.0 3100.0 3400.0 +1000.0 1600.0 2300.0 2400.0 3100.0 3200.0 +1100.0 1700.0 2400.0 2500.0 3200.0 3300.0 +1200.0 1700.0 2300.0 2400.0 3100.0 3200.0 +2000.0 2100.0 2400.0 2500.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1400.0 1600.0 2300.0 2400.0 3100.0 3300.0 +1300.0 1500.0 2300.0 2500.0 3000.0 3300.0 +1300.0 1500.0 2300.0 2500.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2400.0 2500.0 3000.0 3200.0 +1900.0 2400.0 2600.0 3000.0 3200.0 3300.0 +1400.0 1500.0 2400.0 2600.0 2900.0 3300.0 +1400.0 1500.0 2200.0 2600.0 2800.0 3300.0 +1400.0 1500.0 2200.0 2500.0 2800.0 3200.0 +1400.0 1500.0 2300.0 2500.0 3000.0 3300.0 +1600.0 2000.0 2400.0 2700.0 3200.0 3400.0 +1700.0 2200.0 2600.0 2800.0 3100.0 3300.0 +1800.0 2100.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2300.0 3000.0 3300.0 +1600.0 1700.0 2200.0 2500.0 3200.0 3400.0 +1600.0 1800.0 2300.0 2400.0 3100.0 3300.0 +1700.0 1800.0 2200.0 2400.0 3000.0 3300.0 +1700.0 1800.0 2200.0 2300.0 3000.0 3200.0 +1700.0 1800.0 2200.0 2300.0 3100.0 3300.0 +1700.0 2000.0 2200.0 2600.0 3200.0 3300.0 +1800.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1600.0 1700.0 2100.0 2400.0 2900.0 3200.0 +1500.0 1800.0 2300.0 2700.0 3000.0 3300.0 +1500.0 1800.0 2200.0 2600.0 3000.0 3300.0 +1700.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2600.0 2800.0 3200.0 3400.0 +1800.0 1900.0 2500.0 2800.0 3100.0 3300.0 +1600.0 1800.0 2500.0 2600.0 3000.0 3300.0 +1200.0 1500.0 2500.0 2700.0 3100.0 3200.0 +1100.0 1900.0 2500.0 2600.0 3100.0 3200.0 +1200.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1500.0 1700.0 2100.0 2200.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2200.0 3300.0 3400.0 +1500.0 1600.0 1800.0 2000.0 3300.0 3400.0 +1400.0 1600.0 1800.0 1900.0 3300.0 3400.0 +1400.0 1600.0 2400.0 2600.0 3000.0 3400.0 +1400.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1500.0 1700.0 2400.0 2700.0 3100.0 3300.0 +1500.0 1800.0 2500.0 2700.0 3000.0 3300.0 +1400.0 1500.0 2400.0 2600.0 3000.0 3300.0 +1200.0 1400.0 2300.0 2400.0 3000.0 3200.0 +1200.0 1600.0 2300.0 2400.0 3100.0 3200.0 +1400.0 2000.0 2400.0 2700.0 3100.0 3300.0 +1600.0 1900.0 2300.0 2700.0 3100.0 3200.0 +1500.0 1900.0 2300.0 2700.0 3100.0 3200.0 +1200.0 1400.0 2300.0 2500.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2600.0 3000.0 3100.0 +1800.0 1900.0 2500.0 2600.0 2900.0 3100.0 +1600.0 2000.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1900.0 2400.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2400.0 2500.0 2900.0 3300.0 +1700.0 1800.0 2300.0 2500.0 2900.0 3200.0 +1700.0 1800.0 2400.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1700.0 2000.0 2300.0 2500.0 3000.0 3200.0 +1800.0 2000.0 2300.0 2500.0 3000.0 3200.0 +1900.0 2100.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2100.0 2400.0 2600.0 3000.0 3300.0 +2000.0 2100.0 2300.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1700.0 2100.0 2500.0 2700.0 3200.0 3400.0 +1700.0 1900.0 2300.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2400.0 2900.0 3300.0 +1800.0 1900.0 2300.0 2500.0 3000.0 3300.0 +1800.0 2000.0 2200.0 2500.0 2900.0 3200.0 +1900.0 2200.0 2400.0 2600.0 2900.0 3200.0 +1700.0 2100.0 2600.0 2800.0 3100.0 3300.0 +1800.0 2300.0 2700.0 2900.0 3200.0 3300.0 +2000.0 2300.0 2800.0 2900.0 3100.0 3300.0 +2100.0 2200.0 2600.0 2800.0 3200.0 3300.0 +1800.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1800.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1600.0 1800.0 2000.0 3100.0 3300.0 +1300.0 1700.0 2300.0 2400.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2300.0 2500.0 2900.0 3100.0 +1500.0 1700.0 2300.0 2500.0 2900.0 3100.0 +1500.0 1700.0 2300.0 2500.0 2800.0 3000.0 +1500.0 1600.0 2300.0 2500.0 2800.0 3200.0 +1400.0 1500.0 2300.0 2600.0 3000.0 3200.0 +1200.0 1600.0 2400.0 2500.0 3000.0 3300.0 +1400.0 1600.0 2200.0 2500.0 2900.0 3200.0 +1500.0 1900.0 2300.0 2600.0 2900.0 3200.0 +1400.0 1800.0 2400.0 2700.0 3200.0 3400.0 +1500.0 1900.0 2400.0 2700.0 3200.0 3400.0 +1700.0 2100.0 2400.0 2800.0 3000.0 3300.0 +1700.0 2000.0 2500.0 2700.0 3100.0 3400.0 +1800.0 1900.0 2400.0 2800.0 3200.0 3300.0 +1800.0 1900.0 2300.0 2900.0 3200.0 3300.0 +1800.0 1900.0 2500.0 2800.0 3200.0 3300.0 +1700.0 1800.0 2400.0 2800.0 3200.0 3300.0 +1700.0 1800.0 2400.0 2700.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2600.0 3000.0 3300.0 +1600.0 1700.0 2200.0 2500.0 2900.0 3300.0 +1500.0 1600.0 2300.0 2500.0 3000.0 3300.0 +1500.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1500.0 2000.0 2400.0 2800.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2400.0 2700.0 3200.0 3400.0 +1300.0 1700.0 2300.0 2500.0 3200.0 3400.0 +1100.0 1700.0 2300.0 2400.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2200.0 3300.0 3400.0 +1900.0 2300.0 2600.0 2800.0 3200.0 3400.0 +1900.0 2400.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2300.0 2700.0 2900.0 3400.0 3500.0 +1900.0 2300.0 2700.0 2900.0 3400.0 3500.0 +1900.0 2100.0 2800.0 2900.0 3300.0 3400.0 +1700.0 1800.0 2700.0 2800.0 3100.0 3300.0 +1500.0 1700.0 2700.0 2800.0 3200.0 3300.0 +1500.0 1600.0 2600.0 2700.0 3000.0 3300.0 +1400.0 1600.0 2600.0 2800.0 3000.0 3200.0 +1200.0 1400.0 2600.0 2700.0 3000.0 3200.0 +1000.0 1500.0 2600.0 2800.0 3200.0 3400.0 +1100.0 1300.0 2500.0 2800.0 3000.0 3200.0 +1500.0 1600.0 2500.0 2600.0 3000.0 3300.0 +1400.0 1500.0 2300.0 2600.0 2800.0 3200.0 +1400.0 1600.0 2200.0 2600.0 2800.0 3100.0 +1500.0 1600.0 2300.0 2700.0 2900.0 3200.0 +1400.0 1500.0 2500.0 2600.0 3100.0 3400.0 +1400.0 1500.0 2400.0 2600.0 2800.0 3300.0 +1400.0 1600.0 2400.0 2600.0 2800.0 3200.0 +1300.0 1600.0 2300.0 2600.0 2900.0 3300.0 +1700.0 2200.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2300.0 2600.0 2700.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3100.0 3200.0 +1800.0 2300.0 2500.0 2600.0 3200.0 3300.0 +1900.0 2400.0 2500.0 2800.0 3300.0 3400.0 +1800.0 2000.0 2600.0 2800.0 3300.0 3400.0 +1600.0 1900.0 2400.0 2800.0 3200.0 3300.0 +1700.0 1800.0 2600.0 2800.0 3000.0 3300.0 +1900.0 2000.0 2600.0 2800.0 3200.0 3300.0 +2000.0 2100.0 2700.0 2800.0 3200.0 3400.0 +2000.0 2100.0 2600.0 2800.0 3300.0 3400.0 +1600.0 1700.0 2300.0 2600.0 2900.0 3300.0 +1400.0 1600.0 2400.0 2500.0 2800.0 3200.0 +1800.0 1900.0 2500.0 2700.0 3000.0 3400.0 +1900.0 2000.0 2600.0 2700.0 3000.0 3300.0 +1700.0 2000.0 2400.0 2600.0 2900.0 3200.0 +1500.0 1600.0 2300.0 2600.0 3000.0 3300.0 +1500.0 1600.0 2400.0 2600.0 2900.0 3300.0 +1400.0 1500.0 2300.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2500.0 2600.0 2900.0 3200.0 +2000.0 2100.0 2400.0 2600.0 3000.0 3200.0 +1800.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1600.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1500.0 1800.0 2400.0 2700.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2400.0 3000.0 3200.0 +2000.0 2200.0 2400.0 2500.0 3200.0 3300.0 +2200.0 2300.0 2600.0 2700.0 3200.0 3300.0 +2100.0 2200.0 2400.0 2700.0 3000.0 3200.0 +2100.0 2200.0 2500.0 2700.0 3000.0 3200.0 +2200.0 2300.0 2600.0 2800.0 3000.0 3300.0 +1900.0 2200.0 2600.0 2700.0 3000.0 3300.0 +1700.0 1800.0 2500.0 2700.0 2800.0 3200.0 +1700.0 1800.0 2600.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2500.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2700.0 3300.0 3400.0 +1800.0 2000.0 2400.0 2600.0 3100.0 3200.0 +1700.0 2200.0 2300.0 2500.0 3200.0 3300.0 +1700.0 2200.0 2300.0 2600.0 3100.0 3200.0 +1600.0 1700.0 2400.0 2600.0 3300.0 3400.0 +1600.0 1700.0 2400.0 2500.0 3300.0 3400.0 +1900.0 2100.0 2500.0 2800.0 3000.0 3100.0 +1800.0 2100.0 2500.0 2800.0 3000.0 3100.0 +1800.0 2100.0 2600.0 2800.0 3100.0 3200.0 +1800.0 2000.0 2500.0 2800.0 3100.0 3200.0 +1900.0 2100.0 2500.0 2600.0 3000.0 3200.0 +1800.0 1900.0 2600.0 2800.0 3200.0 3400.0 +1500.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1100.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1100.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1300.0 1500.0 2200.0 2400.0 2900.0 3300.0 +1600.0 1700.0 2300.0 2500.0 2900.0 3300.0 +1600.0 1700.0 2400.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2000.0 2500.0 2700.0 3100.0 3200.0 +2100.0 2200.0 2400.0 2600.0 3100.0 3400.0 +2100.0 2200.0 2500.0 2600.0 3000.0 3400.0 +1900.0 2100.0 2400.0 2700.0 3000.0 3100.0 +1600.0 1800.0 2200.0 2400.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2300.0 2900.0 3300.0 +1600.0 1700.0 2100.0 2300.0 2800.0 3100.0 +2200.0 2300.0 2600.0 2800.0 3100.0 3300.0 +2200.0 2300.0 2700.0 2800.0 3100.0 3400.0 +2000.0 2100.0 2600.0 2800.0 3100.0 3400.0 +1700.0 1800.0 2400.0 2700.0 2900.0 3200.0 +1600.0 1800.0 2400.0 2700.0 3100.0 3200.0 +1600.0 1800.0 2300.0 2400.0 3000.0 3200.0 +1800.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2600.0 2900.0 3200.0 +1900.0 2100.0 2300.0 2700.0 2800.0 3000.0 +1800.0 2000.0 2600.0 2700.0 3000.0 3300.0 +1800.0 1900.0 2400.0 2600.0 2900.0 3300.0 +1700.0 1800.0 2300.0 2400.0 2900.0 3300.0 +1600.0 1700.0 2100.0 2500.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2600.0 3100.0 3200.0 +1500.0 1700.0 2200.0 2500.0 2900.0 3300.0 +1500.0 1600.0 2300.0 2400.0 2800.0 3300.0 +1400.0 1600.0 2300.0 2400.0 3000.0 3300.0 +1500.0 2000.0 2500.0 2800.0 3200.0 3300.0 +1300.0 1500.0 2600.0 2700.0 3100.0 3300.0 +1200.0 1400.0 1700.0 1900.0 3100.0 3300.0 +1200.0 1700.0 1900.0 2300.0 3200.0 3300.0 +1200.0 1900.0 2000.0 2300.0 3200.0 3300.0 +1200.0 2000.0 2100.0 2500.0 3300.0 3400.0 +1200.0 2000.0 2200.0 2600.0 3300.0 3400.0 +1200.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1000.0 1900.0 2300.0 2500.0 3200.0 3300.0 +1200.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1400.0 1600.0 2300.0 2500.0 3200.0 3300.0 +1500.0 1600.0 2500.0 2700.0 2900.0 3200.0 +1600.0 1900.0 2400.0 2800.0 3100.0 3300.0 +1700.0 1800.0 2400.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2500.0 2800.0 3100.0 3200.0 +1500.0 1800.0 2400.0 2500.0 2900.0 3100.0 +1500.0 1600.0 2400.0 2500.0 2900.0 3200.0 +1300.0 1500.0 2200.0 2500.0 2800.0 3100.0 +1300.0 1400.0 2000.0 2400.0 2600.0 2900.0 +1400.0 1500.0 2100.0 2500.0 2700.0 3100.0 +1500.0 2000.0 2300.0 2600.0 3000.0 3200.0 +1700.0 2100.0 2400.0 2600.0 2900.0 3100.0 +1400.0 1500.0 2300.0 2600.0 3000.0 3300.0 +1500.0 1700.0 2200.0 2300.0 3200.0 3300.0 +1400.0 1600.0 2000.0 2400.0 3100.0 3300.0 +1500.0 1700.0 2000.0 2100.0 3100.0 3300.0 +1600.0 1900.0 2200.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2200.0 2400.0 2800.0 3200.0 +1500.0 1600.0 2100.0 2500.0 3000.0 3300.0 +1500.0 1600.0 2000.0 2500.0 2900.0 3300.0 +1500.0 1600.0 2100.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2200.0 2700.0 2800.0 3100.0 +1300.0 1400.0 2200.0 2600.0 3000.0 3200.0 +1400.0 1900.0 2400.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2500.0 2600.0 3000.0 3200.0 +1500.0 1700.0 2300.0 2500.0 2800.0 3200.0 +1700.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2300.0 3000.0 3300.0 +1600.0 1700.0 2000.0 2400.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2600.0 2900.0 3200.0 +1500.0 2000.0 2300.0 2600.0 3100.0 3400.0 +1400.0 1900.0 2500.0 2700.0 3100.0 3300.0 +1400.0 1700.0 2600.0 2700.0 3100.0 3300.0 +1500.0 1600.0 2300.0 2600.0 2800.0 3200.0 +1700.0 1800.0 2300.0 2500.0 3100.0 3400.0 +1500.0 1600.0 2200.0 2300.0 3100.0 3300.0 +1400.0 1500.0 2200.0 2400.0 3100.0 3200.0 +1400.0 1600.0 2200.0 2400.0 3000.0 3100.0 +1700.0 2100.0 2300.0 2700.0 3100.0 3200.0 +1900.0 2300.0 2500.0 2700.0 3100.0 3200.0 +1900.0 2300.0 2600.0 2800.0 3100.0 3300.0 +1900.0 2400.0 2600.0 2900.0 3200.0 3300.0 +1900.0 2300.0 2600.0 2800.0 3300.0 3400.0 +1800.0 2400.0 2600.0 2800.0 3300.0 3400.0 +1600.0 1800.0 2600.0 2700.0 3000.0 3300.0 +1600.0 1700.0 2600.0 2700.0 2900.0 3200.0 +1500.0 1600.0 2500.0 2700.0 3000.0 3300.0 +1300.0 1400.0 2400.0 2700.0 2900.0 3300.0 +1300.0 1400.0 2300.0 2700.0 2800.0 3100.0 +1300.0 1400.0 2500.0 2800.0 3000.0 3300.0 +1500.0 1700.0 2400.0 2500.0 2800.0 3300.0 +1900.0 2000.0 2500.0 2600.0 3000.0 3200.0 +1800.0 2000.0 2400.0 2500.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2300.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2400.0 2800.0 3200.0 +1600.0 1700.0 2200.0 2400.0 2800.0 3200.0 +1500.0 1600.0 2200.0 2400.0 2700.0 3300.0 +1400.0 1500.0 2200.0 2400.0 2900.0 3200.0 +1600.0 1700.0 2300.0 2500.0 2700.0 3000.0 +1600.0 1700.0 2200.0 2500.0 2700.0 3000.0 +1700.0 1900.0 2200.0 2500.0 2800.0 3100.0 +1900.0 2000.0 2300.0 2500.0 2900.0 3100.0 +1900.0 2100.0 2300.0 2500.0 2900.0 3200.0 +1900.0 2100.0 2300.0 2500.0 3100.0 3300.0 +2000.0 2200.0 2600.0 2800.0 3000.0 3200.0 +1900.0 2200.0 2500.0 2700.0 2900.0 3200.0 +2100.0 2300.0 2600.0 2800.0 3100.0 3300.0 +2100.0 2300.0 2600.0 2700.0 3000.0 3200.0 +2100.0 2200.0 2500.0 2600.0 3000.0 3200.0 +1500.0 1600.0 2300.0 2400.0 2900.0 3200.0 +1400.0 1500.0 2100.0 2400.0 2800.0 3100.0 +1300.0 1600.0 2100.0 2400.0 3100.0 3200.0 +1300.0 1400.0 2300.0 2600.0 2800.0 3200.0 +1400.0 1500.0 2200.0 2500.0 2700.0 3200.0 +1400.0 1500.0 2300.0 2500.0 2700.0 3200.0 +1500.0 1600.0 2400.0 2500.0 2800.0 3200.0 +1600.0 1700.0 2400.0 2500.0 2900.0 3200.0 +1700.0 1800.0 2400.0 2500.0 2900.0 3100.0 +1800.0 1900.0 2400.0 2600.0 3000.0 3200.0 +2100.0 2200.0 2700.0 2900.0 3200.0 3300.0 +1800.0 2100.0 2500.0 2900.0 3100.0 3300.0 +1700.0 1800.0 2500.0 2800.0 2900.0 3300.0 +1200.0 1600.0 2100.0 2400.0 3000.0 3200.0 +1600.0 1700.0 2100.0 2600.0 2900.0 3000.0 +1600.0 1700.0 2200.0 2700.0 2900.0 3000.0 +1600.0 1800.0 2200.0 2500.0 2900.0 3000.0 +1700.0 1800.0 2300.0 2500.0 2900.0 3100.0 +1700.0 1900.0 2300.0 2600.0 2900.0 3100.0 +1500.0 1700.0 2000.0 2600.0 2900.0 3100.0 +1400.0 1600.0 1800.0 2600.0 3000.0 3100.0 +1300.0 1500.0 1700.0 2700.0 3100.0 3200.0 +1300.0 1700.0 2400.0 2700.0 3100.0 3300.0 +1200.0 1600.0 2400.0 2600.0 2900.0 3200.0 +1300.0 1400.0 2000.0 2700.0 2800.0 3000.0 +1400.0 1500.0 2000.0 2600.0 2800.0 3000.0 +1500.0 1700.0 2100.0 2600.0 2800.0 3000.0 +1600.0 1800.0 2200.0 2700.0 2800.0 3000.0 +1600.0 1800.0 2100.0 2700.0 2900.0 3100.0 +1500.0 1900.0 2300.0 2700.0 3000.0 3100.0 +1500.0 1900.0 2300.0 2700.0 3000.0 3200.0 +1500.0 2000.0 2300.0 2700.0 3000.0 3200.0 +1800.0 2100.0 2300.0 2700.0 3100.0 3300.0 +1500.0 2000.0 2300.0 2600.0 3000.0 3100.0 +1500.0 2100.0 2300.0 2700.0 3100.0 3200.0 +1600.0 2100.0 2200.0 2700.0 3100.0 3200.0 +1500.0 2100.0 2200.0 2600.0 3100.0 3200.0 +1400.0 2300.0 2500.0 2700.0 3100.0 3200.0 +1700.0 2100.0 2300.0 2700.0 2900.0 3100.0 +1500.0 1800.0 2300.0 2700.0 3000.0 3100.0 +1500.0 1700.0 2300.0 2700.0 3000.0 3100.0 +1500.0 1600.0 2100.0 2700.0 3000.0 3100.0 +1400.0 1500.0 1900.0 2600.0 3100.0 3200.0 +1200.0 1300.0 1900.0 2600.0 2900.0 3100.0 +1100.0 1200.0 1800.0 2700.0 3000.0 3100.0 +1200.0 1300.0 1800.0 2700.0 3000.0 3100.0 +1200.0 1400.0 1900.0 2700.0 3000.0 3100.0 +1300.0 1500.0 1800.0 2600.0 3000.0 3100.0 +1200.0 1400.0 2300.0 2700.0 2900.0 3100.0 +1300.0 1400.0 2200.0 2700.0 2800.0 3100.0 +1300.0 1500.0 2000.0 2600.0 2900.0 3100.0 +1300.0 1500.0 2100.0 2700.0 2900.0 3100.0 +1400.0 1800.0 2100.0 2600.0 2800.0 3000.0 +1400.0 1800.0 2100.0 2500.0 2900.0 3100.0 +1700.0 2000.0 2500.0 2800.0 3000.0 3200.0 +1900.0 2000.0 2700.0 2800.0 3100.0 3400.0 +1900.0 2100.0 2600.0 2800.0 3100.0 3300.0 +1600.0 2100.0 2400.0 2700.0 3200.0 3400.0 +1700.0 2000.0 2300.0 2500.0 2800.0 3200.0 +1500.0 1700.0 2100.0 2300.0 3000.0 3200.0 +1400.0 1900.0 2200.0 2500.0 2900.0 3200.0 +1400.0 1900.0 2300.0 2500.0 2700.0 3100.0 +1300.0 1500.0 2100.0 2700.0 2800.0 3100.0 +1300.0 1500.0 2000.0 2600.0 2800.0 3100.0 +1300.0 1400.0 2100.0 2600.0 2800.0 3000.0 +1300.0 1400.0 2000.0 2600.0 2800.0 3000.0 +1200.0 1300.0 2000.0 2700.0 2800.0 3000.0 +1200.0 1400.0 2300.0 2600.0 2900.0 3200.0 +1300.0 1600.0 2300.0 2700.0 2900.0 3200.0 +1600.0 1900.0 2300.0 2800.0 3100.0 3200.0 +1700.0 1900.0 2300.0 2800.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2600.0 2900.0 3000.0 +1700.0 1900.0 2400.0 2600.0 2800.0 3100.0 +1700.0 2100.0 2400.0 2500.0 2800.0 3100.0 +1700.0 2000.0 2400.0 2500.0 2900.0 3100.0 +1900.0 2200.0 2400.0 2600.0 3000.0 3200.0 +1700.0 2000.0 2400.0 2700.0 3000.0 3100.0 +1500.0 1900.0 2300.0 2600.0 3000.0 3100.0 +1500.0 1600.0 2100.0 2600.0 2900.0 3200.0 +1400.0 1600.0 1800.0 2300.0 2800.0 2900.0 +1400.0 1600.0 1700.0 2500.0 3200.0 3300.0 +1400.0 1600.0 1800.0 2400.0 3200.0 3300.0 +1400.0 1700.0 1900.0 2200.0 3100.0 3200.0 +1300.0 1700.0 1900.0 2300.0 3100.0 3200.0 +1100.0 1600.0 2000.0 2300.0 3000.0 3100.0 +1500.0 1900.0 2500.0 2800.0 3200.0 3300.0 +1800.0 2000.0 2300.0 2800.0 3000.0 3100.0 +1800.0 1900.0 2300.0 2700.0 2900.0 3200.0 +1700.0 1900.0 2300.0 2600.0 2800.0 3100.0 +1700.0 1900.0 2100.0 2500.0 2700.0 3000.0 +1700.0 1900.0 2100.0 2600.0 2800.0 3000.0 +1700.0 1900.0 2100.0 2700.0 2900.0 3100.0 +1700.0 1900.0 2500.0 2800.0 3000.0 3300.0 +1400.0 1600.0 1900.0 2600.0 2900.0 3000.0 +1500.0 1600.0 2000.0 2200.0 3200.0 3300.0 +1300.0 1500.0 1700.0 2600.0 3100.0 3200.0 +1300.0 1500.0 1700.0 2700.0 3000.0 3100.0 +1500.0 1700.0 2300.0 2700.0 3000.0 3200.0 +1700.0 2000.0 2500.0 2800.0 3100.0 3200.0 +1200.0 1300.0 1800.0 2600.0 3000.0 3100.0 +1300.0 1600.0 2000.0 2400.0 3000.0 3200.0 +1500.0 1600.0 2000.0 2600.0 3200.0 3300.0 +1600.0 1700.0 2100.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2700.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2700.0 3200.0 3300.0 +1600.0 1900.0 2100.0 2700.0 3200.0 3300.0 +1100.0 1800.0 2200.0 2400.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2800.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2700.0 3000.0 3100.0 +1500.0 1800.0 2200.0 2800.0 3100.0 3200.0 +1600.0 1900.0 2200.0 2800.0 3100.0 3200.0 +1600.0 1900.0 2100.0 2700.0 3100.0 3200.0 +1500.0 1900.0 2100.0 2600.0 3100.0 3200.0 +1700.0 2100.0 2400.0 2700.0 3000.0 3300.0 +1900.0 2400.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2200.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2200.0 2600.0 2900.0 3200.0 3300.0 +1800.0 2400.0 2600.0 2800.0 3100.0 3200.0 +1800.0 2400.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2300.0 2400.0 2700.0 3100.0 3200.0 +1600.0 2300.0 2500.0 2700.0 3100.0 3200.0 +1500.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1600.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1500.0 2200.0 2500.0 2700.0 3100.0 3200.0 +1500.0 2200.0 2400.0 2600.0 3000.0 3100.0 +1600.0 2200.0 2400.0 2700.0 3000.0 3100.0 +1500.0 2100.0 2400.0 2700.0 3000.0 3100.0 +1400.0 1800.0 2100.0 2400.0 3200.0 3300.0 +1200.0 1300.0 2100.0 2800.0 3000.0 3200.0 +1300.0 1400.0 2100.0 2700.0 3000.0 3200.0 +1500.0 1700.0 2200.0 2800.0 3000.0 3100.0 +1800.0 2200.0 2400.0 2600.0 3000.0 3200.0 +1700.0 1900.0 2400.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2500.0 2800.0 3000.0 3200.0 +1600.0 1800.0 2500.0 2700.0 3000.0 3200.0 +1600.0 1700.0 2300.0 2700.0 2900.0 3100.0 +1500.0 1700.0 2100.0 2700.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2600.0 2900.0 3000.0 +1500.0 1600.0 1900.0 2600.0 3000.0 3100.0 +1500.0 1700.0 2000.0 2500.0 3000.0 3100.0 +1500.0 1700.0 2000.0 2500.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2600.0 3000.0 3100.0 +1500.0 1800.0 2000.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2500.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2600.0 2900.0 3200.0 3300.0 +1800.0 2000.0 2500.0 2900.0 3100.0 3300.0 +1400.0 1600.0 1900.0 2600.0 3000.0 3100.0 +1400.0 1600.0 1900.0 2700.0 3000.0 3100.0 +1500.0 1700.0 2300.0 2800.0 3000.0 3200.0 +1700.0 2000.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2100.0 2600.0 3000.0 3300.0 3400.0 +1800.0 2100.0 2600.0 3000.0 3200.0 3400.0 +1600.0 1800.0 2300.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2600.0 3100.0 3200.0 +1100.0 1400.0 2100.0 2800.0 3100.0 3200.0 +1200.0 1700.0 2200.0 2400.0 3000.0 3200.0 +1500.0 2100.0 2500.0 2800.0 3200.0 3400.0 +1500.0 2000.0 2200.0 2400.0 3100.0 3300.0 +1400.0 1900.0 2200.0 2300.0 3000.0 3200.0 +1500.0 1800.0 2200.0 2400.0 3000.0 3200.0 +1200.0 1600.0 2300.0 2500.0 3100.0 3200.0 +1300.0 1900.0 2200.0 2700.0 3200.0 3300.0 +1100.0 1300.0 2000.0 2700.0 3100.0 3200.0 +1400.0 1500.0 2400.0 2700.0 2900.0 3300.0 +1500.0 1800.0 2500.0 2700.0 3000.0 3100.0 +1500.0 1700.0 2500.0 2800.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2400.0 2700.0 3200.0 +1300.0 1400.0 2000.0 2400.0 2600.0 3000.0 +1200.0 1300.0 2100.0 2500.0 2700.0 3100.0 +1800.0 2100.0 2400.0 2600.0 2800.0 3100.0 +1800.0 2100.0 2400.0 2600.0 2800.0 3000.0 +1900.0 2200.0 2500.0 2700.0 2900.0 3100.0 +1900.0 2300.0 2500.0 2800.0 3000.0 3100.0 +1900.0 2400.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2400.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2400.0 2600.0 2700.0 3100.0 3200.0 +1800.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1900.0 2400.0 2600.0 2800.0 3100.0 3300.0 +1900.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1700.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1700.0 2200.0 2600.0 2800.0 3200.0 3300.0 +2000.0 2200.0 2800.0 3000.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2700.0 3100.0 3300.0 +1900.0 2100.0 2400.0 2800.0 3000.0 3200.0 +1900.0 2100.0 2300.0 2800.0 3000.0 3200.0 +1800.0 2100.0 2300.0 2700.0 3000.0 3200.0 +1600.0 2000.0 2200.0 2700.0 3000.0 3100.0 +1600.0 2000.0 2200.0 2500.0 3000.0 3100.0 +1700.0 2000.0 2200.0 2700.0 3000.0 3200.0 +1700.0 2000.0 2200.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2200.0 2700.0 3100.0 3200.0 +1500.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2800.0 3000.0 3100.0 +1600.0 1900.0 2200.0 2700.0 3000.0 3100.0 +1600.0 1900.0 2300.0 2700.0 3000.0 3100.0 +1600.0 2000.0 2400.0 2800.0 3100.0 3200.0 +1700.0 2000.0 2200.0 2700.0 3100.0 3200.0 +1800.0 2000.0 2200.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2100.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2700.0 3000.0 3100.0 3300.0 +1800.0 2100.0 2700.0 3000.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2900.0 3100.0 3200.0 +1900.0 2100.0 2500.0 3000.0 3100.0 3200.0 +1700.0 2000.0 2500.0 2900.0 3100.0 3200.0 +1800.0 2100.0 2600.0 2900.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2900.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2900.0 3100.0 3200.0 +1600.0 2000.0 2300.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2100.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2200.0 2700.0 3000.0 3200.0 +2000.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1800.0 2100.0 2300.0 2700.0 3200.0 3300.0 +1700.0 2100.0 2300.0 2700.0 3000.0 3200.0 +1600.0 2200.0 2400.0 2800.0 3200.0 3300.0 +1600.0 1700.0 2000.0 2300.0 2700.0 3100.0 +1800.0 2000.0 2200.0 2400.0 2700.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2700.0 3000.0 +1500.0 1600.0 2200.0 2500.0 2800.0 3300.0 +1500.0 1600.0 2100.0 2500.0 2700.0 3000.0 +1500.0 2000.0 2300.0 2500.0 2700.0 2900.0 +1700.0 2100.0 2300.0 2600.0 2800.0 3000.0 +1700.0 2200.0 2400.0 2700.0 3000.0 3100.0 +1500.0 2200.0 2400.0 2600.0 3000.0 3200.0 +1500.0 2100.0 2400.0 2600.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2600.0 3000.0 3200.0 +1500.0 2100.0 2300.0 2600.0 3000.0 3100.0 +1600.0 2000.0 2300.0 2700.0 3000.0 3100.0 +1600.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1500.0 1800.0 2000.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2000.0 2500.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2300.0 3000.0 3100.0 +1400.0 1800.0 2100.0 2400.0 2900.0 3100.0 +1600.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1600.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2800.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2100.0 2600.0 2900.0 3100.0 +1600.0 1900.0 2100.0 2500.0 2900.0 3100.0 +1600.0 1900.0 2100.0 2600.0 2900.0 3100.0 +1600.0 1900.0 2100.0 2600.0 2800.0 3100.0 +1600.0 1800.0 2200.0 2600.0 2800.0 3000.0 +1600.0 1900.0 2200.0 2700.0 2900.0 3100.0 +1600.0 1900.0 2200.0 2600.0 2900.0 3000.0 +1900.0 2000.0 2200.0 2800.0 3000.0 3100.0 +1400.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1400.0 1900.0 2100.0 2400.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2400.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2300.0 3100.0 3300.0 +1400.0 1700.0 2100.0 2300.0 3200.0 3300.0 +1400.0 1600.0 2100.0 2300.0 3200.0 3300.0 +1300.0 1600.0 2100.0 2300.0 3200.0 3300.0 +1300.0 1600.0 2100.0 2300.0 3100.0 3300.0 +1200.0 1400.0 2000.0 2200.0 3100.0 3300.0 +1200.0 1400.0 2000.0 2600.0 3100.0 3200.0 +1200.0 1400.0 2000.0 2800.0 3100.0 3200.0 +1200.0 1400.0 2100.0 2800.0 3100.0 3200.0 +1400.0 1500.0 2200.0 2700.0 3000.0 3100.0 +1700.0 1900.0 2200.0 2500.0 2900.0 3200.0 +1400.0 1600.0 2200.0 2700.0 2900.0 3100.0 +1500.0 1600.0 1900.0 2700.0 2900.0 3000.0 +1500.0 1600.0 1900.0 2700.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2700.0 3000.0 3100.0 +1400.0 1600.0 2000.0 2600.0 2900.0 3100.0 +1300.0 1500.0 2400.0 2700.0 2900.0 3200.0 +1600.0 1800.0 2300.0 2700.0 3100.0 3400.0 +1600.0 2100.0 2400.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2700.0 3000.0 3100.0 +1600.0 1900.0 2100.0 2700.0 3000.0 3100.0 +1600.0 1800.0 2100.0 2700.0 3000.0 3100.0 +1700.0 1800.0 2300.0 2800.0 3100.0 3200.0 +1800.0 1900.0 2400.0 2900.0 3100.0 3200.0 +1500.0 1700.0 1800.0 2600.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2800.0 3000.0 3200.0 +1800.0 2100.0 2600.0 2900.0 3100.0 3300.0 +1700.0 2300.0 2500.0 2700.0 3100.0 3200.0 +2000.0 2400.0 2500.0 2700.0 3100.0 3200.0 +1900.0 2500.0 2600.0 2800.0 3100.0 3200.0 +1800.0 2400.0 2700.0 2900.0 3200.0 3300.0 +1900.0 2400.0 2600.0 2800.0 3100.0 3200.0 +1700.0 2200.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2200.0 2300.0 2600.0 3100.0 3200.0 +1800.0 2200.0 2300.0 2700.0 3100.0 3200.0 +1800.0 2200.0 2400.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2500.0 2900.0 3300.0 3400.0 +1900.0 2100.0 2400.0 2900.0 3100.0 3200.0 +1900.0 2200.0 2400.0 2800.0 3000.0 3100.0 +1800.0 2200.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2300.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2300.0 2400.0 2800.0 3100.0 3200.0 +1800.0 2100.0 2300.0 2700.0 2900.0 3100.0 +1700.0 2000.0 2500.0 2800.0 3000.0 3300.0 +1100.0 1300.0 2300.0 2600.0 2800.0 3200.0 +1400.0 1600.0 2200.0 2500.0 2800.0 3100.0 +1400.0 1600.0 2000.0 2500.0 2700.0 3000.0 +1400.0 1500.0 1900.0 2500.0 2800.0 2900.0 +1400.0 1500.0 1900.0 2600.0 2900.0 3000.0 +1400.0 1600.0 1900.0 2700.0 2900.0 3000.0 +1500.0 1600.0 2000.0 2700.0 2900.0 3100.0 +1500.0 1600.0 2000.0 2700.0 2900.0 3000.0 +1500.0 1600.0 2100.0 2800.0 3000.0 3100.0 +1600.0 1700.0 2100.0 2800.0 3000.0 3100.0 +1900.0 2200.0 2600.0 2900.0 3300.0 3400.0 +2000.0 2200.0 2600.0 3000.0 3300.0 3400.0 +2000.0 2200.0 2600.0 3000.0 3200.0 3300.0 +1800.0 2100.0 2700.0 3000.0 3400.0 3500.0 +1300.0 1600.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1700.0 2400.0 2500.0 2800.0 2900.0 +1400.0 1700.0 2400.0 2500.0 2800.0 3000.0 +1500.0 2000.0 2400.0 2500.0 3100.0 3200.0 +1400.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1400.0 1500.0 2400.0 2500.0 3100.0 3300.0 +1900.0 2200.0 2600.0 2900.0 3200.0 3400.0 +1600.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1800.0 2200.0 2800.0 3100.0 3400.0 3500.0 +1900.0 2200.0 2700.0 3000.0 3400.0 3500.0 +1900.0 2400.0 2800.0 3000.0 3200.0 3400.0 +1300.0 1900.0 2100.0 2400.0 2800.0 3000.0 +1800.0 2100.0 2300.0 2500.0 2800.0 3100.0 +1800.0 2100.0 2400.0 2600.0 2900.0 3100.0 +1600.0 1800.0 2500.0 2600.0 2900.0 3000.0 +1700.0 1900.0 2200.0 2400.0 2900.0 3200.0 +1600.0 1800.0 2000.0 2300.0 3000.0 3200.0 +1600.0 1700.0 1900.0 2300.0 3100.0 3300.0 +1400.0 1600.0 1800.0 2200.0 3200.0 3300.0 +1400.0 1600.0 1800.0 2300.0 3100.0 3200.0 +1400.0 1600.0 1800.0 2300.0 3000.0 3200.0 +1100.0 2200.0 2500.0 2600.0 2700.0 2900.0 +1200.0 1900.0 2500.0 2600.0 2800.0 3000.0 +1200.0 1800.0 2500.0 2600.0 2800.0 2900.0 +1300.0 1900.0 2500.0 2600.0 2800.0 3100.0 +1500.0 2100.0 2400.0 2500.0 2900.0 3200.0 +1400.0 2100.0 2400.0 2500.0 3000.0 3200.0 +1400.0 2000.0 2400.0 2500.0 3000.0 3300.0 +1300.0 1700.0 2300.0 2400.0 3200.0 3400.0 +1700.0 1900.0 2400.0 2500.0 3000.0 3300.0 +1900.0 2000.0 2500.0 2600.0 2900.0 3200.0 +1900.0 2100.0 2500.0 2700.0 2900.0 3200.0 +2000.0 2100.0 2600.0 2700.0 3000.0 3200.0 +2000.0 2100.0 2600.0 2700.0 3000.0 3300.0 +1900.0 2100.0 2500.0 2600.0 2900.0 3200.0 +1800.0 1900.0 2500.0 2700.0 3100.0 3400.0 +1600.0 2100.0 2400.0 2600.0 3100.0 3300.0 +1700.0 1800.0 2500.0 2600.0 2900.0 3300.0 +1500.0 1900.0 2400.0 2500.0 2800.0 3200.0 +1500.0 2000.0 2400.0 2500.0 2700.0 3000.0 +2100.0 2400.0 2700.0 3000.0 3300.0 3400.0 +1900.0 2200.0 2600.0 2800.0 3100.0 3400.0 +1800.0 2100.0 2600.0 2700.0 3100.0 3400.0 +1800.0 2000.0 2300.0 2500.0 2800.0 3200.0 +1700.0 2100.0 2200.0 2600.0 2900.0 3100.0 +1400.0 2100.0 2200.0 2600.0 2900.0 3100.0 +1500.0 1700.0 2100.0 2400.0 2800.0 3000.0 +1500.0 2000.0 2400.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2400.0 2500.0 3000.0 3200.0 +1500.0 1700.0 2400.0 2500.0 3000.0 3300.0 +1700.0 2100.0 2500.0 2600.0 3200.0 3400.0 +1800.0 2300.0 2500.0 2800.0 3200.0 3300.0 +1800.0 2300.0 2600.0 2900.0 3200.0 3300.0 +1900.0 2300.0 2600.0 3000.0 3300.0 3400.0 +1800.0 1900.0 2300.0 2400.0 2700.0 3100.0 +1600.0 1800.0 2200.0 2500.0 2900.0 3200.0 +1700.0 1900.0 2400.0 2700.0 3100.0 3400.0 +1800.0 2200.0 2400.0 2800.0 3200.0 3400.0 +1900.0 2200.0 2800.0 3000.0 3300.0 3400.0 +2300.0 2600.0 2700.0 2900.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2600.0 3100.0 3300.0 +1700.0 1900.0 2400.0 2500.0 2900.0 3100.0 +1900.0 2100.0 2400.0 2500.0 2900.0 3200.0 +2000.0 2100.0 2400.0 2500.0 2900.0 3200.0 +2000.0 2100.0 2500.0 2600.0 3000.0 3200.0 +2000.0 2200.0 2500.0 2600.0 3000.0 3300.0 +2000.0 2200.0 2600.0 2700.0 2900.0 3100.0 +1700.0 2000.0 2600.0 2700.0 3000.0 3100.0 +1900.0 2200.0 2700.0 2800.0 3100.0 3200.0 +1900.0 2400.0 2700.0 2800.0 3200.0 3300.0 +2100.0 2400.0 2600.0 2800.0 3100.0 3300.0 +2200.0 2500.0 2700.0 2900.0 3200.0 3300.0 +2000.0 2400.0 2800.0 3000.0 3300.0 3400.0 +1300.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1400.0 1800.0 2200.0 2500.0 3000.0 3200.0 +1300.0 1600.0 2100.0 2500.0 2900.0 3200.0 +1300.0 1500.0 2100.0 2400.0 2900.0 3200.0 +1500.0 1700.0 1800.0 2200.0 2600.0 3200.0 +1500.0 1900.0 2200.0 2400.0 2800.0 3100.0 +1300.0 1600.0 2200.0 2300.0 3200.0 3400.0 +1300.0 1700.0 2200.0 2400.0 3100.0 3300.0 +1500.0 2100.0 2300.0 2700.0 3200.0 3400.0 +2000.0 2300.0 2800.0 3000.0 3300.0 3400.0 +1800.0 2300.0 2800.0 3000.0 3400.0 3500.0 +1800.0 2300.0 2700.0 3000.0 3300.0 3500.0 +2000.0 2500.0 2800.0 3100.0 3400.0 3500.0 +2000.0 2500.0 2800.0 3100.0 3300.0 3400.0 +2000.0 2400.0 2800.0 3100.0 3300.0 3400.0 +2100.0 2500.0 2800.0 2900.0 3300.0 3400.0 +2000.0 2300.0 2800.0 2900.0 3200.0 3300.0 +2000.0 2300.0 2700.0 2800.0 3100.0 3200.0 +1900.0 2200.0 2500.0 2700.0 3100.0 3200.0 +1600.0 2200.0 2400.0 2600.0 2900.0 3100.0 +1500.0 2200.0 2400.0 2600.0 2900.0 3200.0 +1400.0 1900.0 2200.0 2400.0 2700.0 3000.0 +1400.0 1900.0 2300.0 2500.0 2800.0 3100.0 +1600.0 1900.0 2400.0 2500.0 2800.0 3000.0 +1600.0 1800.0 2400.0 2600.0 2900.0 3000.0 +1600.0 1900.0 2500.0 2600.0 2900.0 3100.0 +1600.0 1900.0 2400.0 2500.0 3000.0 3100.0 +1600.0 2000.0 2400.0 2600.0 3000.0 3200.0 +1400.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1900.0 2200.0 2500.0 3000.0 3100.0 +1400.0 1800.0 2000.0 2400.0 3000.0 3100.0 +1400.0 1700.0 1900.0 2400.0 2800.0 2900.0 +1700.0 2100.0 2400.0 2600.0 3000.0 3300.0 +1900.0 2100.0 2500.0 2600.0 3000.0 3300.0 +1900.0 2100.0 2400.0 2500.0 2800.0 3200.0 +1800.0 2000.0 2300.0 2400.0 2900.0 3300.0 +1600.0 1800.0 2000.0 2300.0 2700.0 3200.0 +1300.0 1500.0 2100.0 2500.0 3000.0 3200.0 +1400.0 2000.0 2200.0 2400.0 2900.0 3200.0 +1800.0 1900.0 2300.0 2600.0 3000.0 3300.0 +1900.0 2000.0 2300.0 2500.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2400.0 2800.0 3100.0 +1700.0 2000.0 2400.0 2500.0 2800.0 3000.0 +1600.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1900.0 2200.0 2400.0 2700.0 3000.0 3200.0 +1900.0 2100.0 2300.0 2500.0 2800.0 3000.0 +1700.0 2000.0 2300.0 2500.0 2900.0 3100.0 +1700.0 2100.0 2300.0 2500.0 2900.0 3100.0 +1500.0 1700.0 1900.0 2500.0 2800.0 3100.0 +1600.0 1800.0 2000.0 2500.0 2700.0 3000.0 +1700.0 1800.0 2100.0 2500.0 2700.0 2900.0 +2000.0 2300.0 2700.0 2900.0 3100.0 3200.0 +2000.0 2300.0 2600.0 2900.0 3100.0 3200.0 +1600.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2500.0 2800.0 3000.0 +1400.0 2000.0 2400.0 2500.0 2900.0 3100.0 +1500.0 2000.0 2400.0 2500.0 3100.0 3300.0 +1700.0 2100.0 2500.0 2800.0 3300.0 3500.0 +1500.0 1600.0 2300.0 2500.0 2800.0 3100.0 +1500.0 1800.0 2300.0 2500.0 2700.0 2900.0 +1400.0 2000.0 2300.0 2400.0 2700.0 3100.0 +1400.0 2100.0 2400.0 2500.0 2800.0 3200.0 +1400.0 2100.0 2400.0 2500.0 2900.0 3200.0 +1800.0 2000.0 2300.0 2400.0 3000.0 3300.0 +1900.0 2200.0 2500.0 2600.0 2900.0 3100.0 +1800.0 2200.0 2600.0 2900.0 3100.0 3200.0 +2100.0 2500.0 2700.0 2800.0 3200.0 3300.0 +1900.0 2400.0 2600.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2700.0 3100.0 3200.0 +1800.0 2000.0 2500.0 2600.0 2900.0 3100.0 +1800.0 2100.0 2500.0 2600.0 2900.0 3100.0 +1900.0 2100.0 2500.0 2600.0 2900.0 3100.0 +1900.0 2100.0 2400.0 2500.0 2900.0 3100.0 +1900.0 2200.0 2300.0 2500.0 2900.0 3200.0 +1800.0 2200.0 2400.0 2600.0 3000.0 3100.0 +1800.0 2200.0 2400.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2300.0 2800.0 3200.0 3400.0 +1600.0 2100.0 2300.0 2700.0 3200.0 3400.0 +1800.0 2200.0 2600.0 2700.0 3000.0 3200.0 +1900.0 2200.0 2600.0 3000.0 3200.0 3400.0 +2000.0 2400.0 2900.0 3000.0 3300.0 3500.0 +2100.0 2500.0 2800.0 2900.0 3400.0 3500.0 +2100.0 2600.0 2800.0 3000.0 3300.0 3400.0 +2300.0 2600.0 2800.0 3000.0 3200.0 3300.0 +2200.0 2500.0 2600.0 2800.0 3200.0 3300.0 +2200.0 2400.0 2600.0 2700.0 3200.0 3300.0 +2100.0 2300.0 2500.0 2700.0 3100.0 3300.0 +2100.0 2300.0 2500.0 2800.0 3000.0 3200.0 +1900.0 2100.0 2200.0 2500.0 3000.0 3200.0 +1700.0 2000.0 2400.0 2600.0 3000.0 3200.0 +1900.0 2200.0 2700.0 3000.0 3200.0 3300.0 +2000.0 2300.0 2900.0 3000.0 3300.0 3400.0 +2100.0 2400.0 2800.0 3000.0 3300.0 3400.0 +2000.0 2500.0 2800.0 2900.0 3300.0 3400.0 +2100.0 2600.0 2800.0 2900.0 3300.0 3400.0 +1800.0 2100.0 2700.0 2900.0 3200.0 3300.0 +1800.0 2200.0 2600.0 2800.0 3100.0 3300.0 +1700.0 2000.0 2400.0 2500.0 2700.0 2900.0 +1500.0 1800.0 2400.0 2600.0 2900.0 3200.0 +1500.0 2000.0 2400.0 2500.0 2800.0 3000.0 +1500.0 1900.0 2400.0 2500.0 2700.0 3000.0 +1500.0 2000.0 2400.0 2600.0 2800.0 3100.0 +1500.0 1800.0 2500.0 2600.0 3000.0 3300.0 +1500.0 2100.0 2400.0 2500.0 3000.0 3300.0 +1600.0 2100.0 2400.0 2600.0 3000.0 3300.0 +1600.0 2000.0 2400.0 2600.0 2800.0 3100.0 +1900.0 2300.0 2700.0 2900.0 3300.0 3400.0 +1800.0 2300.0 2700.0 3100.0 3300.0 3400.0 +2000.0 2100.0 2300.0 2700.0 3000.0 3300.0 +2100.0 2300.0 2600.0 2700.0 3100.0 3300.0 +2100.0 2300.0 2500.0 2700.0 3200.0 3300.0 +2100.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1600.0 2100.0 2400.0 2600.0 3100.0 3200.0 +1500.0 2100.0 2500.0 2600.0 3000.0 3100.0 +1600.0 2100.0 2300.0 2600.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2600.0 3000.0 3300.0 +1600.0 1800.0 2500.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2500.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2400.0 2600.0 2900.0 3100.0 +1700.0 2100.0 2500.0 2800.0 3000.0 3200.0 +1600.0 1800.0 2300.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2200.0 2700.0 3100.0 3300.0 +1600.0 1700.0 2100.0 2700.0 3100.0 3200.0 +1600.0 1700.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2200.0 2500.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2300.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2300.0 3200.0 3400.0 +1300.0 1600.0 2100.0 2200.0 3200.0 3300.0 +1300.0 1700.0 2200.0 2400.0 3200.0 3400.0 +1300.0 1600.0 2200.0 2300.0 3100.0 3400.0 +1400.0 1600.0 2200.0 2300.0 2900.0 3300.0 +1400.0 1600.0 2200.0 2400.0 2900.0 3300.0 +1300.0 1500.0 2200.0 2400.0 3000.0 3300.0 +1300.0 1500.0 2200.0 2400.0 3100.0 3300.0 +1200.0 1500.0 2200.0 2400.0 3100.0 3300.0 +1200.0 1700.0 2300.0 2500.0 3200.0 3300.0 +1800.0 2000.0 2300.0 2400.0 3200.0 3400.0 +2000.0 2100.0 2400.0 2500.0 3000.0 3400.0 +2000.0 2200.0 2500.0 2700.0 3200.0 3400.0 +2000.0 2500.0 2700.0 2900.0 3400.0 3500.0 +1700.0 2000.0 2500.0 2600.0 3000.0 3300.0 +1600.0 1700.0 2100.0 2400.0 2800.0 3200.0 +1400.0 1600.0 2200.0 2300.0 3000.0 3400.0 +1300.0 1500.0 2200.0 2300.0 2800.0 3200.0 +1500.0 1700.0 2400.0 2500.0 3000.0 3200.0 +1600.0 1700.0 2400.0 2500.0 3000.0 3300.0 +1700.0 1800.0 2400.0 2500.0 2900.0 3200.0 +1800.0 1900.0 2400.0 2500.0 2900.0 3100.0 +1700.0 1900.0 2400.0 2500.0 2900.0 3200.0 +1500.0 1700.0 2300.0 2400.0 3100.0 3400.0 +1400.0 1600.0 2200.0 2400.0 2800.0 3100.0 +1400.0 1600.0 2200.0 2400.0 2800.0 3200.0 +1400.0 1600.0 2100.0 2300.0 2800.0 3200.0 +1500.0 1600.0 2100.0 2400.0 2700.0 3100.0 +1600.0 1700.0 2200.0 2400.0 2800.0 3100.0 +1600.0 2200.0 2500.0 2700.0 3300.0 3400.0 +1500.0 2000.0 2500.0 2900.0 3300.0 3400.0 +1400.0 2000.0 2400.0 2800.0 3200.0 3400.0 +1400.0 1700.0 2300.0 2600.0 3000.0 3200.0 +1300.0 1600.0 2300.0 2400.0 3100.0 3200.0 +1300.0 1600.0 2300.0 2400.0 3000.0 3200.0 +1200.0 1500.0 2200.0 2300.0 3000.0 3300.0 +1300.0 1700.0 2300.0 2400.0 3100.0 3300.0 +1300.0 1600.0 2300.0 2400.0 3000.0 3300.0 +1300.0 1700.0 2300.0 2400.0 3000.0 3300.0 +1300.0 1600.0 2200.0 2300.0 3000.0 3300.0 +1300.0 1600.0 2200.0 2300.0 3100.0 3300.0 +1300.0 1400.0 2200.0 2300.0 3000.0 3300.0 +1300.0 1600.0 2200.0 2400.0 3100.0 3300.0 +1400.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1400.0 1600.0 2300.0 2400.0 3200.0 3400.0 +1400.0 1600.0 2300.0 2400.0 3100.0 3400.0 +1400.0 1600.0 2300.0 2400.0 3000.0 3400.0 +1400.0 1500.0 2400.0 2500.0 3000.0 3300.0 +1400.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2300.0 3200.0 3400.0 +1400.0 1600.0 2100.0 2400.0 3100.0 3400.0 +1600.0 1900.0 2200.0 2500.0 2800.0 3100.0 +1500.0 1800.0 2200.0 2300.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2400.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2400.0 2900.0 3200.0 +1800.0 1900.0 2400.0 2500.0 2800.0 3100.0 +2000.0 2100.0 2500.0 2600.0 3100.0 3300.0 +2000.0 2100.0 2400.0 2500.0 3000.0 3300.0 +1800.0 2100.0 2400.0 2600.0 3200.0 3400.0 +1600.0 1900.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1700.0 2200.0 2300.0 3000.0 3300.0 +1400.0 1700.0 2100.0 2200.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2300.0 3100.0 3200.0 +1900.0 2200.0 2400.0 2500.0 2900.0 3100.0 +1400.0 1600.0 2200.0 2600.0 3100.0 3300.0 +1400.0 1700.0 2300.0 2700.0 3100.0 3300.0 +1500.0 1900.0 2300.0 2600.0 3200.0 3400.0 +1200.0 1600.0 2400.0 2500.0 3100.0 3200.0 +1200.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1700.0 1800.0 2100.0 2300.0 2900.0 3000.0 +1800.0 1900.0 2200.0 2300.0 2900.0 3000.0 +1900.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2300.0 2600.0 3200.0 3300.0 +1800.0 2100.0 2500.0 2600.0 3300.0 3400.0 +1700.0 2300.0 2500.0 2900.0 3200.0 3300.0 +1900.0 2400.0 2800.0 3000.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2500.0 3000.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3100.0 3400.0 +1600.0 2000.0 2200.0 2600.0 3200.0 3300.0 +1500.0 2100.0 2500.0 2800.0 3200.0 3300.0 +1500.0 2000.0 2500.0 2800.0 3300.0 3400.0 +1800.0 2000.0 2500.0 2900.0 3300.0 3400.0 +1500.0 2100.0 2400.0 2800.0 3300.0 3400.0 +1300.0 2000.0 2400.0 2500.0 3300.0 3400.0 +1600.0 1700.0 2200.0 2400.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2300.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2400.0 2900.0 3300.0 +1500.0 1700.0 2300.0 2400.0 2900.0 3100.0 +1400.0 1800.0 2500.0 2600.0 3000.0 3200.0 +1300.0 1600.0 2400.0 2500.0 3100.0 3300.0 +1300.0 1500.0 2400.0 2500.0 3000.0 3400.0 +1300.0 1500.0 2500.0 2600.0 3000.0 3300.0 +1300.0 1500.0 2400.0 2500.0 2800.0 3300.0 +1400.0 1500.0 2500.0 2600.0 2900.0 3300.0 +1800.0 2200.0 2700.0 2900.0 3200.0 3300.0 +1600.0 1700.0 2400.0 2500.0 2900.0 3300.0 +1600.0 1700.0 2300.0 2500.0 2800.0 3300.0 +1700.0 1800.0 2200.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2300.0 3100.0 3200.0 +1600.0 1800.0 2200.0 2400.0 3100.0 3200.0 +1500.0 1800.0 2100.0 2300.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2400.0 2900.0 3200.0 +1500.0 2000.0 2200.0 2400.0 2700.0 3200.0 +1600.0 1900.0 2200.0 2400.0 2800.0 3200.0 +1700.0 1800.0 2400.0 2500.0 3300.0 3500.0 +1500.0 1800.0 2300.0 2600.0 3200.0 3400.0 +1300.0 1600.0 2200.0 2400.0 3200.0 3400.0 +1200.0 1600.0 2200.0 2400.0 3100.0 3300.0 +1100.0 1500.0 2100.0 2300.0 3100.0 3200.0 +1400.0 1700.0 2100.0 2400.0 3100.0 3200.0 +1500.0 1600.0 2100.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2100.0 2300.0 2900.0 3000.0 +1600.0 1700.0 2100.0 2400.0 2900.0 3100.0 +1600.0 1700.0 2100.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2100.0 2300.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2300.0 3200.0 3300.0 +1700.0 1900.0 2100.0 2300.0 3200.0 3400.0 +1800.0 1900.0 2100.0 2300.0 3200.0 3400.0 +1700.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2300.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2300.0 2700.0 3100.0 +1600.0 1700.0 2100.0 2300.0 2500.0 3000.0 +1500.0 1800.0 2300.0 2500.0 2900.0 3100.0 +1500.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1500.0 2000.0 2500.0 2900.0 3200.0 3300.0 +1700.0 2400.0 2900.0 3100.0 3300.0 3400.0 +1700.0 2100.0 2400.0 2800.0 3300.0 3400.0 +1800.0 2400.0 2600.0 2800.0 3100.0 3300.0 +1200.0 1600.0 2400.0 2500.0 3100.0 3400.0 +1300.0 1500.0 2400.0 2500.0 3100.0 3400.0 +1400.0 1500.0 2400.0 2500.0 3000.0 3200.0 +1400.0 1600.0 2400.0 2500.0 3000.0 3200.0 +1800.0 2100.0 2500.0 2600.0 3000.0 3200.0 +1700.0 2200.0 2500.0 2800.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2500.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2500.0 3000.0 3200.0 +1400.0 2000.0 2400.0 2500.0 3200.0 3400.0 +1800.0 2100.0 2400.0 2500.0 3200.0 3400.0 +1800.0 1900.0 2200.0 2400.0 3100.0 3300.0 +1700.0 2000.0 2400.0 2600.0 3200.0 3400.0 +1600.0 1700.0 2300.0 2400.0 3100.0 3400.0 +1600.0 1700.0 2300.0 2400.0 3200.0 3400.0 +1200.0 1700.0 2400.0 2500.0 3200.0 3400.0 +1700.0 2200.0 2800.0 3100.0 3400.0 3500.0 +1600.0 2000.0 2400.0 2800.0 3300.0 3400.0 +1300.0 1600.0 2100.0 2300.0 3100.0 3200.0 +1300.0 1600.0 2100.0 2200.0 3100.0 3200.0 +1300.0 1500.0 1800.0 2000.0 3000.0 3100.0 +1300.0 1500.0 1800.0 1900.0 3100.0 3200.0 +1400.0 1500.0 1700.0 1800.0 3100.0 3200.0 +1400.0 1600.0 1700.0 2000.0 2800.0 2900.0 +1500.0 1700.0 2200.0 2400.0 2800.0 3200.0 +1500.0 1700.0 2200.0 2300.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2200.0 3100.0 3200.0 +1300.0 1500.0 1800.0 2200.0 3100.0 3200.0 +1400.0 1800.0 2300.0 2500.0 2900.0 3200.0 +1400.0 1800.0 2300.0 2400.0 2700.0 3200.0 +1500.0 1600.0 2000.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2000.0 2400.0 3100.0 3300.0 +1500.0 1700.0 2200.0 2500.0 2800.0 3200.0 +1700.0 1800.0 2200.0 2500.0 2800.0 3100.0 +1600.0 1700.0 2200.0 2500.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2500.0 2900.0 3100.0 +1900.0 2000.0 2400.0 2600.0 3000.0 3200.0 +1500.0 1700.0 2200.0 2500.0 3000.0 3300.0 +1300.0 1500.0 2200.0 2400.0 3000.0 3400.0 +1200.0 1400.0 2200.0 2500.0 3200.0 3400.0 +1300.0 1600.0 2000.0 2200.0 3100.0 3200.0 +1400.0 1600.0 1900.0 2000.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2400.0 2900.0 3100.0 +1500.0 1600.0 2200.0 2300.0 2800.0 3100.0 +1400.0 1600.0 2200.0 2300.0 2800.0 3100.0 +1300.0 1600.0 2300.0 2400.0 2900.0 3300.0 +1700.0 2200.0 2800.0 3100.0 3300.0 3400.0 +1700.0 2200.0 2600.0 3000.0 3300.0 3500.0 +1100.0 1500.0 2400.0 2500.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2500.0 2700.0 3100.0 +1900.0 2100.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2400.0 3000.0 3300.0 +1500.0 2100.0 2500.0 2800.0 3300.0 3400.0 +1600.0 2100.0 2500.0 2900.0 3300.0 3400.0 +1200.0 1600.0 2400.0 2500.0 2900.0 3400.0 +1300.0 1500.0 2300.0 2500.0 2700.0 3200.0 +1400.0 1600.0 2500.0 2600.0 3000.0 3300.0 +1300.0 1600.0 2400.0 2500.0 3100.0 3400.0 +1300.0 1800.0 2300.0 2500.0 3100.0 3300.0 +1300.0 1600.0 2300.0 2400.0 3100.0 3300.0 +1200.0 1600.0 2300.0 2400.0 3000.0 3300.0 +1100.0 1700.0 2200.0 2500.0 3100.0 3300.0 +1500.0 1600.0 2200.0 2600.0 3000.0 3300.0 +1500.0 1600.0 2200.0 2600.0 2900.0 3300.0 +1500.0 1700.0 2400.0 2600.0 2900.0 3300.0 +1500.0 1600.0 2300.0 2500.0 2900.0 3200.0 +1700.0 2100.0 2600.0 3000.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2500.0 3100.0 3500.0 +1500.0 1600.0 2400.0 2500.0 3100.0 3400.0 +1500.0 1600.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1500.0 1600.0 2000.0 3200.0 3400.0 +1900.0 2000.0 2300.0 2500.0 2900.0 3200.0 +2000.0 2500.0 2700.0 2800.0 3200.0 3300.0 +2000.0 2200.0 2500.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2400.0 2800.0 2900.0 3100.0 +1700.0 1800.0 2400.0 2800.0 3000.0 3100.0 +1700.0 1800.0 2300.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2800.0 3100.0 3200.0 +1400.0 1900.0 2200.0 2400.0 3000.0 3200.0 +2100.0 2300.0 2800.0 3000.0 3200.0 3300.0 +2100.0 2400.0 2900.0 3000.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2600.0 3000.0 3100.0 +1700.0 1800.0 2300.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2100.0 2600.0 2900.0 3100.0 +1700.0 1800.0 2100.0 2700.0 2900.0 3100.0 +1800.0 1900.0 2200.0 2700.0 3000.0 3100.0 +1900.0 2100.0 2300.0 2800.0 3100.0 3200.0 +2000.0 2400.0 2600.0 2900.0 3200.0 3300.0 +1300.0 1700.0 2400.0 2700.0 3100.0 3200.0 +1200.0 1500.0 2300.0 2400.0 3000.0 3200.0 +1100.0 1500.0 2300.0 2500.0 3100.0 3200.0 +2000.0 2300.0 2800.0 3000.0 3200.0 3300.0 +2100.0 2400.0 2900.0 3000.0 3300.0 3400.0 +2200.0 2500.0 2900.0 3100.0 3300.0 3400.0 +2300.0 2500.0 2900.0 3100.0 3300.0 3400.0 +2200.0 2500.0 2900.0 3100.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3200.0 3400.0 +1500.0 1800.0 2000.0 2300.0 3200.0 3400.0 +1700.0 1800.0 2000.0 2100.0 3200.0 3400.0 +1800.0 1900.0 2200.0 2300.0 3200.0 3400.0 +1900.0 2000.0 2500.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2400.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2500.0 2800.0 3200.0 3400.0 +1800.0 2300.0 2600.0 2800.0 3200.0 3400.0 +1500.0 1900.0 2600.0 2800.0 3100.0 3300.0 +1400.0 1500.0 2400.0 2700.0 2800.0 3100.0 +1400.0 1500.0 2300.0 2700.0 2800.0 3100.0 +1400.0 1500.0 2400.0 2800.0 2900.0 3100.0 +1300.0 1500.0 2300.0 2900.0 3100.0 3200.0 +1300.0 1500.0 2200.0 2900.0 3100.0 3300.0 +1500.0 1600.0 2000.0 2700.0 3200.0 3300.0 +1500.0 1600.0 2000.0 2400.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2400.0 2900.0 3200.0 +1700.0 1900.0 2100.0 2400.0 2900.0 3200.0 +2000.0 2400.0 2700.0 2900.0 3100.0 3200.0 +1900.0 2000.0 2400.0 2800.0 3100.0 3200.0 +1700.0 1900.0 2500.0 2800.0 3000.0 3200.0 +1100.0 1400.0 2500.0 2900.0 3100.0 3200.0 +2200.0 2500.0 2900.0 3000.0 3200.0 3400.0 +2100.0 2500.0 2900.0 3000.0 3200.0 3400.0 +1900.0 2100.0 2500.0 2900.0 3000.0 3200.0 +1900.0 2000.0 2400.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2800.0 3000.0 3100.0 +1700.0 1900.0 2200.0 2800.0 3000.0 3100.0 +1600.0 1900.0 2000.0 2500.0 2800.0 3000.0 +1300.0 1900.0 2100.0 2500.0 2900.0 3100.0 +1500.0 1900.0 2100.0 2600.0 2900.0 3100.0 +1100.0 1400.0 2500.0 2700.0 3000.0 3300.0 +1300.0 1600.0 2500.0 2700.0 2900.0 3300.0 +1500.0 1700.0 2500.0 2700.0 2900.0 3200.0 +1700.0 1900.0 2600.0 2700.0 3000.0 3200.0 +1800.0 1900.0 2500.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2500.0 2800.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2800.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2800.0 3000.0 3100.0 +1900.0 2100.0 2500.0 2900.0 3100.0 3200.0 +1800.0 2100.0 2500.0 2800.0 3000.0 3200.0 +1500.0 1700.0 2100.0 2600.0 2900.0 3100.0 +1500.0 1700.0 2400.0 2800.0 3000.0 3200.0 +1500.0 1700.0 2400.0 2900.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2600.0 3000.0 3300.0 +1200.0 1700.0 2500.0 2700.0 3000.0 3300.0 +1200.0 1500.0 2600.0 2700.0 3000.0 3300.0 +1300.0 1600.0 2600.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2400.0 2600.0 2900.0 3200.0 +1700.0 1800.0 2500.0 2600.0 2800.0 3200.0 +1900.0 2000.0 2400.0 2700.0 2800.0 3100.0 +2000.0 2100.0 2500.0 2700.0 2800.0 3100.0 +1800.0 1900.0 2400.0 2700.0 2800.0 3100.0 +1700.0 1800.0 2400.0 2700.0 2800.0 3100.0 +1600.0 1700.0 2400.0 2700.0 2800.0 3100.0 +1500.0 1600.0 2400.0 2700.0 2800.0 3200.0 +1400.0 1600.0 2300.0 2600.0 2900.0 3200.0 +1300.0 1500.0 2400.0 2600.0 2800.0 3200.0 +1200.0 1400.0 2500.0 2600.0 2900.0 3200.0 +1300.0 1400.0 2200.0 2600.0 2800.0 3100.0 +1900.0 2100.0 2600.0 2800.0 3200.0 3400.0 +1900.0 2000.0 2500.0 2800.0 3200.0 3300.0 +1800.0 2100.0 2500.0 2700.0 2900.0 3100.0 +1600.0 2000.0 2400.0 2800.0 3000.0 3200.0 +1600.0 1900.0 2400.0 2800.0 3000.0 3300.0 +1800.0 1900.0 2300.0 2700.0 3000.0 3100.0 +1800.0 1900.0 2300.0 2700.0 2900.0 3000.0 +1700.0 1900.0 2200.0 2500.0 2900.0 3000.0 +1400.0 1900.0 2200.0 2500.0 2900.0 3100.0 +1500.0 1800.0 2200.0 2400.0 2900.0 3100.0 +1600.0 1900.0 2300.0 2500.0 3000.0 3200.0 +1800.0 2100.0 2300.0 2700.0 3100.0 3200.0 +1900.0 2300.0 2600.0 2800.0 3000.0 3200.0 +1500.0 1700.0 2300.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2300.0 2800.0 3000.0 3100.0 +2000.0 2100.0 2400.0 2800.0 3100.0 3200.0 +2100.0 2400.0 2500.0 2800.0 3100.0 3200.0 +1900.0 2100.0 2500.0 2800.0 3000.0 3200.0 +1700.0 1800.0 2400.0 2800.0 3000.0 3200.0 +1300.0 1500.0 2200.0 2800.0 3100.0 3200.0 +1400.0 1500.0 2400.0 2800.0 2900.0 3200.0 +1400.0 1600.0 2500.0 2700.0 3000.0 3200.0 +1500.0 1600.0 2400.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2400.0 2700.0 2900.0 3200.0 +1400.0 1600.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1600.0 2600.0 2700.0 3100.0 3300.0 +1000.0 1800.0 2700.0 2800.0 3200.0 3400.0 +1100.0 1700.0 2400.0 2500.0 3200.0 3400.0 +1600.0 1800.0 2000.0 2200.0 3200.0 3400.0 +1800.0 1900.0 2200.0 2400.0 3000.0 3300.0 +1800.0 1900.0 2200.0 2600.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2700.0 3000.0 3200.0 +1300.0 1500.0 2500.0 2800.0 3000.0 3300.0 +1700.0 2000.0 2500.0 2700.0 2900.0 3200.0 +2000.0 2200.0 2500.0 2700.0 2900.0 3200.0 +2200.0 2600.0 2700.0 2800.0 3100.0 3300.0 +2100.0 2600.0 2700.0 2900.0 3300.0 3400.0 +2200.0 2300.0 2600.0 2800.0 3000.0 3200.0 +1600.0 2200.0 2500.0 2700.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2700.0 3100.0 3200.0 +1800.0 2000.0 2500.0 2900.0 3100.0 3200.0 +2200.0 2400.0 2600.0 2900.0 3100.0 3200.0 +2200.0 2500.0 2600.0 2800.0 3100.0 3200.0 +2300.0 2500.0 2600.0 2800.0 3200.0 3300.0 +2200.0 2500.0 2700.0 2800.0 3200.0 3300.0 +2200.0 2500.0 2700.0 2800.0 3100.0 3200.0 +2200.0 2400.0 2600.0 2800.0 3100.0 3200.0 +2000.0 2200.0 2400.0 2800.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2800.0 3000.0 3200.0 +1700.0 2100.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2200.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2000.0 2200.0 2600.0 3000.0 3100.0 +1600.0 1900.0 2300.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2300.0 2500.0 2800.0 2900.0 +1700.0 2100.0 2400.0 2700.0 3100.0 3200.0 +1400.0 1600.0 1700.0 2100.0 3200.0 3400.0 +1500.0 1800.0 2200.0 2300.0 3200.0 3500.0 +1300.0 1700.0 2300.0 2500.0 2900.0 3200.0 +1300.0 1500.0 2100.0 2500.0 2900.0 3200.0 +1700.0 2000.0 2200.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2500.0 2700.0 2900.0 3200.0 +1700.0 1900.0 2400.0 2700.0 2900.0 3200.0 +1600.0 1700.0 2300.0 2600.0 2900.0 3200.0 +1400.0 1600.0 2300.0 2400.0 2800.0 3300.0 +1600.0 1700.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1800.0 2400.0 2700.0 2900.0 3300.0 +1600.0 1800.0 2400.0 2800.0 3000.0 3200.0 +1600.0 1700.0 2100.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2200.0 2500.0 2700.0 3200.0 +1700.0 2000.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1700.0 2400.0 2700.0 3000.0 3200.0 +1500.0 1600.0 2300.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2300.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2200.0 2800.0 3100.0 3200.0 +1500.0 1600.0 2200.0 2800.0 3100.0 3200.0 +1500.0 1600.0 2100.0 2800.0 3100.0 3200.0 +1500.0 1600.0 2000.0 2600.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2800.0 3100.0 3200.0 +1700.0 1900.0 2500.0 2900.0 3100.0 3300.0 +2300.0 2400.0 2600.0 2900.0 3200.0 3300.0 +2200.0 2300.0 2500.0 2800.0 3100.0 3300.0 +2000.0 2200.0 2400.0 2600.0 3000.0 3300.0 +1300.0 1800.0 2200.0 2400.0 3000.0 3300.0 +1500.0 1800.0 2300.0 2400.0 3100.0 3400.0 +1800.0 2100.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2100.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1900.0 2500.0 2600.0 3000.0 3300.0 +1600.0 1800.0 2500.0 2600.0 3000.0 3400.0 +1600.0 1900.0 2400.0 2500.0 3100.0 3400.0 +1600.0 1800.0 2300.0 2400.0 3100.0 3400.0 +1600.0 1800.0 2200.0 2300.0 3100.0 3400.0 +1600.0 1800.0 2000.0 2200.0 3100.0 3400.0 +1700.0 1800.0 2300.0 2600.0 3100.0 3200.0 +2200.0 2300.0 2500.0 2800.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2500.0 3000.0 3200.0 +1300.0 1700.0 2300.0 2400.0 3000.0 3200.0 +1400.0 1800.0 2300.0 2400.0 3000.0 3100.0 +1200.0 1500.0 2600.0 2800.0 3000.0 3300.0 +2200.0 2400.0 2600.0 2800.0 3000.0 3200.0 +2000.0 2500.0 2600.0 2800.0 3100.0 3200.0 +1900.0 2400.0 2600.0 2700.0 3100.0 3200.0 +2000.0 2300.0 2400.0 2600.0 3000.0 3200.0 +1900.0 2200.0 2400.0 2800.0 3100.0 3300.0 +1800.0 2100.0 2300.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2400.0 2600.0 3100.0 3200.0 +2000.0 2300.0 2500.0 2600.0 2900.0 3200.0 +1600.0 2100.0 2400.0 2600.0 2900.0 3300.0 +1400.0 1700.0 2400.0 2800.0 3000.0 3200.0 +1100.0 1700.0 2900.0 3000.0 3200.0 3400.0 +1100.0 1700.0 2300.0 2900.0 3300.0 3400.0 +1100.0 1500.0 2300.0 2400.0 3300.0 3500.0 +1400.0 1700.0 2200.0 2400.0 3000.0 3300.0 +1600.0 1800.0 2300.0 2600.0 2900.0 3300.0 +2000.0 2100.0 2400.0 2800.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2700.0 3000.0 3100.0 +1600.0 1900.0 2100.0 2600.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2600.0 3000.0 3300.0 +1500.0 1700.0 1900.0 2200.0 3200.0 3400.0 +1400.0 1600.0 1800.0 2100.0 3200.0 3400.0 +1300.0 1500.0 1600.0 2200.0 3300.0 3400.0 +1800.0 2000.0 2200.0 2400.0 3000.0 3300.0 +2100.0 2500.0 2700.0 2800.0 3100.0 3200.0 +2100.0 2400.0 2600.0 2800.0 3100.0 3200.0 +1300.0 1800.0 2200.0 2600.0 3000.0 3200.0 +1800.0 2200.0 2400.0 2800.0 3200.0 3300.0 +1700.0 2100.0 2300.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2200.0 3000.0 3300.0 +1500.0 1700.0 2100.0 2200.0 3100.0 3400.0 +1500.0 1700.0 2000.0 2200.0 3100.0 3400.0 +1700.0 1800.0 2100.0 2300.0 3100.0 3400.0 +1900.0 2000.0 2400.0 2600.0 3000.0 3100.0 +2100.0 2500.0 2800.0 2900.0 3200.0 3300.0 +1800.0 2200.0 2400.0 2700.0 3100.0 3200.0 +1700.0 2100.0 2300.0 2600.0 3000.0 3100.0 +1900.0 2100.0 2300.0 2700.0 3000.0 3100.0 +2000.0 2200.0 2500.0 2700.0 2900.0 3100.0 +1400.0 1700.0 2000.0 2600.0 3200.0 3300.0 +1400.0 1700.0 2200.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2900.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2600.0 3000.0 3100.0 +1600.0 1900.0 2200.0 2500.0 2900.0 3000.0 +1600.0 1800.0 2000.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2300.0 2700.0 2900.0 3100.0 +1500.0 1900.0 2200.0 2500.0 2600.0 3200.0 +1800.0 1900.0 2400.0 2800.0 2900.0 3200.0 +2000.0 2100.0 2400.0 2800.0 3000.0 3200.0 +2000.0 2300.0 2400.0 2700.0 3200.0 3300.0 +1900.0 2200.0 2400.0 2800.0 3200.0 3300.0 +1300.0 1800.0 2200.0 2600.0 3100.0 3300.0 +2000.0 2400.0 2800.0 3000.0 3200.0 3400.0 +2200.0 2300.0 2800.0 3000.0 3200.0 3300.0 +2100.0 2300.0 2600.0 3000.0 3200.0 3300.0 +2100.0 2200.0 2600.0 2900.0 3100.0 3200.0 +2100.0 2200.0 2500.0 2900.0 3100.0 3200.0 +1800.0 2100.0 2300.0 2800.0 3100.0 3200.0 +1800.0 2000.0 2200.0 2600.0 3100.0 3200.0 +2000.0 2100.0 2400.0 2900.0 3100.0 3200.0 +2200.0 2500.0 2800.0 3000.0 3200.0 3300.0 +2100.0 2400.0 2800.0 3000.0 3200.0 3400.0 +2000.0 2100.0 2500.0 2800.0 3100.0 3200.0 +2000.0 2100.0 2500.0 2900.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2800.0 2900.0 3100.0 +1600.0 1900.0 2100.0 2500.0 2800.0 3000.0 +1700.0 1900.0 2200.0 2500.0 2800.0 3000.0 +2100.0 2400.0 2700.0 3000.0 3200.0 3400.0 +1700.0 1800.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1700.0 2300.0 2800.0 3000.0 3200.0 +1600.0 1900.0 2300.0 2800.0 3100.0 3300.0 +1400.0 1600.0 1700.0 2100.0 3300.0 3400.0 +1600.0 1700.0 2000.0 2300.0 3200.0 3400.0 +1600.0 1800.0 2300.0 2700.0 2900.0 3200.0 +1600.0 1700.0 2300.0 2800.0 2900.0 3200.0 +1600.0 1800.0 2300.0 2800.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2800.0 3000.0 3100.0 +1800.0 1900.0 2300.0 2600.0 2900.0 3300.0 +1700.0 1800.0 2300.0 2500.0 3000.0 3400.0 +1600.0 1700.0 2200.0 2400.0 3000.0 3400.0 +1600.0 1700.0 2200.0 2300.0 3000.0 3400.0 +2000.0 2100.0 2300.0 2400.0 3000.0 3300.0 +2200.0 2500.0 2700.0 2900.0 3200.0 3400.0 +2000.0 2500.0 2600.0 2800.0 3200.0 3300.0 +2100.0 2500.0 2600.0 2900.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2700.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2800.0 3000.0 3100.0 +1700.0 2000.0 2300.0 2700.0 3000.0 3200.0 +2000.0 2100.0 2500.0 2800.0 3000.0 3100.0 +1400.0 1600.0 1800.0 2100.0 3300.0 3400.0 +1500.0 1800.0 2100.0 2300.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2500.0 3000.0 3300.0 +1600.0 1700.0 2200.0 2600.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2700.0 3000.0 3200.0 +1700.0 1800.0 2200.0 2700.0 3000.0 3100.0 +1800.0 2000.0 2200.0 2800.0 3000.0 3100.0 +1300.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1300.0 2000.0 2200.0 2600.0 3100.0 3200.0 +2100.0 2500.0 2800.0 2900.0 3200.0 3400.0 +2200.0 2600.0 2800.0 3000.0 3300.0 3400.0 +1600.0 1900.0 2500.0 2600.0 3100.0 3400.0 +1400.0 1800.0 2500.0 2600.0 3100.0 3400.0 +1100.0 1800.0 2600.0 2700.0 3200.0 3400.0 +1000.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1200.0 1500.0 1700.0 1900.0 3000.0 3400.0 +1700.0 2100.0 2300.0 2700.0 3200.0 3300.0 +2000.0 2100.0 2600.0 2800.0 3100.0 3300.0 +2000.0 2100.0 2500.0 2900.0 3100.0 3200.0 +1700.0 2000.0 2300.0 2800.0 3100.0 3200.0 +1600.0 2000.0 2100.0 2700.0 3000.0 3100.0 +1600.0 2000.0 2100.0 2700.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2500.0 2900.0 3100.0 +1700.0 2000.0 2200.0 2500.0 2900.0 3100.0 +1500.0 2000.0 2200.0 2400.0 2900.0 3100.0 +1600.0 1900.0 2200.0 2600.0 3000.0 3100.0 +1600.0 1900.0 2300.0 2700.0 2900.0 3100.0 +1700.0 2000.0 2200.0 2700.0 2900.0 3000.0 +1700.0 2000.0 2300.0 2700.0 2900.0 3100.0 +1700.0 2000.0 2300.0 2600.0 2900.0 3100.0 +1700.0 1900.0 2400.0 2600.0 2800.0 3000.0 +1700.0 1800.0 2300.0 2600.0 2800.0 3000.0 +1700.0 1900.0 2400.0 2600.0 2900.0 3100.0 +1700.0 1900.0 2300.0 2500.0 2800.0 3100.0 +1700.0 2100.0 2400.0 2600.0 2800.0 3100.0 +2000.0 2200.0 2500.0 2700.0 2800.0 3100.0 +1900.0 2200.0 2400.0 2700.0 2900.0 3000.0 +1800.0 2000.0 2300.0 2700.0 2900.0 3000.0 +1800.0 2300.0 2500.0 2700.0 3000.0 3100.0 +2000.0 2400.0 2600.0 2800.0 3100.0 3200.0 +1900.0 2300.0 2700.0 2800.0 3200.0 3300.0 +1800.0 2400.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1700.0 2000.0 2300.0 2500.0 2900.0 3000.0 +1700.0 1800.0 2100.0 2500.0 2900.0 3000.0 +1600.0 1700.0 2000.0 2400.0 2900.0 3100.0 +1600.0 1700.0 2100.0 2400.0 2700.0 2900.0 +1500.0 1600.0 2000.0 2600.0 2800.0 3100.0 +1400.0 1500.0 2000.0 2700.0 3200.0 3300.0 +1500.0 1600.0 2100.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2100.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2800.0 3100.0 3300.0 +2000.0 2200.0 2800.0 2900.0 3200.0 3400.0 +2000.0 2200.0 2800.0 2900.0 3100.0 3400.0 +2000.0 2100.0 2700.0 2900.0 3100.0 3400.0 +1800.0 2200.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2200.0 2600.0 2800.0 3100.0 3200.0 +1900.0 2200.0 2500.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2500.0 2900.0 3100.0 +1800.0 1900.0 2200.0 2500.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2500.0 2800.0 3000.0 +1500.0 1700.0 2100.0 2400.0 2700.0 3100.0 +1400.0 1500.0 1900.0 2400.0 3000.0 3100.0 +1400.0 1600.0 2000.0 2400.0 3100.0 3200.0 +1500.0 1700.0 2100.0 2400.0 3000.0 3200.0 +1600.0 1800.0 2100.0 2400.0 2900.0 3100.0 +1600.0 1800.0 2100.0 2300.0 3000.0 3200.0 +1600.0 1800.0 2100.0 2300.0 3100.0 3300.0 +1600.0 1700.0 2000.0 2200.0 3200.0 3300.0 +1600.0 1700.0 1900.0 2100.0 3000.0 3300.0 +1700.0 1800.0 2100.0 2400.0 3100.0 3200.0 +2000.0 2300.0 2500.0 2700.0 2900.0 3100.0 +2000.0 2300.0 2600.0 2700.0 3000.0 3200.0 +1900.0 2100.0 2400.0 2600.0 2900.0 3200.0 +1700.0 1900.0 2200.0 2600.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2600.0 2700.0 3100.0 +1600.0 1700.0 2200.0 2600.0 2800.0 3000.0 +1500.0 1600.0 2100.0 2700.0 2800.0 3000.0 +1300.0 1500.0 2000.0 2700.0 3000.0 3200.0 +1200.0 1500.0 2100.0 2800.0 3000.0 3200.0 +1300.0 1500.0 2100.0 2800.0 3000.0 3100.0 +1600.0 1900.0 2100.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1500.0 1900.0 2400.0 2500.0 2900.0 3200.0 +1600.0 1700.0 2200.0 2500.0 2900.0 3100.0 +1600.0 1700.0 2200.0 2700.0 2800.0 3000.0 +1600.0 1700.0 2200.0 2700.0 2900.0 3100.0 +1500.0 1700.0 2400.0 2700.0 2900.0 3100.0 +1500.0 1800.0 2400.0 2700.0 2900.0 3200.0 +1700.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1700.0 2100.0 2500.0 2600.0 2900.0 3100.0 +1900.0 2300.0 2600.0 2700.0 3000.0 3100.0 +1800.0 2200.0 2600.0 2700.0 3000.0 3100.0 +1900.0 2200.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2100.0 2400.0 2800.0 3000.0 3100.0 +1800.0 2000.0 2300.0 2500.0 3000.0 3300.0 +1600.0 2000.0 2200.0 2600.0 2800.0 3000.0 +1700.0 1800.0 2100.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2100.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2100.0 2400.0 2900.0 3200.0 +1400.0 1600.0 2100.0 2300.0 3000.0 3200.0 +1400.0 1800.0 2100.0 2500.0 3100.0 3200.0 +1700.0 1900.0 2300.0 2500.0 2700.0 3100.0 +1800.0 1900.0 2200.0 2500.0 2800.0 3200.0 +1700.0 1900.0 2100.0 2500.0 2800.0 3100.0 +1700.0 1900.0 2200.0 2500.0 2800.0 3200.0 +1600.0 1800.0 2100.0 2600.0 2800.0 3100.0 +1600.0 1800.0 2200.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2200.0 2600.0 2800.0 3100.0 +1400.0 1600.0 2200.0 2600.0 2900.0 3100.0 +1400.0 1600.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2700.0 2900.0 3200.0 +1500.0 1700.0 2100.0 2600.0 3000.0 3100.0 +1600.0 1700.0 2100.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2300.0 2500.0 2900.0 3100.0 +1700.0 1900.0 2300.0 2500.0 2900.0 3100.0 +1600.0 1800.0 2300.0 2500.0 2900.0 3000.0 +1500.0 1700.0 2000.0 2700.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2600.0 2900.0 3100.0 +1500.0 1600.0 1900.0 2500.0 2900.0 3000.0 +1500.0 1600.0 1900.0 2600.0 2900.0 3100.0 +1700.0 1900.0 2500.0 2700.0 3100.0 3200.0 +1600.0 1700.0 2300.0 2700.0 2900.0 3200.0 +1600.0 1700.0 2200.0 2700.0 2800.0 3100.0 +1600.0 1700.0 2300.0 2700.0 2800.0 3100.0 +1500.0 1600.0 2200.0 2700.0 2900.0 3200.0 +1500.0 1600.0 2100.0 2700.0 3000.0 3200.0 +1400.0 1500.0 2100.0 2700.0 3000.0 3100.0 +1600.0 1800.0 2200.0 2500.0 3200.0 3300.0 +1900.0 2200.0 2400.0 2700.0 3100.0 3300.0 +1900.0 2100.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2100.0 2400.0 2800.0 3000.0 3200.0 +1600.0 1800.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2400.0 3000.0 3300.0 +1700.0 1900.0 2100.0 2500.0 3100.0 3300.0 +1600.0 1800.0 2200.0 2500.0 3200.0 3400.0 +1700.0 1900.0 2200.0 2500.0 3200.0 3400.0 +1600.0 1800.0 2200.0 2600.0 3200.0 3300.0 +1900.0 2100.0 2500.0 2700.0 2900.0 3100.0 +1900.0 2200.0 2400.0 2600.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2500.0 2700.0 3000.0 +1600.0 1700.0 2100.0 2500.0 2600.0 3000.0 +1600.0 1700.0 2200.0 2400.0 2700.0 2900.0 +1700.0 1800.0 2300.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2300.0 2500.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2400.0 2800.0 3100.0 +1700.0 1900.0 2200.0 2400.0 2800.0 3100.0 +1500.0 2000.0 2300.0 2700.0 2900.0 3100.0 +1500.0 1900.0 2300.0 2500.0 3000.0 3300.0 +1700.0 2000.0 2400.0 2900.0 3200.0 3300.0 +2000.0 2100.0 2400.0 2700.0 3000.0 3100.0 +1900.0 2200.0 2400.0 2600.0 2900.0 3000.0 +1700.0 2100.0 2300.0 2700.0 2900.0 3000.0 +1600.0 2000.0 2200.0 2600.0 3000.0 3100.0 +1600.0 2100.0 2200.0 2600.0 3000.0 3100.0 +1600.0 2100.0 2300.0 2600.0 3000.0 3100.0 +1700.0 2100.0 2300.0 2600.0 2900.0 3100.0 +1800.0 2300.0 2400.0 2700.0 3000.0 3200.0 +1900.0 2300.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2400.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2400.0 2600.0 2800.0 3000.0 3200.0 +1800.0 2400.0 2600.0 2800.0 3000.0 3200.0 +1800.0 2300.0 2600.0 2700.0 3000.0 3100.0 +1600.0 1800.0 2300.0 2500.0 2800.0 3100.0 +1500.0 1800.0 2200.0 2500.0 2800.0 3000.0 +1500.0 1800.0 2300.0 2500.0 2800.0 3100.0 +1400.0 1900.0 2300.0 2500.0 2800.0 3000.0 +2000.0 2100.0 2500.0 2700.0 3100.0 3200.0 +2000.0 2100.0 2600.0 2800.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2700.0 2900.0 3100.0 +1800.0 2100.0 2400.0 2600.0 2900.0 3200.0 +1800.0 2000.0 2400.0 2600.0 2900.0 3200.0 +1700.0 1900.0 2400.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2100.0 2500.0 2900.0 3200.0 +1200.0 1700.0 2200.0 2400.0 2900.0 3200.0 +1500.0 1600.0 1900.0 2500.0 2800.0 3000.0 +1500.0 1600.0 2000.0 2500.0 2800.0 3000.0 +1600.0 1700.0 2100.0 2500.0 2800.0 3200.0 +1700.0 1800.0 2100.0 2400.0 2800.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2900.0 3100.0 +1700.0 1800.0 2300.0 2700.0 3100.0 3300.0 +1300.0 1700.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1800.0 2300.0 2700.0 3100.0 3300.0 +1500.0 1600.0 1900.0 2100.0 2800.0 3300.0 +1600.0 1700.0 2000.0 2100.0 2700.0 3300.0 +1800.0 2200.0 2400.0 2500.0 3000.0 3300.0 +1700.0 2300.0 2400.0 2600.0 3100.0 3200.0 +1700.0 2200.0 2400.0 2600.0 3000.0 3100.0 +1800.0 2000.0 2300.0 2500.0 2800.0 3100.0 +1800.0 2000.0 2200.0 2500.0 2900.0 3100.0 +1800.0 2100.0 2200.0 2700.0 3000.0 3100.0 +1800.0 2000.0 2200.0 2600.0 2900.0 3000.0 +1700.0 2000.0 2100.0 2600.0 3000.0 3100.0 +1700.0 2000.0 2100.0 2500.0 3000.0 3100.0 +1700.0 1900.0 2300.0 2500.0 2800.0 3200.0 +1600.0 1900.0 2300.0 2500.0 2900.0 3200.0 +1500.0 1800.0 2200.0 2500.0 3100.0 3300.0 +1600.0 1700.0 2300.0 2700.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2600.0 2900.0 3000.0 +1400.0 1600.0 2000.0 2600.0 2900.0 3200.0 +1500.0 1600.0 2000.0 2600.0 2900.0 3200.0 +1600.0 1700.0 2100.0 2500.0 2900.0 3200.0 +1500.0 1900.0 2300.0 2400.0 3000.0 3300.0 +1600.0 1800.0 2300.0 2500.0 3000.0 3300.0 +1800.0 2200.0 2500.0 2700.0 2900.0 3100.0 +1500.0 1900.0 2200.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2700.0 2900.0 3100.0 +1400.0 1600.0 2000.0 2700.0 2800.0 3000.0 +1400.0 1600.0 1900.0 2600.0 2800.0 3000.0 +1400.0 1600.0 2100.0 2600.0 2900.0 3200.0 +1500.0 1600.0 2100.0 2600.0 3000.0 3200.0 +1500.0 1600.0 2100.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2000.0 2600.0 2900.0 3000.0 +1700.0 1900.0 2100.0 2600.0 2800.0 3100.0 +1800.0 2000.0 2400.0 2700.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2700.0 3000.0 3200.0 +1800.0 2200.0 2600.0 2900.0 3100.0 3300.0 +1800.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1800.0 1900.0 2100.0 2400.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2500.0 3000.0 3200.0 +1600.0 1700.0 2300.0 2500.0 2800.0 3200.0 +1600.0 1700.0 2200.0 2600.0 2800.0 3200.0 +1600.0 1700.0 2100.0 2600.0 2800.0 3200.0 +1600.0 1700.0 2000.0 2600.0 2800.0 3100.0 +1400.0 1700.0 2000.0 2600.0 2900.0 3100.0 +1800.0 2200.0 2500.0 2900.0 3100.0 3300.0 +1700.0 2100.0 2500.0 2900.0 3100.0 3200.0 +1500.0 1700.0 2400.0 2700.0 2900.0 3200.0 +1400.0 1500.0 2300.0 2500.0 2800.0 3100.0 +1300.0 1500.0 2300.0 2500.0 2800.0 3100.0 +1300.0 1500.0 2200.0 2600.0 2700.0 3100.0 +1200.0 1600.0 2400.0 2600.0 3000.0 3200.0 +1600.0 2000.0 2500.0 2700.0 3000.0 3300.0 +1500.0 1700.0 2500.0 2700.0 3000.0 3200.0 +1400.0 1500.0 2000.0 2700.0 3000.0 3100.0 +1400.0 1500.0 1900.0 2600.0 3000.0 3100.0 +2000.0 2300.0 2800.0 2900.0 3200.0 3400.0 +2100.0 2500.0 2700.0 2800.0 3200.0 3400.0 +1900.0 2300.0 2500.0 2700.0 3100.0 3400.0 +1800.0 1900.0 2200.0 2500.0 3000.0 3300.0 +1900.0 2200.0 2500.0 2600.0 2900.0 3200.0 +1900.0 2100.0 2300.0 2700.0 2800.0 3100.0 +1900.0 2000.0 2200.0 2600.0 3000.0 3200.0 +1900.0 2000.0 2500.0 2800.0 3100.0 3300.0 +1800.0 1900.0 2200.0 2700.0 2800.0 3100.0 +1700.0 1800.0 2400.0 2600.0 2800.0 3200.0 +1700.0 1900.0 2400.0 2500.0 2900.0 3300.0 +1400.0 1700.0 2300.0 2400.0 2600.0 3000.0 +1600.0 1700.0 2000.0 2200.0 2900.0 3200.0 +1600.0 1700.0 2000.0 2300.0 2900.0 3200.0 +1800.0 1900.0 2100.0 2600.0 2800.0 3100.0 +1800.0 1900.0 2300.0 2600.0 2900.0 3100.0 +1100.0 1800.0 2200.0 2400.0 2900.0 3200.0 +1200.0 1700.0 2300.0 2500.0 3000.0 3200.0 +1500.0 1600.0 2200.0 2600.0 2700.0 3100.0 +1700.0 1800.0 2100.0 2500.0 3000.0 3100.0 +1300.0 1700.0 2000.0 2400.0 3000.0 3200.0 +1300.0 1600.0 2000.0 2300.0 3100.0 3200.0 +1300.0 1600.0 1900.0 2300.0 3100.0 3200.0 +1400.0 1600.0 1900.0 2300.0 3100.0 3200.0 +1400.0 1600.0 1900.0 2400.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2400.0 3100.0 3200.0 +1800.0 2100.0 2200.0 2700.0 3100.0 3200.0 +1700.0 2100.0 2200.0 2700.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2600.0 3200.0 3400.0 +1900.0 2200.0 2600.0 3000.0 3300.0 3400.0 +1400.0 1800.0 2200.0 2600.0 3000.0 3300.0 +1000.0 1400.0 2400.0 2600.0 2900.0 3200.0 +1200.0 1500.0 2500.0 2600.0 3000.0 3300.0 +1200.0 1500.0 2400.0 2600.0 3000.0 3300.0 +1200.0 1500.0 2400.0 2600.0 2900.0 3300.0 +1200.0 1500.0 2400.0 2500.0 2900.0 3300.0 +1200.0 1500.0 2300.0 2500.0 3000.0 3300.0 +1200.0 1500.0 2300.0 2400.0 3000.0 3300.0 +1300.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2500.0 2800.0 3200.0 +1800.0 1900.0 2300.0 2500.0 2700.0 3200.0 +1800.0 1900.0 2300.0 2600.0 2700.0 3100.0 +1800.0 1900.0 2400.0 2600.0 2800.0 3200.0 +1900.0 2000.0 2700.0 2800.0 3100.0 3300.0 +1900.0 2000.0 2600.0 2800.0 3000.0 3300.0 +1900.0 2000.0 2500.0 2800.0 3000.0 3300.0 +1900.0 2100.0 2700.0 2800.0 3100.0 3300.0 +1900.0 2000.0 2700.0 2800.0 3000.0 3300.0 +1900.0 2000.0 2600.0 2800.0 3000.0 3200.0 +1200.0 1500.0 2200.0 2500.0 3100.0 3300.0 +1600.0 1900.0 2200.0 2600.0 3000.0 3200.0 +1300.0 1700.0 2300.0 2500.0 3100.0 3200.0 +1400.0 1500.0 2100.0 2400.0 2600.0 3100.0 +1500.0 1600.0 2000.0 2400.0 2700.0 3100.0 +1600.0 1700.0 2000.0 2500.0 2700.0 3100.0 +1900.0 2100.0 2300.0 2600.0 2900.0 3200.0 +1900.0 2100.0 2400.0 2600.0 2900.0 3100.0 +1700.0 2000.0 2200.0 2700.0 2900.0 3100.0 +1800.0 2000.0 2100.0 2700.0 3000.0 3100.0 +1800.0 1900.0 2100.0 2700.0 3000.0 3200.0 +1900.0 2100.0 2700.0 2800.0 3000.0 3300.0 +1900.0 2300.0 2700.0 2800.0 3100.0 3300.0 +2000.0 2400.0 2700.0 2800.0 3200.0 3400.0 +1600.0 2000.0 2300.0 2600.0 3000.0 3100.0 +1000.0 1400.0 2200.0 2400.0 3100.0 3300.0 +1400.0 1500.0 2000.0 2100.0 2900.0 3300.0 +1800.0 1900.0 2100.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2700.0 3000.0 3300.0 +1800.0 2000.0 2300.0 2700.0 3100.0 3300.0 +1800.0 2100.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2200.0 2800.0 2900.0 3200.0 3300.0 +2000.0 2200.0 2500.0 2900.0 3200.0 3300.0 +1800.0 2000.0 2300.0 2400.0 3100.0 3200.0 +1800.0 2000.0 2300.0 2400.0 3000.0 3200.0 +1800.0 1900.0 2200.0 2400.0 3000.0 3200.0 +1600.0 1800.0 2100.0 2600.0 2800.0 3000.0 +1500.0 1600.0 2200.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2000.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2000.0 2500.0 3100.0 3200.0 +1600.0 1900.0 2000.0 2500.0 3000.0 3100.0 +1900.0 2300.0 2800.0 2900.0 3200.0 3400.0 +2000.0 2200.0 2700.0 3000.0 3200.0 3300.0 +1900.0 2400.0 2800.0 2900.0 3200.0 3300.0 +2000.0 2400.0 2700.0 2900.0 3100.0 3300.0 +1800.0 2200.0 2400.0 2800.0 3000.0 3200.0 +1900.0 2200.0 2700.0 3000.0 3200.0 3400.0 +1900.0 2200.0 2600.0 2800.0 3000.0 3300.0 +1600.0 1700.0 2400.0 2600.0 2800.0 3200.0 +1600.0 1700.0 2300.0 2700.0 2800.0 3200.0 +1600.0 1700.0 2200.0 2700.0 2800.0 3200.0 +1600.0 1700.0 2000.0 2400.0 2900.0 3200.0 +1600.0 1900.0 2200.0 2500.0 2800.0 3000.0 +1600.0 2000.0 2400.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2000.0 2700.0 3000.0 3100.0 +1400.0 1600.0 2100.0 2700.0 2900.0 3100.0 +1900.0 2200.0 2800.0 3000.0 3300.0 3500.0 +1700.0 2000.0 2700.0 2800.0 3100.0 3300.0 +1600.0 1800.0 2200.0 2500.0 2800.0 3100.0 +1600.0 1800.0 2100.0 2400.0 2800.0 3000.0 +1600.0 2000.0 2300.0 2600.0 2800.0 3000.0 +1600.0 1900.0 2300.0 2600.0 2800.0 3000.0 +1800.0 2200.0 2500.0 2900.0 3200.0 3400.0 +1700.0 1900.0 2200.0 2800.0 3100.0 3200.0 +1600.0 2000.0 2300.0 2700.0 3000.0 3300.0 +1600.0 2000.0 2200.0 2600.0 3000.0 3200.0 +1800.0 2100.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1900.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2400.0 2600.0 2900.0 3200.0 +1300.0 2000.0 2300.0 2400.0 2800.0 3300.0 +1800.0 2000.0 2400.0 2600.0 2900.0 3300.0 +1900.0 2200.0 2300.0 2700.0 3000.0 3100.0 +1900.0 2200.0 2300.0 2700.0 3000.0 3200.0 +1800.0 2200.0 2400.0 2800.0 3100.0 3200.0 +1600.0 2100.0 2200.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2300.0 2500.0 2900.0 3200.0 +1800.0 2200.0 2400.0 2700.0 3100.0 3300.0 +1200.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1000.0 1600.0 2700.0 2900.0 3200.0 3300.0 +1000.0 1500.0 2700.0 2900.0 3200.0 3300.0 +1500.0 1700.0 2600.0 2800.0 3100.0 3300.0 +1500.0 1700.0 2600.0 2800.0 3000.0 3300.0 +1600.0 1700.0 2500.0 2800.0 3000.0 3300.0 +1600.0 1700.0 2400.0 2800.0 3000.0 3300.0 +1700.0 1800.0 2000.0 2400.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2500.0 3000.0 3100.0 +1700.0 1900.0 2200.0 2500.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2400.0 2600.0 2800.0 3100.0 +1200.0 1600.0 2200.0 2400.0 2900.0 3100.0 +1300.0 1800.0 2400.0 2600.0 2900.0 3200.0 +1300.0 1500.0 2000.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2400.0 2700.0 3100.0 3200.0 +1800.0 2100.0 2400.0 2700.0 3100.0 3400.0 +1500.0 1600.0 2000.0 2200.0 3000.0 3300.0 +1600.0 1700.0 2100.0 2200.0 3000.0 3300.0 +1700.0 1800.0 2100.0 2300.0 3100.0 3300.0 +1800.0 1900.0 2200.0 2400.0 2900.0 3100.0 +1800.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1500.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1500.0 2100.0 2300.0 2500.0 3100.0 3300.0 +1700.0 1900.0 2400.0 2700.0 2900.0 3100.0 +1400.0 1800.0 2200.0 2300.0 3100.0 3400.0 +1300.0 1800.0 2300.0 2400.0 3000.0 3300.0 +1800.0 2200.0 2400.0 2600.0 3100.0 3300.0 +1800.0 2100.0 2300.0 2500.0 3100.0 3200.0 +1100.0 1700.0 2200.0 2300.0 3000.0 3200.0 +1100.0 1600.0 2200.0 2400.0 3100.0 3200.0 +1200.0 2000.0 2300.0 2500.0 3000.0 3100.0 +1700.0 2300.0 2500.0 2800.0 3200.0 3300.0 +1500.0 1900.0 2200.0 2400.0 2900.0 3100.0 +1400.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1400.0 2000.0 2200.0 2600.0 3100.0 3200.0 +1700.0 2000.0 2300.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2500.0 2800.0 2900.0 3200.0 +1700.0 1800.0 2500.0 2700.0 2900.0 3200.0 +1600.0 1800.0 2400.0 2600.0 2800.0 3200.0 +1400.0 1700.0 2100.0 2500.0 3000.0 3300.0 +1400.0 1600.0 1900.0 2000.0 3100.0 3300.0 +1400.0 1600.0 2000.0 2100.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2400.0 2900.0 3300.0 +2100.0 2300.0 2600.0 2900.0 3100.0 3300.0 +1200.0 1800.0 2200.0 2400.0 3000.0 3200.0 +1700.0 2000.0 2300.0 2600.0 3000.0 3300.0 +1900.0 2400.0 2700.0 2900.0 3300.0 3400.0 +1400.0 1600.0 2100.0 2500.0 3100.0 3200.0 +1400.0 1700.0 2300.0 2500.0 3200.0 3400.0 +1400.0 1600.0 2300.0 2500.0 3200.0 3400.0 +1400.0 1600.0 2300.0 2500.0 3100.0 3400.0 +1500.0 1700.0 2200.0 2800.0 3100.0 3200.0 +1500.0 1600.0 2300.0 2800.0 3000.0 3200.0 +1400.0 1600.0 2300.0 2800.0 3000.0 3200.0 +1200.0 1400.0 2400.0 2900.0 3100.0 3200.0 +1200.0 1400.0 2400.0 2900.0 3200.0 3300.0 +1100.0 1400.0 2400.0 2900.0 3200.0 3300.0 +1600.0 1800.0 2400.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2400.0 2800.0 3000.0 3200.0 +1900.0 2300.0 2700.0 3000.0 3300.0 3400.0 +1800.0 2300.0 2800.0 3000.0 3200.0 3400.0 +1800.0 1900.0 2400.0 2800.0 3100.0 3300.0 +1700.0 1800.0 2100.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2700.0 3100.0 3200.0 +1600.0 1700.0 2000.0 2500.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2700.0 3100.0 3200.0 +1900.0 2200.0 2500.0 2800.0 3000.0 3100.0 +2000.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2800.0 2900.0 3200.0 +1700.0 1800.0 2400.0 2800.0 2900.0 3200.0 +1600.0 1800.0 2600.0 2800.0 3000.0 3300.0 +2100.0 2300.0 2500.0 2800.0 3000.0 3300.0 +2100.0 2200.0 2500.0 2600.0 2900.0 3200.0 +1900.0 2100.0 2400.0 2600.0 2800.0 3200.0 +1800.0 2000.0 2700.0 2800.0 3000.0 3300.0 +1700.0 2100.0 2400.0 2600.0 3000.0 3200.0 +1800.0 2000.0 2400.0 2500.0 3100.0 3400.0 +1900.0 2200.0 2500.0 2600.0 3100.0 3200.0 +1900.0 2200.0 2500.0 2600.0 3000.0 3200.0 +1800.0 2200.0 2500.0 2600.0 3000.0 3100.0 +2000.0 2200.0 2600.0 2700.0 3100.0 3200.0 +2000.0 2300.0 2600.0 2700.0 3100.0 3200.0 +1800.0 2100.0 2300.0 2500.0 2900.0 3100.0 +1800.0 2100.0 2700.0 3000.0 3300.0 3400.0 +1800.0 2000.0 2700.0 2900.0 3200.0 3300.0 +1900.0 2100.0 2400.0 2700.0 3000.0 3300.0 +1900.0 2100.0 2400.0 2700.0 2900.0 3100.0 +2000.0 2200.0 2400.0 2700.0 2900.0 3100.0 +2000.0 2400.0 2600.0 2700.0 2900.0 3100.0 +1500.0 1700.0 2200.0 2300.0 3100.0 3300.0 +1400.0 1600.0 2300.0 2600.0 2900.0 3300.0 +1600.0 1700.0 2500.0 2700.0 2900.0 3200.0 +1600.0 1700.0 2500.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2300.0 2400.0 3000.0 3400.0 +1500.0 1700.0 2100.0 2300.0 2900.0 3300.0 +1600.0 1700.0 2100.0 2300.0 3000.0 3300.0 +1500.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1500.0 2100.0 2500.0 2600.0 3000.0 3200.0 +1500.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1600.0 1700.0 2000.0 2500.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2600.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2500.0 3000.0 3100.0 +1800.0 1900.0 2200.0 2600.0 3000.0 3100.0 +1700.0 2100.0 2600.0 2900.0 3100.0 3400.0 +1700.0 2000.0 2600.0 2900.0 3200.0 3300.0 +1800.0 1900.0 2300.0 2800.0 2900.0 3100.0 +1800.0 1900.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2000.0 2500.0 2900.0 3200.0 3400.0 +1800.0 2400.0 2800.0 2900.0 3300.0 3400.0 +1500.0 1800.0 2300.0 2700.0 3200.0 3300.0 +1600.0 1700.0 2400.0 2800.0 3000.0 3200.0 +1200.0 1600.0 2200.0 2600.0 2900.0 3200.0 +1400.0 1800.0 2400.0 2800.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2800.0 3100.0 3300.0 +1300.0 1700.0 2300.0 2600.0 3000.0 3200.0 +1500.0 1600.0 2400.0 2600.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2000.0 2600.0 2900.0 3200.0 3400.0 +1900.0 2000.0 2700.0 2900.0 3200.0 3400.0 +1200.0 1800.0 2400.0 2500.0 3000.0 3300.0 +1300.0 1900.0 2400.0 2500.0 3100.0 3300.0 +1700.0 2000.0 2500.0 2900.0 3200.0 3300.0 +1100.0 1400.0 2400.0 2900.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2700.0 3100.0 3200.0 +2000.0 2200.0 2400.0 2600.0 3000.0 3100.0 +1900.0 2100.0 2300.0 2600.0 3000.0 3100.0 +1700.0 1900.0 2500.0 2800.0 3100.0 3200.0 +1400.0 1600.0 2400.0 2800.0 3000.0 3200.0 +1200.0 1500.0 2200.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2700.0 3100.0 3200.0 +1500.0 1700.0 2200.0 2400.0 2900.0 3100.0 +1500.0 1800.0 2200.0 2300.0 2800.0 2900.0 +1500.0 1800.0 2200.0 2500.0 2900.0 3100.0 +1600.0 1800.0 2200.0 2500.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2700.0 2900.0 3000.0 +1600.0 1800.0 2100.0 2800.0 3000.0 3100.0 +1800.0 1900.0 2300.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2400.0 2800.0 3200.0 3400.0 +1900.0 2000.0 2500.0 2800.0 3200.0 3400.0 +1900.0 2000.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1700.0 2200.0 2500.0 3100.0 3300.0 +1900.0 2300.0 2500.0 2800.0 3100.0 3300.0 +1300.0 2000.0 2200.0 2400.0 2800.0 3100.0 +1400.0 1700.0 2300.0 2600.0 3000.0 3300.0 +1500.0 1600.0 2300.0 2700.0 2800.0 3100.0 +1600.0 1800.0 2300.0 2600.0 2800.0 3100.0 +1900.0 2000.0 2400.0 2600.0 2900.0 3100.0 +2000.0 2500.0 2600.0 2700.0 3200.0 3300.0 +2200.0 2500.0 2600.0 2900.0 3100.0 3300.0 +2100.0 2400.0 2600.0 2700.0 3200.0 3300.0 +2100.0 2400.0 2600.0 2700.0 3200.0 3400.0 +1700.0 1900.0 2500.0 2700.0 2900.0 3100.0 +1900.0 2300.0 2400.0 2700.0 3000.0 3200.0 +2000.0 2300.0 2500.0 2700.0 3000.0 3100.0 +2000.0 2400.0 2500.0 2800.0 3200.0 3300.0 +2000.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2200.0 2400.0 3000.0 3300.0 +1400.0 1600.0 2100.0 2400.0 2900.0 3200.0 +1600.0 1700.0 2200.0 2300.0 2700.0 3200.0 +1700.0 1800.0 2100.0 2300.0 2800.0 3300.0 +1700.0 1800.0 2200.0 2400.0 2800.0 3300.0 +1900.0 2000.0 2200.0 2500.0 3000.0 3200.0 +1300.0 2000.0 2300.0 2400.0 2900.0 3200.0 +1900.0 2200.0 2400.0 2500.0 2900.0 3200.0 +1600.0 1800.0 2200.0 2500.0 2700.0 3100.0 +1600.0 1700.0 2300.0 2500.0 3000.0 3400.0 +1900.0 2000.0 2400.0 2700.0 2900.0 3300.0 +1800.0 2200.0 2400.0 2600.0 2900.0 3100.0 +1700.0 2000.0 2300.0 2600.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2600.0 2800.0 3000.0 +1600.0 1700.0 2100.0 2700.0 2900.0 3000.0 +1400.0 1600.0 2000.0 2200.0 2800.0 3200.0 +1200.0 1600.0 2000.0 2400.0 3000.0 3200.0 +1200.0 1700.0 2200.0 2500.0 3000.0 3100.0 +1600.0 1900.0 2600.0 2800.0 3000.0 3200.0 +1500.0 1900.0 2300.0 2700.0 2900.0 3200.0 +1200.0 1900.0 2300.0 2400.0 3000.0 3300.0 +1400.0 1600.0 2300.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2500.0 3000.0 3200.0 +1500.0 1600.0 2100.0 2400.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2300.0 3000.0 3300.0 +1600.0 1700.0 2100.0 2200.0 2900.0 3300.0 +1500.0 1600.0 2000.0 2100.0 2800.0 3200.0 +1500.0 1600.0 2000.0 2200.0 2800.0 3200.0 +1500.0 1600.0 2000.0 2200.0 2900.0 3200.0 +1500.0 1800.0 2100.0 2200.0 2900.0 3300.0 +2100.0 2300.0 2500.0 2700.0 2900.0 3100.0 +2000.0 2200.0 2400.0 2600.0 2800.0 3100.0 +1800.0 2100.0 2300.0 2600.0 2800.0 3000.0 +1600.0 1800.0 2400.0 2600.0 2800.0 3000.0 +1200.0 1300.0 2100.0 2700.0 2800.0 3000.0 +1100.0 1300.0 2300.0 2700.0 2900.0 3100.0 +1100.0 1300.0 2300.0 2700.0 2800.0 3100.0 +1100.0 1300.0 2300.0 2800.0 2900.0 3100.0 +1500.0 1800.0 2300.0 2700.0 3100.0 3200.0 +1200.0 1800.0 2300.0 2600.0 3000.0 3200.0 +1700.0 1800.0 2300.0 2600.0 2800.0 3200.0 +1900.0 2000.0 2400.0 2600.0 2800.0 3200.0 +2100.0 2200.0 2400.0 2600.0 3100.0 3300.0 +2000.0 2200.0 2400.0 2600.0 3100.0 3300.0 +2300.0 2500.0 2800.0 3000.0 3200.0 3300.0 +1900.0 2200.0 2700.0 2800.0 3100.0 3300.0 +1600.0 1700.0 2200.0 2600.0 3000.0 3300.0 +1500.0 1700.0 2100.0 2400.0 3100.0 3300.0 +1300.0 1600.0 2100.0 2400.0 3200.0 3400.0 +1400.0 2000.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1600.0 2300.0 2400.0 2800.0 3200.0 +1400.0 1600.0 2300.0 2500.0 2800.0 3200.0 +1400.0 1500.0 2300.0 2500.0 2800.0 3200.0 +1400.0 1500.0 2200.0 2600.0 3000.0 3300.0 +1500.0 1600.0 2000.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2200.0 2700.0 3000.0 3200.0 +1500.0 1600.0 2300.0 2700.0 3000.0 3200.0 +1800.0 2000.0 2500.0 2800.0 2900.0 3200.0 +1700.0 1900.0 2500.0 2700.0 2900.0 3200.0 +1900.0 2200.0 2600.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2200.0 2700.0 3100.0 3200.0 +1300.0 1500.0 2100.0 2800.0 3100.0 3200.0 +1500.0 1600.0 2400.0 2800.0 3000.0 3300.0 +1400.0 1500.0 2500.0 2600.0 2900.0 3200.0 +1500.0 1600.0 2400.0 2600.0 2800.0 3300.0 +1600.0 1700.0 2400.0 2600.0 2800.0 3300.0 +1800.0 2000.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2000.0 2300.0 2700.0 3000.0 3100.0 +1900.0 2100.0 2400.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2400.0 2800.0 3000.0 3300.0 +1800.0 1900.0 2300.0 2700.0 2900.0 3100.0 +1800.0 2100.0 2300.0 2700.0 3000.0 3100.0 +1900.0 2100.0 2300.0 2800.0 3000.0 3100.0 +1400.0 2000.0 2200.0 2500.0 3000.0 3200.0 +1900.0 2200.0 2600.0 3000.0 3200.0 3300.0 +1800.0 2200.0 2600.0 3000.0 3200.0 3300.0 +1500.0 1600.0 2400.0 2600.0 2800.0 3200.0 +1400.0 1600.0 2500.0 2700.0 2900.0 3200.0 +1500.0 1600.0 2400.0 2700.0 2900.0 3100.0 +1500.0 2100.0 2400.0 2700.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2600.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2600.0 2900.0 3100.0 +1700.0 2000.0 2200.0 2600.0 2900.0 3100.0 +1700.0 2200.0 2400.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2500.0 2600.0 2900.0 3100.0 +1500.0 1700.0 2500.0 2600.0 2900.0 3100.0 +1400.0 1600.0 2300.0 2600.0 2900.0 3100.0 +1200.0 1400.0 2200.0 2600.0 2900.0 3200.0 +1600.0 1700.0 2200.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2500.0 3100.0 3200.0 +1600.0 1900.0 2200.0 2700.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2800.0 3100.0 3200.0 +1900.0 2100.0 2500.0 2700.0 3100.0 3400.0 +2100.0 2300.0 2600.0 2800.0 3000.0 3200.0 +2000.0 2300.0 2600.0 2800.0 3000.0 3200.0 +2100.0 2400.0 2700.0 2800.0 3000.0 3200.0 +1600.0 2300.0 2600.0 2800.0 3000.0 3100.0 +1700.0 2300.0 2600.0 2800.0 3000.0 3100.0 +1600.0 1700.0 2400.0 2600.0 3000.0 3300.0 +1500.0 1700.0 2400.0 2500.0 2900.0 3300.0 +1600.0 1900.0 2300.0 2600.0 2700.0 3300.0 +1600.0 1900.0 2300.0 2500.0 3300.0 3400.0 +1600.0 1800.0 2300.0 2500.0 3200.0 3400.0 +1800.0 2200.0 2700.0 2900.0 3300.0 3500.0 +1700.0 2000.0 2400.0 2600.0 3300.0 3400.0 +1800.0 2200.0 2800.0 3000.0 3200.0 3300.0 +2100.0 2400.0 2800.0 3100.0 3400.0 3500.0 +2100.0 2500.0 2800.0 3100.0 3400.0 3500.0 +1900.0 2300.0 2900.0 3000.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2400.0 3200.0 3400.0 +1400.0 1700.0 2000.0 2300.0 3000.0 3100.0 +1400.0 1600.0 1900.0 2100.0 3000.0 3100.0 +1400.0 1600.0 1800.0 2100.0 3100.0 3200.0 +1400.0 1600.0 1800.0 2000.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2300.0 2900.0 3300.0 +1600.0 1800.0 2400.0 2500.0 2900.0 3300.0 +1900.0 2000.0 2200.0 2400.0 3100.0 3300.0 +1900.0 2000.0 2200.0 2400.0 3200.0 3400.0 +1300.0 1500.0 2000.0 2500.0 3000.0 3200.0 +1300.0 1600.0 2100.0 2500.0 3000.0 3200.0 +1300.0 1600.0 2300.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2200.0 2600.0 3200.0 3400.0 +1600.0 1800.0 2100.0 2400.0 3300.0 3400.0 +1700.0 1900.0 2200.0 2400.0 3200.0 3400.0 +1800.0 2000.0 2400.0 2700.0 3200.0 3400.0 +1900.0 2200.0 2600.0 2700.0 3000.0 3200.0 +1800.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2400.0 3100.0 3200.0 +1400.0 1600.0 1800.0 2000.0 3000.0 3100.0 +1400.0 1600.0 1800.0 2000.0 2900.0 3000.0 +1400.0 1600.0 1800.0 2100.0 2800.0 3000.0 +1500.0 1700.0 2100.0 2400.0 3000.0 3300.0 +1400.0 1600.0 2200.0 2500.0 3200.0 3300.0 +1100.0 1700.0 2400.0 2600.0 3100.0 3300.0 +1200.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2800.0 3300.0 3400.0 +1600.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1800.0 2200.0 2700.0 3100.0 3400.0 3500.0 +1800.0 2200.0 2800.0 3000.0 3400.0 3500.0 +1900.0 2300.0 2800.0 3100.0 3400.0 3500.0 +1900.0 2400.0 2800.0 3100.0 3300.0 3400.0 +1800.0 2200.0 2600.0 2900.0 3400.0 3500.0 +1600.0 1800.0 2400.0 2800.0 3200.0 3300.0 +2000.0 2500.0 2600.0 2900.0 3200.0 3300.0 +2100.0 2400.0 2600.0 3000.0 3200.0 3300.0 +2200.0 2500.0 2700.0 3100.0 3200.0 3300.0 +2100.0 2500.0 2600.0 2800.0 3300.0 3400.0 +2000.0 2100.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2500.0 3100.0 3400.0 +1700.0 1900.0 2300.0 2400.0 3100.0 3400.0 +1600.0 1900.0 2300.0 2500.0 3200.0 3400.0 +1600.0 2200.0 2700.0 3000.0 3300.0 3400.0 +1800.0 2300.0 2700.0 3000.0 3400.0 3500.0 +1700.0 2300.0 2500.0 2800.0 3300.0 3400.0 +1500.0 1900.0 2500.0 2700.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2800.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2500.0 3200.0 3300.0 +1100.0 2000.0 2400.0 2500.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2700.0 3100.0 3300.0 +1500.0 1900.0 2500.0 2700.0 3100.0 3300.0 +1500.0 1900.0 2300.0 2500.0 2700.0 2900.0 +1400.0 1800.0 2200.0 2500.0 2700.0 2900.0 +1400.0 1800.0 2400.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2400.0 2600.0 3000.0 3300.0 +1500.0 1900.0 2100.0 2300.0 3200.0 3300.0 +1400.0 1800.0 2300.0 2400.0 3000.0 3300.0 +2000.0 2300.0 2800.0 3000.0 3400.0 3500.0 +1600.0 1900.0 2200.0 2300.0 3100.0 3400.0 +1600.0 1800.0 2000.0 2500.0 3000.0 3100.0 +1500.0 1700.0 1800.0 2400.0 3100.0 3200.0 +1500.0 1600.0 1800.0 2400.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2300.0 2500.0 2900.0 3300.0 +1900.0 2300.0 2700.0 2900.0 3100.0 3300.0 +1400.0 1700.0 2300.0 2500.0 3100.0 3200.0 +1200.0 1700.0 2300.0 2500.0 3100.0 3200.0 +1300.0 2200.0 2600.0 2800.0 3100.0 3300.0 +1100.0 1700.0 2500.0 2600.0 3200.0 3400.0 +1300.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1400.0 1500.0 2500.0 2600.0 3100.0 3300.0 +1700.0 1800.0 2300.0 2500.0 2700.0 3300.0 +1800.0 2000.0 2500.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2500.0 2900.0 3200.0 +1800.0 1900.0 2400.0 2500.0 2800.0 3200.0 +1900.0 2000.0 2300.0 2500.0 2800.0 3300.0 +1800.0 2000.0 2200.0 2500.0 2800.0 3300.0 +1900.0 2300.0 2700.0 3000.0 3300.0 3500.0 +2100.0 2300.0 2900.0 3000.0 3200.0 3300.0 +1900.0 2100.0 2800.0 2900.0 3100.0 3300.0 +1700.0 2000.0 2600.0 2700.0 2900.0 3100.0 +1700.0 2100.0 2600.0 2800.0 3000.0 3200.0 +1700.0 2100.0 2600.0 2900.0 3100.0 3300.0 +1400.0 1500.0 1700.0 2900.0 3300.0 3400.0 +1400.0 1700.0 1800.0 2600.0 3300.0 3400.0 +1400.0 1700.0 2000.0 2700.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2300.0 2900.0 3000.0 +1400.0 1700.0 1800.0 2200.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2100.0 3000.0 3200.0 +1300.0 1600.0 1800.0 2000.0 3000.0 3100.0 +1300.0 1600.0 1800.0 2000.0 3100.0 3200.0 +1300.0 1500.0 1700.0 2200.0 3200.0 3300.0 +1300.0 1600.0 1700.0 2200.0 3200.0 3300.0 +1300.0 1500.0 1600.0 2100.0 3200.0 3300.0 +1600.0 1700.0 2100.0 2300.0 3100.0 3300.0 +1500.0 1600.0 2300.0 2400.0 3100.0 3400.0 +1900.0 2400.0 2800.0 3100.0 3400.0 3500.0 +2000.0 2400.0 2800.0 3000.0 3400.0 3500.0 +1600.0 1800.0 2200.0 2600.0 2900.0 3100.0 +1300.0 1600.0 1800.0 2400.0 3100.0 3200.0 +1200.0 1600.0 1800.0 2100.0 3000.0 3100.0 +1400.0 1900.0 2100.0 2400.0 3000.0 3100.0 +1300.0 1900.0 2100.0 2300.0 3000.0 3200.0 +1300.0 1800.0 2100.0 2300.0 3000.0 3200.0 +1400.0 1800.0 2500.0 2700.0 3100.0 3400.0 +1100.0 1800.0 2200.0 2300.0 3100.0 3200.0 +1100.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1200.0 1700.0 2300.0 2400.0 3200.0 3300.0 +1400.0 1700.0 2300.0 2400.0 3000.0 3300.0 +1400.0 1700.0 2400.0 2500.0 3000.0 3300.0 +1900.0 2200.0 2400.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2400.0 3200.0 3400.0 +1300.0 1700.0 2200.0 2400.0 2900.0 3100.0 +1100.0 1600.0 1800.0 2100.0 2900.0 3000.0 +1500.0 1700.0 1900.0 2100.0 3000.0 3100.0 +1600.0 1700.0 1900.0 2100.0 3000.0 3100.0 +1700.0 1900.0 2300.0 2500.0 2900.0 3200.0 +1400.0 1800.0 2200.0 2300.0 3300.0 3400.0 +2100.0 2400.0 2800.0 2900.0 3200.0 3300.0 +2200.0 2500.0 2700.0 2900.0 3100.0 3300.0 +2300.0 2500.0 2700.0 3000.0 3100.0 3300.0 +1700.0 2200.0 2400.0 2800.0 3300.0 3400.0 +1800.0 2300.0 2800.0 3100.0 3400.0 3500.0 +1800.0 2300.0 2600.0 3100.0 3400.0 3500.0 +1800.0 2300.0 2600.0 3100.0 3300.0 3400.0 +1500.0 1700.0 2400.0 2600.0 3000.0 3300.0 +1400.0 1600.0 2400.0 2500.0 2900.0 3300.0 +1200.0 1700.0 2200.0 2400.0 3100.0 3200.0 +1500.0 2000.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2300.0 2700.0 3000.0 3200.0 +1300.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1600.0 1900.0 2400.0 2500.0 3000.0 3200.0 +2000.0 2300.0 2600.0 2700.0 3000.0 3100.0 +1800.0 2000.0 2500.0 2800.0 3000.0 3300.0 +2000.0 2400.0 2600.0 2700.0 3100.0 3200.0 +1700.0 2400.0 2600.0 2800.0 3100.0 3200.0 +1200.0 1800.0 2200.0 2300.0 3300.0 3400.0 +1100.0 1600.0 2200.0 2400.0 3200.0 3300.0 +1100.0 1800.0 1900.0 2500.0 3000.0 3100.0 +1200.0 1700.0 1900.0 2500.0 3100.0 3200.0 +1400.0 1800.0 2300.0 2500.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2500.0 3100.0 3400.0 +1500.0 1700.0 2300.0 2400.0 2900.0 3300.0 +1500.0 1900.0 2200.0 2600.0 3000.0 3100.0 +1300.0 1600.0 2100.0 2300.0 3000.0 3100.0 +1400.0 1700.0 2200.0 2300.0 3000.0 3100.0 +1400.0 1700.0 2200.0 2400.0 3000.0 3100.0 +1400.0 1600.0 2200.0 2300.0 3000.0 3100.0 +1500.0 1700.0 2200.0 2400.0 3100.0 3300.0 +1500.0 1700.0 2100.0 2300.0 3200.0 3300.0 +1400.0 1700.0 2000.0 2300.0 3200.0 3300.0 +1300.0 1700.0 2100.0 2500.0 3100.0 3200.0 +1500.0 1800.0 2200.0 2700.0 3000.0 3200.0 +1500.0 1700.0 2300.0 2400.0 3200.0 3400.0 +1500.0 1600.0 2200.0 2400.0 3100.0 3400.0 +1400.0 1600.0 2200.0 2400.0 3100.0 3400.0 +1100.0 1700.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1900.0 2300.0 2500.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2600.0 3100.0 3400.0 +1500.0 1700.0 2300.0 2500.0 3000.0 3400.0 +1500.0 1900.0 2200.0 2600.0 2800.0 3000.0 +1500.0 1800.0 2200.0 2500.0 2900.0 3000.0 +1500.0 1700.0 2200.0 2500.0 3100.0 3400.0 +1300.0 1800.0 2100.0 2300.0 3300.0 3400.0 +1100.0 1600.0 2200.0 2500.0 3000.0 3300.0 +1400.0 1600.0 2100.0 2500.0 2900.0 3200.0 +1500.0 1800.0 2400.0 2600.0 3300.0 3400.0 +1500.0 1900.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2000.0 2100.0 2600.0 3000.0 3200.0 +1500.0 1700.0 2100.0 2600.0 3100.0 3300.0 +1500.0 1600.0 1800.0 2200.0 3200.0 3300.0 +1600.0 1800.0 1900.0 2300.0 3300.0 3400.0 +1500.0 1800.0 2100.0 2200.0 3200.0 3400.0 +1500.0 2000.0 2200.0 2600.0 3200.0 3300.0 +1300.0 1700.0 2100.0 2300.0 3100.0 3300.0 +1400.0 1500.0 2100.0 2300.0 3000.0 3300.0 +1500.0 1600.0 2100.0 2300.0 3000.0 3300.0 +1500.0 1600.0 2200.0 2300.0 3000.0 3300.0 +1400.0 1900.0 2100.0 2200.0 3000.0 3100.0 +1400.0 1800.0 2100.0 2400.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2600.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2300.0 3200.0 3400.0 +1500.0 1900.0 2200.0 2400.0 2600.0 3300.0 +1500.0 1900.0 2300.0 2400.0 2800.0 3300.0 +1400.0 1600.0 2400.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2400.0 2500.0 3100.0 3300.0 +1500.0 1600.0 2400.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2100.0 2300.0 2800.0 3300.0 +1800.0 2100.0 2600.0 3000.0 3400.0 3500.0 +2100.0 2500.0 2900.0 3100.0 3400.0 3500.0 +1700.0 2100.0 2600.0 2700.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2400.0 3200.0 3400.0 +1500.0 1800.0 2400.0 2500.0 3100.0 3400.0 +1600.0 2300.0 2700.0 3000.0 3300.0 3400.0 +1400.0 1600.0 1700.0 2100.0 3100.0 3200.0 +1400.0 1600.0 1700.0 2000.0 3100.0 3200.0 +1600.0 1700.0 1900.0 2200.0 3100.0 3300.0 +1800.0 1900.0 2500.0 2600.0 3000.0 3300.0 +1800.0 2100.0 2600.0 2900.0 3400.0 3500.0 +1800.0 2000.0 2300.0 2900.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2400.0 2900.0 3100.0 +1100.0 1600.0 2500.0 2700.0 3100.0 3400.0 +1200.0 1700.0 2600.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2600.0 2900.0 3300.0 3400.0 +1800.0 2200.0 2700.0 3000.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2600.0 3100.0 3300.0 +1300.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1800.0 2100.0 2800.0 2900.0 3300.0 3400.0 +1700.0 1800.0 2000.0 2400.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2500.0 3100.0 3300.0 +1800.0 2100.0 2300.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2600.0 2700.0 3000.0 3200.0 +1800.0 2000.0 2600.0 2700.0 3000.0 3200.0 +1900.0 2000.0 2500.0 2700.0 3000.0 3200.0 +2000.0 2100.0 2500.0 2600.0 2900.0 3200.0 +1800.0 1900.0 2500.0 2700.0 2900.0 3300.0 +1700.0 1800.0 2500.0 2700.0 3000.0 3300.0 +1800.0 2200.0 2700.0 2800.0 3200.0 3300.0 +1400.0 1600.0 2400.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2300.0 2700.0 2900.0 3100.0 +1400.0 1600.0 2400.0 2700.0 2900.0 3200.0 +1700.0 2300.0 2700.0 3000.0 3300.0 3400.0 +1400.0 1700.0 2400.0 2700.0 3100.0 3300.0 +1400.0 1700.0 2400.0 2700.0 3000.0 3300.0 +1400.0 1700.0 1800.0 2500.0 3000.0 3100.0 +1300.0 1700.0 1900.0 2300.0 3000.0 3100.0 +1400.0 1800.0 1900.0 2400.0 3000.0 3100.0 +1900.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1200.0 1700.0 2200.0 2300.0 2900.0 3100.0 +1300.0 1700.0 2200.0 2400.0 2800.0 3100.0 +1400.0 1700.0 2200.0 2300.0 2800.0 3100.0 +1500.0 1700.0 2200.0 2300.0 2900.0 3200.0 +1500.0 1700.0 2100.0 2300.0 2900.0 3200.0 +1500.0 1700.0 2000.0 2200.0 2900.0 3100.0 +1500.0 1700.0 1900.0 2200.0 3000.0 3200.0 +1500.0 1700.0 1900.0 2300.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2300.0 3100.0 3200.0 +1600.0 1800.0 2300.0 2600.0 3000.0 3100.0 +2000.0 2500.0 2700.0 2900.0 3200.0 3300.0 +2300.0 2500.0 2800.0 3100.0 3200.0 3300.0 +2300.0 2500.0 2600.0 2900.0 3200.0 3300.0 +1500.0 1700.0 2000.0 2400.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2200.0 3100.0 3300.0 +1600.0 1700.0 1800.0 2100.0 3200.0 3300.0 +1300.0 1600.0 2300.0 2500.0 3000.0 3100.0 +1200.0 1800.0 2300.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2300.0 2400.0 2800.0 3200.0 +1400.0 1700.0 2300.0 2400.0 2900.0 3300.0 +1500.0 2000.0 2500.0 2600.0 2800.0 3100.0 +1800.0 2000.0 2200.0 2600.0 3000.0 3200.0 +1400.0 1700.0 1900.0 2100.0 3000.0 3100.0 +1300.0 1600.0 2300.0 2400.0 2900.0 3100.0 +1400.0 1700.0 2300.0 2500.0 3000.0 3200.0 +1500.0 1700.0 2300.0 2600.0 3100.0 3200.0 +1500.0 1800.0 2400.0 2600.0 3100.0 3200.0 +1600.0 1800.0 2000.0 2600.0 2900.0 3100.0 +1500.0 1700.0 1900.0 2600.0 2900.0 3100.0 +1400.0 1600.0 1700.0 2200.0 3100.0 3200.0 +1300.0 1500.0 1700.0 2100.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2700.0 3100.0 3300.0 +1400.0 1700.0 1900.0 2200.0 3000.0 3100.0 +1400.0 1800.0 2000.0 2200.0 3000.0 3100.0 +2100.0 2300.0 2500.0 2700.0 3100.0 3200.0 +1500.0 1900.0 2300.0 2500.0 3000.0 3100.0 +1500.0 1900.0 2200.0 2500.0 2900.0 3100.0 +1500.0 1800.0 2100.0 2500.0 2900.0 3100.0 +1500.0 1700.0 2300.0 2600.0 2800.0 3200.0 +1500.0 1700.0 2300.0 2500.0 3000.0 3100.0 +1400.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1200.0 1500.0 2600.0 2700.0 2900.0 3000.0 +1300.0 1600.0 2500.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2500.0 2600.0 3000.0 3200.0 +1400.0 1700.0 2500.0 2600.0 3000.0 3200.0 +1500.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2400.0 2600.0 2900.0 3200.0 +1400.0 1600.0 2400.0 2700.0 3000.0 3300.0 +1400.0 1500.0 2200.0 2600.0 2900.0 3200.0 +1300.0 1700.0 2400.0 2600.0 3000.0 3300.0 +1800.0 2000.0 2500.0 2600.0 3100.0 3400.0 +1100.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1100.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1100.0 1800.0 2400.0 2600.0 3100.0 3300.0 +1000.0 1800.0 2500.0 2700.0 3200.0 3300.0 +1100.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2500.0 2900.0 3300.0 +1700.0 1900.0 2300.0 2500.0 3000.0 3300.0 +1300.0 1700.0 2100.0 2300.0 3000.0 3200.0 +1300.0 1600.0 2000.0 2200.0 3000.0 3100.0 +1300.0 1600.0 1900.0 2100.0 3000.0 3100.0 +1500.0 1700.0 2400.0 2600.0 2900.0 3100.0 +1500.0 1900.0 2600.0 2700.0 3100.0 3200.0 +2100.0 2400.0 2900.0 3100.0 3300.0 3400.0 +2000.0 2500.0 2900.0 3100.0 3400.0 3500.0 +2000.0 2500.0 2700.0 3000.0 3300.0 3400.0 +1600.0 1900.0 2600.0 2700.0 3100.0 3300.0 +1600.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1100.0 1500.0 1600.0 2200.0 2900.0 3000.0 +1200.0 1500.0 1600.0 2100.0 3000.0 3100.0 +2300.0 2500.0 2900.0 3100.0 3400.0 3500.0 +1500.0 1900.0 2300.0 2400.0 2900.0 3200.0 +1500.0 2000.0 2500.0 2600.0 3100.0 3300.0 +1500.0 1900.0 2400.0 2800.0 3200.0 3300.0 +1100.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1200.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1300.0 1700.0 2400.0 2500.0 3100.0 3200.0 +1600.0 2100.0 2300.0 2600.0 3100.0 3200.0 +1300.0 1800.0 2100.0 2300.0 3200.0 3300.0 +1200.0 1800.0 2100.0 2300.0 3100.0 3200.0 +2100.0 2200.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2300.0 2600.0 2900.0 3200.0 3400.0 +2100.0 2400.0 2700.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2600.0 2700.0 3100.0 3300.0 +2100.0 2400.0 2600.0 3000.0 3300.0 3400.0 +1400.0 1800.0 2300.0 2400.0 3000.0 3200.0 +1500.0 1700.0 1900.0 2400.0 2900.0 3000.0 +1500.0 1600.0 1800.0 2300.0 3100.0 3200.0 +1500.0 1700.0 1800.0 2300.0 3100.0 3200.0 +2100.0 2500.0 2700.0 3000.0 3400.0 3500.0 +2000.0 2400.0 2700.0 2900.0 3400.0 3500.0 +1400.0 1800.0 1900.0 2600.0 3100.0 3200.0 +1400.0 1800.0 2100.0 2300.0 3200.0 3300.0 +1600.0 1800.0 2300.0 2500.0 3000.0 3100.0 +1400.0 2000.0 2400.0 2700.0 3100.0 3200.0 +1400.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1700.0 1800.0 2500.0 2800.0 3100.0 3300.0 +1400.0 1800.0 2400.0 2500.0 2900.0 3300.0 +1400.0 2000.0 2400.0 2500.0 3100.0 3300.0 +1300.0 1600.0 2400.0 2600.0 3200.0 3300.0 +1900.0 2400.0 2900.0 3100.0 3400.0 3500.0 +2000.0 2400.0 2900.0 3100.0 3400.0 3500.0 +900.0 1800.0 2500.0 2600.0 3200.0 3300.0 +900.0 1800.0 2600.0 2700.0 3200.0 3300.0 +1000.0 1700.0 2800.0 2900.0 3200.0 3300.0 +1500.0 1600.0 2200.0 2600.0 2900.0 3200.0 +1600.0 1800.0 2100.0 2500.0 2800.0 3000.0 +1800.0 1900.0 2400.0 2600.0 2900.0 3100.0 +1900.0 2100.0 2600.0 2900.0 3100.0 3300.0 +1800.0 1900.0 2600.0 2800.0 3000.0 3200.0 +1900.0 2100.0 2500.0 2900.0 3200.0 3400.0 +1300.0 1500.0 2400.0 2700.0 2900.0 3100.0 +1300.0 1600.0 2500.0 2600.0 2900.0 3100.0 +1400.0 1600.0 2400.0 2600.0 2900.0 3100.0 +1600.0 1700.0 2500.0 2800.0 2900.0 3200.0 +1700.0 2000.0 2600.0 3000.0 3300.0 3400.0 +1900.0 2200.0 2700.0 2800.0 3200.0 3400.0 +2000.0 2100.0 2700.0 2800.0 3100.0 3300.0 +2000.0 2100.0 2600.0 2800.0 3100.0 3200.0 +1700.0 2000.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2100.0 2300.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2500.0 3200.0 3400.0 +1300.0 1800.0 2300.0 2400.0 3200.0 3400.0 +1300.0 1900.0 2300.0 2500.0 3200.0 3300.0 +2000.0 2300.0 2600.0 2700.0 3000.0 3300.0 +1800.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1800.0 2500.0 2700.0 3100.0 3300.0 +1200.0 1500.0 2500.0 2900.0 3100.0 3200.0 +1400.0 1600.0 2500.0 2700.0 2900.0 3100.0 +2100.0 2400.0 2700.0 2800.0 3100.0 3300.0 +1600.0 2100.0 2400.0 2800.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2600.0 3100.0 3200.0 +1300.0 1500.0 2300.0 2600.0 3100.0 3300.0 +2000.0 2200.0 2700.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2700.0 2800.0 3300.0 3400.0 +1800.0 2400.0 2700.0 3000.0 3400.0 3500.0 +1900.0 2400.0 2800.0 3000.0 3400.0 3500.0 +2000.0 2100.0 2600.0 2800.0 3000.0 3300.0 +2100.0 2200.0 2700.0 2800.0 3000.0 3300.0 +1500.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1300.0 2000.0 2200.0 2500.0 3000.0 3100.0 +1800.0 2100.0 2300.0 2500.0 3100.0 3300.0 +1500.0 1800.0 2500.0 2800.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2600.0 3200.0 3400.0 +1400.0 1700.0 2300.0 2400.0 3200.0 3400.0 +1100.0 1800.0 2300.0 2400.0 3300.0 3400.0 +1000.0 1900.0 2400.0 2500.0 3100.0 3400.0 +1600.0 1800.0 2200.0 2300.0 3100.0 3300.0 +1500.0 1600.0 2300.0 2400.0 3100.0 3300.0 +1500.0 1600.0 2200.0 2300.0 3200.0 3400.0 +1400.0 1800.0 2300.0 2700.0 3000.0 3300.0 +1400.0 1800.0 2100.0 2300.0 2800.0 3200.0 +1400.0 1800.0 2100.0 2500.0 2900.0 3200.0 +1200.0 1600.0 1700.0 2100.0 3000.0 3100.0 +1200.0 1600.0 1900.0 2400.0 3000.0 3200.0 +1100.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1100.0 2000.0 2400.0 2700.0 3100.0 3200.0 +1200.0 1400.0 2400.0 2600.0 2900.0 3200.0 +1300.0 1400.0 2300.0 2400.0 2800.0 3300.0 +1300.0 1500.0 2300.0 2400.0 2900.0 3200.0 +1300.0 1600.0 2400.0 2500.0 2800.0 3200.0 +1300.0 1600.0 2300.0 2500.0 2900.0 3200.0 +1300.0 1500.0 1600.0 2100.0 2800.0 2900.0 +1500.0 1800.0 2500.0 2700.0 3200.0 3400.0 +1400.0 1700.0 2300.0 2500.0 2900.0 3100.0 +1300.0 1700.0 2400.0 2500.0 3000.0 3200.0 +1200.0 1600.0 2500.0 2600.0 3100.0 3400.0 +1100.0 1700.0 2500.0 2600.0 3100.0 3400.0 +1400.0 1800.0 2200.0 2300.0 2600.0 3000.0 +1300.0 1800.0 2200.0 2300.0 2500.0 3000.0 +1400.0 1800.0 2300.0 2700.0 3000.0 3200.0 +1300.0 1500.0 2300.0 2400.0 2900.0 3100.0 +1300.0 1600.0 2400.0 2500.0 3000.0 3200.0 +1200.0 1600.0 2400.0 2600.0 3100.0 3300.0 +1200.0 1500.0 2600.0 2700.0 3100.0 3300.0 +1200.0 1500.0 2500.0 2700.0 2900.0 3200.0 +1400.0 1600.0 2300.0 2500.0 3100.0 3300.0 +1400.0 1600.0 2000.0 2200.0 2900.0 3000.0 +1300.0 1500.0 1800.0 1900.0 2800.0 2900.0 +1200.0 1600.0 1700.0 2200.0 2900.0 3000.0 +1300.0 1700.0 1800.0 2100.0 2900.0 3000.0 +1500.0 1700.0 2100.0 2400.0 2600.0 3100.0 +1500.0 2000.0 2500.0 2600.0 3000.0 3200.0 +1700.0 2000.0 2200.0 2600.0 2900.0 3200.0 +1700.0 2200.0 2600.0 2700.0 3100.0 3300.0 +1600.0 1700.0 2400.0 2500.0 3000.0 3400.0 +1900.0 2000.0 2100.0 2300.0 3300.0 3400.0 +1700.0 1900.0 2400.0 2500.0 3100.0 3300.0 +1500.0 1800.0 2200.0 2300.0 3100.0 3400.0 +1900.0 2300.0 2500.0 3000.0 3300.0 3400.0 +1500.0 1700.0 2100.0 2300.0 3000.0 3300.0 +1700.0 1900.0 2200.0 2400.0 2700.0 3200.0 +1800.0 1900.0 2200.0 2300.0 2700.0 3100.0 +1700.0 1900.0 2100.0 2300.0 2700.0 3100.0 +1700.0 2000.0 2600.0 2800.0 3100.0 3300.0 +1200.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1300.0 1900.0 2200.0 2500.0 3000.0 3100.0 +1500.0 1600.0 2300.0 2500.0 3000.0 3200.0 +1400.0 1500.0 2300.0 2500.0 3000.0 3200.0 +1300.0 1700.0 2100.0 2400.0 3100.0 3200.0 +1500.0 1600.0 2200.0 2500.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2300.0 3100.0 3400.0 +1400.0 1600.0 2100.0 2300.0 2900.0 3000.0 +1400.0 1600.0 2000.0 2200.0 2800.0 2900.0 +1400.0 1800.0 2200.0 2500.0 3100.0 3300.0 +1400.0 1800.0 2100.0 2400.0 3100.0 3300.0 +1400.0 1700.0 2000.0 2400.0 3000.0 3200.0 +1900.0 2100.0 2300.0 2500.0 2800.0 3100.0 +1900.0 2100.0 2300.0 2500.0 2900.0 3100.0 +1400.0 1600.0 2100.0 2400.0 3000.0 3200.0 +1400.0 1600.0 2000.0 2300.0 3000.0 3200.0 +1600.0 2000.0 2200.0 2600.0 2900.0 3200.0 +1600.0 2000.0 2200.0 2600.0 3000.0 3300.0 +1300.0 1900.0 2200.0 2400.0 3000.0 3200.0 +1700.0 2000.0 2300.0 2700.0 3000.0 3300.0 +1000.0 1600.0 2600.0 2700.0 3200.0 3300.0 +1100.0 1700.0 2600.0 2700.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2400.0 3300.0 3400.0 +1900.0 2100.0 2300.0 2500.0 3100.0 3200.0 +1400.0 1700.0 2200.0 2500.0 3300.0 3400.0 +1400.0 1900.0 2200.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2700.0 3000.0 3200.0 +1600.0 1800.0 2100.0 2400.0 3000.0 3200.0 +1700.0 1800.0 2100.0 2400.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2500.0 2900.0 3300.0 +1800.0 1900.0 2200.0 2500.0 2900.0 3300.0 +1800.0 1900.0 2200.0 2500.0 2900.0 3200.0 +1700.0 1900.0 2200.0 2400.0 3000.0 3300.0 +1700.0 1900.0 2200.0 2400.0 2600.0 3000.0 +1500.0 1800.0 2500.0 2600.0 3200.0 3300.0 +1600.0 1700.0 2500.0 2600.0 3000.0 3200.0 +1600.0 1700.0 2400.0 2500.0 3100.0 3200.0 +1600.0 1700.0 2500.0 2600.0 3100.0 3200.0 +1600.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1800.0 1900.0 2500.0 2600.0 3000.0 3200.0 +1900.0 2400.0 2700.0 3000.0 3300.0 3500.0 +1900.0 2400.0 2700.0 3100.0 3300.0 3400.0 +2000.0 2400.0 2600.0 3000.0 3300.0 3400.0 +1800.0 2500.0 2700.0 2900.0 3300.0 3400.0 +1800.0 2400.0 2700.0 2900.0 3400.0 3500.0 +1900.0 2400.0 2700.0 3000.0 3200.0 3300.0 +1600.0 1800.0 2400.0 2500.0 3000.0 3300.0 +1700.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1300.0 1800.0 2000.0 2500.0 3100.0 3200.0 +1500.0 1800.0 2300.0 2400.0 3000.0 3100.0 +2100.0 2500.0 2700.0 2900.0 3100.0 3300.0 +1800.0 2000.0 2200.0 2500.0 2800.0 3100.0 +1400.0 1700.0 1900.0 2300.0 2800.0 2900.0 +1800.0 2000.0 2300.0 2700.0 3000.0 3300.0 +1800.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1700.0 1800.0 2400.0 2800.0 3100.0 3300.0 +1500.0 1700.0 2500.0 2600.0 2900.0 3300.0 +1400.0 1500.0 2300.0 2500.0 2900.0 3300.0 +1500.0 1700.0 2200.0 2500.0 2900.0 3200.0 +1700.0 1900.0 2100.0 2300.0 3100.0 3300.0 +1400.0 1800.0 2200.0 2400.0 2700.0 3100.0 +1300.0 1500.0 1700.0 1900.0 2800.0 3000.0 +1300.0 1500.0 1700.0 1900.0 2900.0 3000.0 +1100.0 1600.0 2300.0 2500.0 3100.0 3200.0 +1000.0 1600.0 2300.0 2500.0 3200.0 3300.0 +1000.0 1700.0 2300.0 2400.0 3200.0 3300.0 +900.0 1700.0 2300.0 2400.0 3200.0 3300.0 +900.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1200.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1200.0 1700.0 2200.0 2300.0 3100.0 3200.0 +1300.0 1700.0 2200.0 2300.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2300.0 3100.0 3200.0 +1500.0 1700.0 2200.0 2300.0 3000.0 3200.0 +1500.0 1600.0 2200.0 2300.0 2900.0 3200.0 +1600.0 2000.0 2300.0 2400.0 3100.0 3300.0 +1600.0 2100.0 2300.0 2400.0 2700.0 3300.0 +1600.0 1800.0 2100.0 2300.0 2900.0 3000.0 +1400.0 1600.0 1700.0 2300.0 2900.0 3000.0 +1600.0 1800.0 2100.0 2300.0 3000.0 3100.0 +1600.0 1700.0 2000.0 2200.0 3000.0 3100.0 +1500.0 1600.0 2300.0 2400.0 2900.0 3100.0 +1500.0 1600.0 2400.0 2500.0 3000.0 3200.0 +1800.0 2100.0 2600.0 2700.0 3100.0 3200.0 +1500.0 1600.0 1900.0 2300.0 2900.0 3100.0 +1500.0 1700.0 2300.0 2700.0 3100.0 3200.0 +1500.0 2100.0 2500.0 2700.0 3100.0 3300.0 +1000.0 1500.0 2400.0 2500.0 3100.0 3300.0 +1200.0 1400.0 2400.0 2500.0 2900.0 3300.0 +1300.0 1700.0 2200.0 2400.0 2900.0 3000.0 +1200.0 2000.0 2400.0 2500.0 3000.0 3200.0 +1200.0 1900.0 2400.0 2500.0 3100.0 3300.0 +1300.0 1800.0 2400.0 2500.0 3100.0 3400.0 +1500.0 1800.0 2300.0 2400.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2400.0 3000.0 3200.0 +1600.0 1900.0 2100.0 2400.0 2900.0 3200.0 +1400.0 1600.0 2200.0 2400.0 2900.0 3100.0 +1500.0 1700.0 2200.0 2400.0 3000.0 3100.0 +1400.0 1600.0 2300.0 2400.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2300.0 2900.0 3200.0 +1600.0 1700.0 2000.0 2200.0 3000.0 3200.0 +1600.0 1800.0 2100.0 2400.0 2900.0 3200.0 +1600.0 1700.0 2100.0 2300.0 2900.0 3200.0 +1400.0 1600.0 2100.0 2400.0 3200.0 3300.0 +1200.0 1600.0 2100.0 2300.0 3100.0 3200.0 +1600.0 2100.0 2300.0 2500.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2300.0 2400.0 2900.0 3200.0 +1400.0 1500.0 2100.0 2400.0 2700.0 3100.0 +1200.0 1400.0 2100.0 2200.0 3000.0 3300.0 +1300.0 1800.0 2200.0 2300.0 2800.0 3200.0 +1300.0 1700.0 2200.0 2300.0 2800.0 3300.0 +1400.0 1800.0 2200.0 2300.0 2800.0 3200.0 +1800.0 2100.0 2500.0 3000.0 3200.0 3400.0 +1700.0 1900.0 2200.0 2500.0 3100.0 3300.0 +1800.0 1900.0 2100.0 2400.0 3200.0 3300.0 +1500.0 1600.0 2200.0 2300.0 3200.0 3300.0 +1400.0 1700.0 2200.0 2300.0 3100.0 3300.0 +1400.0 1900.0 2200.0 2600.0 3100.0 3300.0 +1600.0 1900.0 2500.0 2900.0 3200.0 3300.0 +1400.0 1900.0 2400.0 2700.0 3100.0 3200.0 +1400.0 1600.0 2200.0 2300.0 2900.0 3100.0 +1600.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1800.0 2000.0 2400.0 2900.0 3100.0 3200.0 +1900.0 2000.0 2500.0 2900.0 3100.0 3300.0 +1500.0 1600.0 2100.0 2200.0 3000.0 3300.0 +1500.0 1600.0 2100.0 2300.0 2900.0 3200.0 +1300.0 1500.0 2200.0 2300.0 2800.0 3100.0 +1100.0 1900.0 2500.0 2700.0 3100.0 3200.0 +1300.0 1800.0 2300.0 2700.0 3100.0 3200.0 +1100.0 1700.0 2200.0 2600.0 3000.0 3200.0 +1300.0 1600.0 1900.0 2100.0 3000.0 3200.0 +1300.0 1500.0 1800.0 1900.0 3000.0 3100.0 +1100.0 1400.0 2500.0 2600.0 3000.0 3300.0 +1300.0 1500.0 2400.0 2600.0 2900.0 3300.0 +1700.0 1900.0 2300.0 2400.0 3000.0 3300.0 +1600.0 1800.0 2100.0 2400.0 2800.0 3100.0 +1500.0 1700.0 2000.0 2500.0 2800.0 3000.0 +1400.0 1700.0 2200.0 2500.0 2900.0 3100.0 +1300.0 1500.0 2300.0 2600.0 3000.0 3300.0 +1000.0 1600.0 2200.0 2500.0 3000.0 3100.0 +1000.0 1500.0 2500.0 2600.0 3100.0 3300.0 +1000.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1000.0 1700.0 2600.0 2700.0 3200.0 3300.0 +2000.0 2400.0 2800.0 3000.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2700.0 3100.0 3200.0 +1800.0 1900.0 2400.0 2700.0 3000.0 3300.0 +1700.0 2100.0 2300.0 2500.0 3000.0 3200.0 +1200.0 1400.0 1500.0 2100.0 3100.0 3200.0 +1400.0 1600.0 1700.0 2200.0 3000.0 3200.0 +1600.0 1800.0 1900.0 2200.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2300.0 3000.0 3200.0 +1900.0 2000.0 2400.0 2500.0 3000.0 3300.0 +1800.0 1900.0 2400.0 2500.0 2900.0 3300.0 +1800.0 1900.0 2300.0 2500.0 3100.0 3400.0 +1800.0 2000.0 2400.0 2600.0 3200.0 3400.0 +1400.0 1600.0 2100.0 2200.0 3100.0 3400.0 +1500.0 1700.0 1900.0 2500.0 3000.0 3200.0 +1300.0 1400.0 2200.0 2500.0 2900.0 3200.0 +1300.0 1700.0 2100.0 2600.0 3100.0 3300.0 +1900.0 2100.0 2400.0 2700.0 3200.0 3400.0 +1700.0 2000.0 2300.0 2500.0 3000.0 3300.0 +1600.0 1700.0 2100.0 2600.0 3000.0 3200.0 +1400.0 1600.0 1700.0 2000.0 3000.0 3100.0 +1300.0 1500.0 1600.0 2000.0 3000.0 3100.0 +1400.0 1600.0 2100.0 2200.0 2700.0 3200.0 +1300.0 1600.0 1700.0 2300.0 3100.0 3300.0 +1500.0 1700.0 2200.0 2500.0 3100.0 3200.0 +2100.0 2200.0 2600.0 2900.0 3200.0 3400.0 +2100.0 2300.0 2700.0 3000.0 3300.0 3400.0 +1900.0 2300.0 2800.0 3100.0 3300.0 3500.0 +1900.0 2300.0 2700.0 3100.0 3400.0 3500.0 +1900.0 2300.0 2700.0 3100.0 3300.0 3400.0 +1400.0 1800.0 2200.0 2300.0 2900.0 3200.0 +1400.0 1600.0 2100.0 2300.0 2800.0 3300.0 +1300.0 1700.0 2200.0 2300.0 2800.0 3200.0 +1300.0 1600.0 2200.0 2300.0 2900.0 3300.0 +1400.0 1800.0 2200.0 2600.0 3100.0 3300.0 +1700.0 2100.0 2400.0 2700.0 3000.0 3200.0 +1300.0 1800.0 2200.0 2500.0 3000.0 3300.0 +1900.0 2000.0 2500.0 2600.0 2900.0 3300.0 +2100.0 2200.0 2400.0 2600.0 2900.0 3200.0 +2100.0 2200.0 2400.0 2600.0 3000.0 3200.0 +2000.0 2100.0 2400.0 2500.0 3000.0 3200.0 +1800.0 2000.0 2200.0 2400.0 3100.0 3200.0 +1400.0 2000.0 2300.0 2400.0 3000.0 3100.0 +1300.0 1600.0 2100.0 2300.0 2700.0 3200.0 +1200.0 1800.0 2200.0 2400.0 3200.0 3400.0 +1200.0 1800.0 2300.0 2400.0 3200.0 3400.0 +1200.0 1900.0 2300.0 2400.0 3100.0 3400.0 +1700.0 1800.0 2100.0 2300.0 2800.0 3200.0 +1500.0 1600.0 2200.0 2300.0 2900.0 3300.0 +1500.0 1600.0 2100.0 2300.0 2800.0 3200.0 +1500.0 1600.0 2000.0 2200.0 2700.0 3200.0 +1400.0 1900.0 2200.0 2600.0 3200.0 3300.0 +1400.0 1600.0 2100.0 2200.0 2800.0 3200.0 +1900.0 2100.0 2300.0 2600.0 3100.0 3300.0 +2000.0 2300.0 2600.0 2800.0 3200.0 3400.0 +1700.0 1800.0 2300.0 2500.0 2700.0 3200.0 +1700.0 1800.0 2300.0 2500.0 2700.0 3100.0 +1800.0 1900.0 2400.0 2500.0 2700.0 3100.0 +1700.0 1800.0 2400.0 2500.0 2800.0 3200.0 +1600.0 1800.0 2500.0 2600.0 2900.0 3100.0 +1500.0 1800.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1500.0 2100.0 2300.0 2900.0 3300.0 +1400.0 1600.0 2100.0 2300.0 3000.0 3300.0 +1600.0 1700.0 2200.0 2500.0 3100.0 3400.0 +1600.0 2000.0 2200.0 2400.0 2900.0 3100.0 +2000.0 2200.0 2600.0 2900.0 3200.0 3400.0 +1200.0 1400.0 2200.0 2300.0 3100.0 3300.0 +1300.0 1500.0 2200.0 2300.0 3100.0 3300.0 +1700.0 1800.0 2200.0 2300.0 3100.0 3400.0 +1800.0 1900.0 2200.0 2300.0 2900.0 3300.0 +1800.0 2000.0 2400.0 2700.0 3100.0 3400.0 +1600.0 1700.0 2000.0 2100.0 2700.0 3100.0 +1700.0 1900.0 2200.0 2300.0 2900.0 3200.0 +2200.0 2500.0 2700.0 2800.0 3100.0 3300.0 +1600.0 1700.0 2200.0 2300.0 2900.0 3100.0 +1400.0 1500.0 1600.0 2000.0 3000.0 3200.0 +1500.0 1700.0 1900.0 2400.0 3000.0 3200.0 +1900.0 2200.0 2500.0 2900.0 3200.0 3300.0 +1900.0 2400.0 2600.0 2900.0 3300.0 3400.0 +1800.0 2100.0 2200.0 2400.0 3000.0 3300.0 +1400.0 1600.0 1700.0 2300.0 3200.0 3300.0 +1400.0 1600.0 1900.0 2500.0 3200.0 3300.0 +1700.0 2100.0 2700.0 3000.0 3300.0 3400.0 +1400.0 1800.0 2300.0 2700.0 3100.0 3200.0 +1400.0 1600.0 2300.0 2700.0 3000.0 3200.0 +1400.0 2000.0 2200.0 2500.0 3100.0 3300.0 +1600.0 2100.0 2400.0 2900.0 3200.0 3400.0 +1400.0 1600.0 1800.0 2600.0 3300.0 3400.0 +1400.0 1500.0 1700.0 2200.0 3200.0 3300.0 +1400.0 1500.0 1700.0 2100.0 3100.0 3200.0 +1300.0 1500.0 2200.0 2400.0 2800.0 3100.0 +1300.0 1600.0 1800.0 2400.0 3000.0 3100.0 +1400.0 1600.0 2000.0 2200.0 3000.0 3300.0 +1500.0 1600.0 2100.0 2400.0 3100.0 3300.0 +1500.0 1700.0 2100.0 2300.0 2700.0 3100.0 +1500.0 1600.0 2000.0 2200.0 2600.0 3100.0 +1400.0 1500.0 2000.0 2300.0 3100.0 3300.0 +1400.0 1500.0 2000.0 2200.0 3100.0 3300.0 +1600.0 1800.0 2200.0 2300.0 3000.0 3200.0 +1400.0 1700.0 2100.0 2500.0 2900.0 3100.0 +1400.0 1800.0 2200.0 2400.0 2900.0 3000.0 +1500.0 1800.0 2300.0 2500.0 3000.0 3200.0 +2000.0 2300.0 2800.0 3100.0 3400.0 3500.0 +2000.0 2500.0 2800.0 2900.0 3200.0 3300.0 +1400.0 2000.0 2300.0 2600.0 3000.0 3300.0 +1600.0 1900.0 2300.0 2700.0 3200.0 3400.0 +2000.0 2400.0 2800.0 2900.0 3300.0 3400.0 +1200.0 1400.0 2000.0 2200.0 3200.0 3400.0 +1200.0 1600.0 2400.0 2500.0 2900.0 3200.0 +1500.0 1600.0 2300.0 2400.0 2800.0 3200.0 +1100.0 1600.0 2200.0 2300.0 3300.0 3400.0 +1300.0 1600.0 2200.0 2400.0 3000.0 3300.0 +1300.0 1600.0 2200.0 2400.0 2700.0 3200.0 +1400.0 1700.0 2300.0 2500.0 2700.0 3100.0 +1500.0 1700.0 2400.0 2500.0 2800.0 3100.0 +1800.0 2000.0 2200.0 2300.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2400.0 2900.0 3200.0 +1700.0 1900.0 2200.0 2400.0 2900.0 3300.0 +1300.0 1700.0 2200.0 2300.0 3200.0 3400.0 +1500.0 1600.0 2300.0 2400.0 3000.0 3400.0 +1600.0 1900.0 2400.0 2800.0 3200.0 3400.0 +1500.0 1600.0 2300.0 2400.0 2900.0 3300.0 +1600.0 1700.0 2300.0 2400.0 2800.0 3300.0 +1800.0 2000.0 2200.0 2500.0 3000.0 3300.0 +1900.0 2000.0 2300.0 2500.0 2800.0 3100.0 +1600.0 1700.0 2400.0 2600.0 3100.0 3400.0 +1600.0 1800.0 2400.0 2700.0 3200.0 3300.0 +1600.0 1900.0 2400.0 2700.0 3200.0 3400.0 +1500.0 1800.0 2200.0 2500.0 3200.0 3400.0 +1200.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1900.0 2000.0 2400.0 2600.0 3100.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3000.0 3400.0 +1400.0 2000.0 2300.0 2400.0 2600.0 3100.0 +1800.0 1900.0 2100.0 2200.0 3300.0 3400.0 +1400.0 1600.0 1700.0 2300.0 3300.0 3400.0 +1400.0 1600.0 1700.0 2200.0 3300.0 3400.0 +1400.0 1600.0 1700.0 2300.0 3200.0 3400.0 +1600.0 1800.0 2000.0 2300.0 2900.0 3100.0 +1700.0 1800.0 2000.0 2300.0 2900.0 3100.0 +1600.0 1800.0 2100.0 2300.0 2800.0 3100.0 +1500.0 1700.0 2100.0 2300.0 2800.0 3100.0 +1500.0 1600.0 2100.0 2300.0 2700.0 3100.0 +1500.0 1600.0 2100.0 2200.0 2700.0 3100.0 +1400.0 1800.0 2300.0 2400.0 2800.0 3100.0 +1400.0 1600.0 2300.0 2400.0 2900.0 3300.0 +1200.0 1700.0 2200.0 2300.0 2900.0 3200.0 +1400.0 1500.0 2100.0 2400.0 3200.0 3400.0 +1700.0 2100.0 2400.0 2500.0 2900.0 3100.0 +1500.0 1700.0 2000.0 2400.0 3000.0 3200.0 +1400.0 1900.0 2200.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2700.0 3000.0 3100.0 +1600.0 1800.0 2100.0 2500.0 2800.0 3100.0 +2000.0 2300.0 2500.0 2800.0 3000.0 3100.0 +1900.0 2400.0 2700.0 2800.0 3100.0 3200.0 +1800.0 2300.0 2700.0 2800.0 3100.0 3200.0 +1700.0 2400.0 2700.0 2800.0 3200.0 3300.0 +1700.0 2400.0 2700.0 2800.0 3100.0 3200.0 +1600.0 2400.0 2700.0 2800.0 3100.0 3200.0 +1600.0 2000.0 2200.0 2700.0 3100.0 3200.0 +1800.0 2200.0 2600.0 2800.0 3100.0 3400.0 +1800.0 2200.0 2600.0 3000.0 3200.0 3400.0 +1800.0 2200.0 2300.0 2700.0 3200.0 3300.0 +1600.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2200.0 2500.0 2800.0 3000.0 +2000.0 2400.0 2800.0 3100.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2000.0 2600.0 3100.0 +1400.0 1600.0 1900.0 2000.0 2500.0 3100.0 +1400.0 1600.0 1800.0 2000.0 2500.0 3100.0 +1400.0 1500.0 1800.0 1900.0 2500.0 3100.0 +1400.0 1500.0 1800.0 1900.0 2600.0 3200.0 +1400.0 1500.0 1700.0 2000.0 2900.0 3200.0 +1300.0 1700.0 2100.0 2600.0 3100.0 3200.0 +1200.0 1700.0 2200.0 2500.0 3100.0 3200.0 +1800.0 2000.0 2500.0 2600.0 3000.0 3200.0 +1700.0 1900.0 2200.0 2700.0 2900.0 3200.0 +1500.0 1700.0 2100.0 2600.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2400.0 2700.0 3100.0 +1600.0 1900.0 2200.0 2600.0 2800.0 3100.0 +1600.0 1800.0 2100.0 2500.0 3000.0 3100.0 +1600.0 1800.0 2000.0 2200.0 2600.0 3100.0 +1200.0 1400.0 2300.0 2700.0 2800.0 3100.0 +1300.0 1600.0 2100.0 2600.0 3100.0 3300.0 +1400.0 1600.0 2100.0 2500.0 2700.0 3000.0 +1300.0 1600.0 2300.0 2600.0 3000.0 3300.0 +1300.0 1700.0 2300.0 2700.0 3000.0 3300.0 +1400.0 1600.0 2000.0 2500.0 2800.0 3000.0 +1800.0 2000.0 2200.0 2600.0 2800.0 3100.0 +1800.0 1900.0 2400.0 2600.0 2800.0 3100.0 +1500.0 1700.0 2200.0 2700.0 2900.0 3100.0 +1400.0 1700.0 2300.0 2700.0 3000.0 3100.0 +1700.0 2200.0 2500.0 2900.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2700.0 3000.0 3200.0 +1700.0 2000.0 2600.0 2700.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2500.0 3100.0 3200.0 +1500.0 2000.0 2200.0 2600.0 3000.0 3100.0 +1500.0 1800.0 2000.0 2800.0 3200.0 3300.0 +1700.0 1900.0 2500.0 2600.0 2900.0 3200.0 +1800.0 2000.0 2400.0 2600.0 3000.0 3100.0 +1400.0 1700.0 2100.0 2500.0 2700.0 3000.0 +1500.0 1900.0 2200.0 2400.0 2800.0 3200.0 +1300.0 1500.0 2100.0 2400.0 3100.0 3300.0 +1200.0 1600.0 2200.0 2500.0 3200.0 3300.0 +1300.0 1800.0 2300.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1300.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1500.0 1700.0 2100.0 2700.0 3100.0 3200.0 +1500.0 1700.0 2100.0 2800.0 3100.0 3200.0 +1700.0 2000.0 2200.0 2500.0 3100.0 3200.0 +1800.0 1900.0 2100.0 2300.0 2600.0 3100.0 +1500.0 1600.0 1800.0 2000.0 2500.0 3100.0 +1700.0 2000.0 2200.0 2400.0 3100.0 3300.0 +1600.0 1800.0 2000.0 2400.0 2900.0 3200.0 +1400.0 1500.0 1700.0 1900.0 3000.0 3200.0 +1600.0 1700.0 2000.0 2600.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1700.0 2200.0 2600.0 2800.0 3100.0 3200.0 +1600.0 2200.0 2500.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2200.0 2500.0 3000.0 3100.0 +1600.0 2000.0 2500.0 2800.0 3100.0 3300.0 +1700.0 2100.0 2400.0 2900.0 3200.0 3300.0 +1800.0 2000.0 2400.0 2700.0 3000.0 3100.0 +1800.0 2000.0 2500.0 2700.0 3000.0 3100.0 +1600.0 1900.0 2300.0 2600.0 3000.0 3100.0 +1500.0 1900.0 2100.0 2500.0 3000.0 3200.0 +1900.0 2300.0 2500.0 2600.0 2900.0 3100.0 +2000.0 2200.0 2500.0 2800.0 3300.0 3400.0 +2100.0 2300.0 2600.0 2800.0 3200.0 3400.0 +2200.0 2400.0 2800.0 2900.0 3200.0 3300.0 +2100.0 2500.0 2700.0 2900.0 3200.0 3300.0 +1800.0 2300.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2300.0 2500.0 2700.0 3000.0 3200.0 +1400.0 1800.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1600.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1700.0 2200.0 2700.0 3100.0 3300.0 +1500.0 1700.0 2200.0 2700.0 3000.0 3200.0 +1500.0 1700.0 2100.0 2700.0 2900.0 3100.0 +1800.0 2300.0 2600.0 2700.0 3200.0 3300.0 +1800.0 2400.0 2700.0 2800.0 3300.0 3400.0 +1800.0 2500.0 2700.0 2900.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2400.0 2800.0 3000.0 +1600.0 1800.0 2200.0 2400.0 2800.0 3100.0 +1900.0 2000.0 2200.0 2700.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2700.0 3100.0 3300.0 +2000.0 2200.0 2500.0 2600.0 2900.0 3100.0 +1400.0 1900.0 2400.0 2700.0 3000.0 3300.0 +1500.0 1900.0 2300.0 2700.0 3000.0 3300.0 +1300.0 1800.0 2100.0 2400.0 3100.0 3200.0 +1500.0 1800.0 2200.0 2500.0 2700.0 3100.0 +1600.0 2000.0 2200.0 2600.0 2900.0 3100.0 +1700.0 2100.0 2700.0 3000.0 3200.0 3300.0 +1600.0 1800.0 2600.0 2800.0 3200.0 3300.0 +1200.0 1600.0 2200.0 2600.0 3000.0 3300.0 +1800.0 2300.0 2600.0 2800.0 3100.0 3200.0 +1800.0 2400.0 2700.0 2800.0 3100.0 3200.0 +1700.0 2300.0 2700.0 2800.0 3100.0 3200.0 +1900.0 2200.0 2700.0 2900.0 3100.0 3300.0 +1600.0 2200.0 2500.0 2700.0 3000.0 3200.0 +1600.0 2000.0 2500.0 2700.0 3000.0 3100.0 +1800.0 2200.0 2500.0 2600.0 3100.0 3200.0 +1800.0 2500.0 2700.0 2800.0 3200.0 3300.0 +1700.0 2300.0 2600.0 2700.0 3100.0 3200.0 +1400.0 1600.0 2000.0 2500.0 2900.0 3100.0 +1700.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1200.0 1400.0 1700.0 1800.0 2700.0 3200.0 +1500.0 1700.0 2000.0 2400.0 2700.0 3000.0 +1600.0 1800.0 2300.0 2400.0 2800.0 3100.0 +1800.0 2000.0 2400.0 2500.0 2900.0 3100.0 +1700.0 2000.0 2400.0 2600.0 2900.0 3000.0 +1500.0 1900.0 2300.0 2600.0 2900.0 3100.0 +1500.0 1900.0 2200.0 2600.0 2900.0 3100.0 +1500.0 1900.0 2100.0 2400.0 2900.0 3100.0 +1700.0 2300.0 2500.0 2800.0 3100.0 3200.0 +1600.0 2400.0 2700.0 2800.0 3200.0 3300.0 +1500.0 2400.0 2800.0 2900.0 3200.0 3300.0 +1200.0 1700.0 2300.0 2400.0 3000.0 3200.0 +1300.0 1900.0 2400.0 2600.0 3200.0 3300.0 +1500.0 2100.0 2300.0 2700.0 3100.0 3300.0 +1700.0 2200.0 2500.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2000.0 2500.0 3000.0 3300.0 +1600.0 2000.0 2400.0 2500.0 3100.0 3300.0 +1400.0 1900.0 2300.0 2500.0 3200.0 3400.0 +1100.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1100.0 2200.0 2400.0 2700.0 3200.0 3300.0 +1200.0 2000.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2500.0 2900.0 3000.0 +1500.0 1900.0 2200.0 2400.0 2600.0 3100.0 +1800.0 2000.0 2500.0 2600.0 2900.0 3200.0 +2000.0 2100.0 2500.0 2700.0 3100.0 3300.0 +1800.0 2100.0 2400.0 2600.0 3000.0 3400.0 +1600.0 1800.0 2200.0 2400.0 3300.0 3400.0 +1400.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1600.0 1900.0 2200.0 2700.0 3200.0 3300.0 +1500.0 1900.0 2300.0 2400.0 3000.0 3200.0 +1500.0 1900.0 2300.0 2500.0 2900.0 3200.0 +2200.0 2500.0 2900.0 3000.0 3300.0 3400.0 +1500.0 1800.0 2400.0 2700.0 3300.0 3400.0 +1400.0 1800.0 2100.0 2700.0 3100.0 3200.0 +1400.0 1600.0 2000.0 2700.0 3100.0 3200.0 +1900.0 2000.0 2300.0 2800.0 3100.0 3200.0 +2100.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2500.0 2900.0 3100.0 +1800.0 1900.0 2200.0 2700.0 3200.0 3300.0 +1800.0 2200.0 2800.0 3000.0 3300.0 3500.0 +1800.0 2300.0 2600.0 2900.0 3300.0 3500.0 +2100.0 2400.0 2700.0 3000.0 3300.0 3500.0 +1600.0 1800.0 2200.0 2400.0 2900.0 3300.0 +1500.0 1900.0 2500.0 2600.0 2900.0 3100.0 +1600.0 2100.0 2400.0 2600.0 2800.0 3100.0 +1500.0 1600.0 2100.0 2400.0 2900.0 3300.0 +1500.0 1700.0 2200.0 2400.0 2900.0 3300.0 +1400.0 1500.0 2300.0 2500.0 3200.0 3300.0 +1400.0 1700.0 2400.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2400.0 2500.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2400.0 2900.0 3200.0 +1700.0 2400.0 2600.0 2900.0 3300.0 3400.0 +1600.0 1700.0 2100.0 2300.0 2700.0 3200.0 +1800.0 2300.0 2600.0 2900.0 3100.0 3300.0 +1800.0 2400.0 2600.0 2900.0 3300.0 3400.0 +1900.0 2300.0 2700.0 2900.0 3200.0 3400.0 +1400.0 1800.0 2200.0 2500.0 3300.0 3400.0 +1300.0 1900.0 2300.0 2700.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2400.0 2500.0 3000.0 3300.0 +1900.0 2300.0 2600.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2700.0 2900.0 3100.0 3300.0 +1600.0 1800.0 2000.0 2500.0 2900.0 3000.0 +1800.0 2100.0 2400.0 2500.0 2900.0 3100.0 +1500.0 1700.0 2400.0 2500.0 2700.0 3000.0 +1400.0 1600.0 2200.0 2500.0 2600.0 3000.0 +1300.0 2100.0 2300.0 2800.0 3100.0 3200.0 +1300.0 2100.0 2200.0 2700.0 3100.0 3200.0 +1500.0 2000.0 2300.0 2500.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2400.0 2800.0 3200.0 +1900.0 2000.0 2300.0 2500.0 2900.0 3300.0 +1600.0 1900.0 2500.0 2800.0 3100.0 3200.0 +1400.0 2000.0 2400.0 2600.0 3000.0 3100.0 +1200.0 1900.0 2000.0 2400.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2000.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2600.0 2900.0 3000.0 +1700.0 1900.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2200.0 2800.0 3000.0 3200.0 3400.0 +2000.0 2300.0 2900.0 3100.0 3300.0 3400.0 +1500.0 2000.0 2300.0 2700.0 3300.0 3400.0 +1200.0 1700.0 2300.0 2500.0 3100.0 3300.0 +1300.0 1800.0 2200.0 2600.0 3200.0 3300.0 +1200.0 2000.0 2200.0 2600.0 3100.0 3200.0 +2000.0 2300.0 2500.0 2900.0 3200.0 3300.0 +2200.0 2300.0 2700.0 3000.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2500.0 2800.0 3000.0 +1200.0 1800.0 2300.0 2400.0 3200.0 3300.0 +1200.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1200.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1600.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1500.0 1700.0 1900.0 2400.0 2800.0 3000.0 +1500.0 1700.0 1900.0 2500.0 2800.0 3000.0 +1500.0 1800.0 2100.0 2700.0 3000.0 3200.0 +2000.0 2200.0 2700.0 3000.0 3300.0 3400.0 +2100.0 2400.0 2800.0 3000.0 3400.0 3500.0 +2000.0 2200.0 2700.0 2900.0 3200.0 3300.0 +2100.0 2500.0 2800.0 3000.0 3400.0 3500.0 +2000.0 2300.0 2600.0 2700.0 3200.0 3300.0 +1900.0 2300.0 2600.0 2700.0 3200.0 3400.0 +1500.0 1800.0 2300.0 2600.0 3000.0 3300.0 +1400.0 1900.0 2400.0 2500.0 2700.0 3000.0 +2200.0 2300.0 2700.0 2900.0 3200.0 3300.0 +2100.0 2300.0 2700.0 2800.0 3200.0 3300.0 +2000.0 2300.0 2500.0 2700.0 3300.0 3400.0 +2300.0 2500.0 2800.0 3100.0 3400.0 3500.0 +2200.0 2600.0 2800.0 3100.0 3300.0 3400.0 +2200.0 2600.0 2700.0 3000.0 3300.0 3400.0 +1900.0 2200.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2400.0 2600.0 2900.0 3100.0 +1700.0 1800.0 2300.0 2500.0 2700.0 3000.0 +1500.0 1800.0 2200.0 2400.0 2800.0 3200.0 +1300.0 2100.0 2400.0 2700.0 3300.0 3400.0 +1200.0 1900.0 2400.0 2600.0 3100.0 3300.0 +1200.0 1500.0 2400.0 2500.0 3100.0 3400.0 +1400.0 1500.0 2400.0 2600.0 3000.0 3400.0 +1500.0 1600.0 2500.0 2600.0 3100.0 3400.0 +1600.0 2100.0 2400.0 2500.0 3100.0 3300.0 +1600.0 2200.0 2400.0 2600.0 3100.0 3300.0 +1800.0 2300.0 2600.0 2900.0 3200.0 3400.0 +2100.0 2200.0 2500.0 2700.0 2900.0 3200.0 +1700.0 2000.0 2300.0 2400.0 2700.0 3000.0 +2000.0 2200.0 2400.0 2700.0 3300.0 3400.0 +1500.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1200.0 1700.0 2200.0 2400.0 3300.0 3400.0 +1400.0 1900.0 2000.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2200.0 2600.0 3200.0 3300.0 +1200.0 2100.0 2300.0 2600.0 3300.0 3400.0 +1100.0 2100.0 2300.0 2600.0 3300.0 3400.0 +1900.0 2100.0 2600.0 2700.0 3100.0 3300.0 +1200.0 1600.0 2100.0 2400.0 3000.0 3300.0 +1200.0 1700.0 2100.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2100.0 2300.0 2600.0 3000.0 +1900.0 2200.0 2300.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2500.0 2900.0 3200.0 +1500.0 1900.0 2100.0 2500.0 2900.0 3100.0 +1300.0 1900.0 2100.0 2400.0 3000.0 3100.0 +1800.0 2400.0 2800.0 3000.0 3400.0 3500.0 +1600.0 2000.0 2300.0 2800.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2400.0 3000.0 3300.0 +1400.0 2100.0 2300.0 2500.0 3200.0 3400.0 +1700.0 2000.0 2500.0 2700.0 3000.0 3300.0 +1800.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1700.0 1900.0 2800.0 3100.0 3200.0 +1300.0 1600.0 1800.0 2600.0 3100.0 3200.0 +1300.0 1500.0 1600.0 2400.0 3100.0 3200.0 +1400.0 1600.0 1700.0 2200.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2500.0 2900.0 3200.0 +1500.0 1900.0 2100.0 2400.0 3200.0 3300.0 +1800.0 2000.0 2100.0 2500.0 3200.0 3300.0 +1400.0 2000.0 2400.0 2500.0 3100.0 3200.0 +1200.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1100.0 1800.0 2300.0 2600.0 3100.0 3300.0 +1400.0 1700.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2300.0 2600.0 3100.0 3200.0 +1500.0 1800.0 2500.0 2700.0 3100.0 3300.0 +1500.0 1900.0 2500.0 2700.0 3000.0 3200.0 +1600.0 1900.0 2500.0 2800.0 3200.0 3400.0 +1600.0 1700.0 2400.0 2700.0 2900.0 3200.0 +1500.0 1600.0 2100.0 2600.0 2800.0 3100.0 +1300.0 1500.0 1700.0 1900.0 3000.0 3100.0 +1400.0 1500.0 2200.0 2400.0 3100.0 3300.0 +1100.0 1400.0 2200.0 2500.0 3200.0 3300.0 +1200.0 1500.0 1700.0 1900.0 3200.0 3300.0 +1500.0 1700.0 2300.0 2700.0 3000.0 3300.0 +1900.0 2200.0 2700.0 2800.0 3100.0 3400.0 +1900.0 2200.0 2700.0 2900.0 3300.0 3500.0 +1400.0 1900.0 2300.0 2400.0 3000.0 3200.0 +1500.0 1600.0 2300.0 2600.0 2900.0 3200.0 +1800.0 2100.0 2700.0 2800.0 3200.0 3300.0 +1500.0 1700.0 2400.0 2800.0 3100.0 3300.0 +1700.0 1900.0 2700.0 2800.0 3300.0 3400.0 +1700.0 2100.0 2600.0 2800.0 3100.0 3400.0 +1700.0 2200.0 2700.0 2900.0 3200.0 3400.0 +1900.0 2100.0 2400.0 2800.0 3200.0 3400.0 +1800.0 2100.0 2300.0 2600.0 3000.0 3300.0 +1800.0 2000.0 2200.0 2500.0 3100.0 3300.0 +1400.0 1600.0 2300.0 2400.0 3200.0 3300.0 +1600.0 1800.0 2300.0 2400.0 2900.0 3100.0 +1800.0 2200.0 2700.0 2800.0 3100.0 3300.0 +1800.0 2100.0 2700.0 2800.0 3000.0 3300.0 +1800.0 2100.0 2700.0 2800.0 3100.0 3300.0 +1500.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1200.0 1800.0 2200.0 2400.0 3100.0 3300.0 +1000.0 1400.0 2300.0 2400.0 3200.0 3300.0 +1100.0 1500.0 2200.0 2400.0 3200.0 3300.0 +1200.0 1500.0 2100.0 2200.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2600.0 3200.0 3400.0 +1100.0 1500.0 2100.0 2200.0 3200.0 3300.0 +1500.0 2000.0 2600.0 2800.0 3200.0 3400.0 +1400.0 1600.0 2500.0 2800.0 3000.0 3300.0 +1500.0 1600.0 2500.0 2700.0 3100.0 3300.0 +1400.0 1700.0 2600.0 2800.0 3000.0 3300.0 +1100.0 1900.0 2200.0 2400.0 3100.0 3300.0 +1000.0 1800.0 2200.0 2400.0 3200.0 3300.0 +1000.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1300.0 1600.0 1800.0 2000.0 3200.0 3300.0 +1300.0 1500.0 1800.0 1900.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2500.0 3000.0 3300.0 +1700.0 1800.0 2400.0 2600.0 3100.0 3400.0 +1500.0 1600.0 2100.0 2600.0 2800.0 3200.0 +1500.0 1600.0 2200.0 2600.0 2800.0 3000.0 +1600.0 1700.0 2100.0 2500.0 2900.0 3100.0 +1500.0 1600.0 2100.0 2500.0 2800.0 3200.0 +1500.0 1600.0 2100.0 2500.0 2700.0 3100.0 +1500.0 1600.0 2100.0 2400.0 2800.0 3100.0 +1500.0 1700.0 2200.0 2400.0 2800.0 3100.0 +2000.0 2300.0 2600.0 2700.0 3200.0 3400.0 +1600.0 1800.0 2100.0 2600.0 3100.0 3300.0 +1600.0 1700.0 2200.0 2700.0 3100.0 3300.0 +1300.0 1800.0 2400.0 2600.0 3100.0 3300.0 +1300.0 1500.0 2400.0 2700.0 3000.0 3300.0 +1500.0 1600.0 1900.0 2600.0 2900.0 3000.0 +1800.0 1900.0 2200.0 2700.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2700.0 3000.0 3300.0 +1800.0 1900.0 2400.0 2700.0 2900.0 3300.0 +1900.0 2000.0 2600.0 2700.0 3000.0 3200.0 +1900.0 2200.0 2700.0 2800.0 3000.0 3200.0 +1500.0 1600.0 2100.0 2500.0 2800.0 3100.0 +1100.0 1300.0 2400.0 2600.0 2800.0 3200.0 +1200.0 1500.0 2300.0 2600.0 3100.0 3300.0 +1200.0 1600.0 1800.0 2000.0 3200.0 3300.0 +1400.0 1600.0 1900.0 2000.0 3200.0 3300.0 +1300.0 1500.0 1700.0 1900.0 3200.0 3300.0 +2000.0 2200.0 2700.0 2800.0 3200.0 3400.0 +1500.0 1600.0 2400.0 2500.0 2900.0 3300.0 +1100.0 1700.0 2100.0 2300.0 3100.0 3200.0 +1500.0 1600.0 2100.0 2700.0 2900.0 3000.0 +1500.0 1900.0 2300.0 2600.0 2900.0 3000.0 +1600.0 2000.0 2200.0 2600.0 3100.0 3300.0 +1400.0 1600.0 1800.0 2000.0 3100.0 3200.0 +1900.0 2000.0 2300.0 2500.0 3000.0 3300.0 +1900.0 2100.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2400.0 2700.0 2800.0 3200.0 3400.0 +1900.0 2500.0 2700.0 2800.0 3300.0 3400.0 +2000.0 2500.0 2800.0 2900.0 3300.0 3500.0 +2100.0 2600.0 2800.0 3000.0 3400.0 3500.0 +1500.0 1600.0 2300.0 2600.0 2900.0 3300.0 +1600.0 2100.0 2600.0 2800.0 3200.0 3300.0 +1300.0 1500.0 2300.0 2700.0 3000.0 3300.0 +1400.0 1800.0 2300.0 2500.0 2700.0 3100.0 +1400.0 1600.0 2400.0 2700.0 3200.0 3300.0 +1400.0 1500.0 2300.0 2600.0 3200.0 3300.0 +1400.0 1600.0 2200.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2100.0 2300.0 3200.0 3400.0 +2100.0 2400.0 2700.0 2800.0 3100.0 3400.0 +2100.0 2400.0 2700.0 2800.0 3200.0 3400.0 +1600.0 1800.0 2600.0 2700.0 3000.0 3400.0 +1500.0 1700.0 2600.0 2700.0 2900.0 3300.0 +1600.0 1800.0 2600.0 2700.0 3000.0 3200.0 +1900.0 2500.0 2700.0 3000.0 3400.0 3500.0 +2000.0 2500.0 2600.0 3100.0 3300.0 3400.0 +2100.0 2300.0 2700.0 3000.0 3200.0 3400.0 +1600.0 1700.0 2100.0 2500.0 3100.0 3300.0 +1600.0 1700.0 2000.0 2400.0 3200.0 3300.0 +1600.0 1700.0 2000.0 2500.0 3200.0 3300.0 +2200.0 2500.0 2700.0 2900.0 3300.0 3400.0 +1200.0 1400.0 2100.0 2500.0 3000.0 3100.0 +1400.0 1700.0 2200.0 2400.0 3100.0 3300.0 +1300.0 1700.0 2000.0 2200.0 3100.0 3200.0 +1200.0 1600.0 1700.0 2100.0 3100.0 3200.0 +1800.0 2100.0 2700.0 2900.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2800.0 2900.0 3100.0 +1900.0 2000.0 2300.0 2700.0 2900.0 3200.0 +2000.0 2100.0 2400.0 2700.0 3000.0 3200.0 +1800.0 1900.0 2400.0 2700.0 3100.0 3400.0 +1700.0 1800.0 2500.0 2800.0 3000.0 3300.0 +2200.0 2600.0 2800.0 2900.0 3300.0 3400.0 +1500.0 1700.0 2200.0 2500.0 3200.0 3300.0 +1300.0 1600.0 2200.0 2500.0 3100.0 3200.0 +1700.0 1900.0 2300.0 2700.0 3100.0 3200.0 +1700.0 1900.0 2400.0 2800.0 3000.0 3200.0 +1300.0 1800.0 2200.0 2600.0 3000.0 3300.0 +1200.0 1500.0 2300.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2400.0 3100.0 3400.0 +1300.0 1700.0 2200.0 2300.0 3100.0 3300.0 +1500.0 1700.0 2300.0 2500.0 3200.0 3300.0 +1500.0 1600.0 2400.0 2600.0 3200.0 3300.0 +1600.0 1700.0 2400.0 2700.0 3100.0 3400.0 +1600.0 1700.0 2300.0 2800.0 3000.0 3300.0 +1300.0 1700.0 2300.0 2600.0 2700.0 2900.0 +1500.0 1600.0 2200.0 2600.0 2800.0 3200.0 +1300.0 1700.0 2200.0 2400.0 3000.0 3200.0 +1400.0 1900.0 2300.0 2600.0 2900.0 3300.0 +1200.0 1400.0 2500.0 2600.0 3100.0 3400.0 +1500.0 1600.0 2200.0 2500.0 2700.0 3200.0 +1600.0 1700.0 2300.0 2500.0 2700.0 3300.0 +1100.0 1300.0 2200.0 2700.0 3000.0 3200.0 +1200.0 1300.0 2000.0 2700.0 2900.0 3100.0 +1800.0 2000.0 2700.0 2900.0 3100.0 3300.0 +1800.0 1900.0 2400.0 2800.0 3000.0 3300.0 +1900.0 2000.0 2400.0 2800.0 3000.0 3300.0 +2000.0 2100.0 2400.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2300.0 2600.0 2700.0 3100.0 +1500.0 1700.0 2100.0 2500.0 2700.0 2900.0 +1400.0 1800.0 2400.0 2600.0 2800.0 3200.0 +2000.0 2100.0 2500.0 2900.0 3100.0 3300.0 +2000.0 2100.0 2600.0 2900.0 3100.0 3300.0 +2100.0 2200.0 2500.0 2800.0 3100.0 3300.0 +1900.0 2000.0 2500.0 2600.0 2900.0 3100.0 +1800.0 1900.0 2500.0 2700.0 2800.0 3100.0 +1900.0 2300.0 2800.0 2900.0 3300.0 3400.0 +1700.0 1800.0 2100.0 2200.0 3100.0 3200.0 +1800.0 1900.0 2200.0 2300.0 3100.0 3200.0 +1200.0 1700.0 2100.0 2300.0 3200.0 3300.0 +1400.0 1600.0 2000.0 2200.0 3000.0 3100.0 +1500.0 1600.0 2200.0 2500.0 2900.0 3100.0 +1900.0 2200.0 2400.0 2600.0 2800.0 3000.0 +1900.0 2100.0 2400.0 2700.0 2800.0 3000.0 +1900.0 2100.0 2300.0 2700.0 2900.0 3000.0 +1800.0 2000.0 2400.0 2900.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2800.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2500.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2200.0 2700.0 3100.0 +1600.0 1700.0 2100.0 2200.0 2600.0 3100.0 +1900.0 2200.0 2400.0 2900.0 3300.0 3400.0 +1600.0 1800.0 2400.0 2500.0 2900.0 3200.0 +2000.0 2200.0 2400.0 2500.0 2800.0 3200.0 +2000.0 2400.0 2500.0 2700.0 2900.0 3100.0 +1900.0 2000.0 2200.0 2300.0 3100.0 3400.0 +2000.0 2100.0 2300.0 2600.0 3000.0 3200.0 +2000.0 2100.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2600.0 2900.0 3000.0 +1300.0 1500.0 2300.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2100.0 2600.0 2900.0 3000.0 +1700.0 1800.0 2200.0 2500.0 2700.0 3100.0 +1900.0 2400.0 2600.0 2700.0 3000.0 3100.0 +2000.0 2400.0 2500.0 2900.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2600.0 2800.0 3100.0 +1900.0 2100.0 2600.0 3000.0 3200.0 3300.0 +1800.0 2300.0 2400.0 2600.0 3200.0 3300.0 +1900.0 2200.0 2300.0 2600.0 3200.0 3300.0 +1900.0 2400.0 2800.0 2900.0 3200.0 3400.0 +1800.0 2400.0 2700.0 2800.0 3200.0 3400.0 +1700.0 2100.0 2200.0 2600.0 3000.0 3100.0 +1900.0 2200.0 2500.0 2900.0 3200.0 3400.0 +1800.0 2400.0 2600.0 2700.0 3300.0 3400.0 +1900.0 2500.0 2700.0 2900.0 3300.0 3400.0 +1900.0 2400.0 2800.0 2900.0 3300.0 3400.0 +1800.0 2400.0 2800.0 2900.0 3200.0 3400.0 +1200.0 1300.0 2400.0 2800.0 2900.0 3100.0 +1600.0 1800.0 2000.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2300.0 2700.0 3200.0 3300.0 +1800.0 2100.0 2300.0 2800.0 3200.0 3300.0 +1500.0 1600.0 2100.0 2200.0 2800.0 3100.0 +1500.0 1600.0 2000.0 2200.0 2500.0 3100.0 +1400.0 1500.0 2200.0 2500.0 2700.0 3000.0 +1200.0 1400.0 2300.0 2600.0 2800.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2800.0 3000.0 +1700.0 2100.0 2200.0 2600.0 2800.0 2900.0 +2000.0 2200.0 2400.0 2700.0 3000.0 3100.0 +1500.0 2100.0 2500.0 2600.0 3100.0 3200.0 +1800.0 2400.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2400.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2300.0 2400.0 2600.0 3200.0 3300.0 +1900.0 2000.0 2400.0 2700.0 3000.0 3100.0 +2000.0 2200.0 2700.0 2900.0 3100.0 3200.0 +1800.0 1900.0 2300.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2200.0 2700.0 3200.0 3300.0 +1900.0 2100.0 2200.0 2700.0 3200.0 3300.0 +1600.0 2000.0 2200.0 2700.0 3200.0 3300.0 +1800.0 2000.0 2300.0 2800.0 3200.0 3300.0 +2000.0 2200.0 2500.0 2800.0 3200.0 3400.0 +1800.0 2100.0 2400.0 2900.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2700.0 3000.0 3100.0 +1500.0 1700.0 2100.0 2300.0 2600.0 3100.0 +1400.0 1500.0 1800.0 1900.0 2400.0 3000.0 +1400.0 1500.0 1800.0 1900.0 2300.0 3000.0 +1400.0 1600.0 1900.0 2000.0 2600.0 3200.0 +1700.0 1800.0 2200.0 2300.0 2700.0 3100.0 +1500.0 1600.0 2100.0 2700.0 3100.0 3200.0 +1400.0 1500.0 2100.0 2700.0 3100.0 3200.0 +1700.0 1800.0 2200.0 2600.0 2900.0 3000.0 +1800.0 1900.0 2200.0 2600.0 2900.0 3000.0 +1400.0 1600.0 2100.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2000.0 2500.0 2900.0 3100.0 +1600.0 1800.0 2400.0 2800.0 3100.0 3200.0 +1400.0 1900.0 2300.0 2700.0 3100.0 3200.0 +1900.0 2200.0 2500.0 2900.0 3300.0 3400.0 +1500.0 1600.0 2100.0 2800.0 3200.0 3300.0 +1400.0 1500.0 1700.0 1900.0 2800.0 3100.0 +1400.0 1600.0 2100.0 2600.0 2800.0 3100.0 +1500.0 1700.0 2300.0 2600.0 2800.0 3000.0 +1600.0 1700.0 2500.0 2700.0 3100.0 3200.0 +1600.0 1900.0 2400.0 2800.0 3000.0 3200.0 +1800.0 2300.0 2600.0 2700.0 3100.0 3300.0 +1900.0 2300.0 2500.0 2700.0 3100.0 3300.0 +1700.0 2000.0 2200.0 2600.0 3000.0 3100.0 +1600.0 1900.0 2100.0 2700.0 2900.0 3100.0 +1600.0 2200.0 2400.0 2700.0 3200.0 3300.0 +1700.0 2300.0 2500.0 2700.0 3200.0 3300.0 +1600.0 2100.0 2300.0 2500.0 3100.0 3200.0 +1700.0 2100.0 2300.0 2500.0 3100.0 3200.0 +1800.0 2200.0 2300.0 2600.0 3200.0 3300.0 +1700.0 2200.0 2400.0 2600.0 3300.0 3400.0 +1700.0 2200.0 2300.0 2600.0 3200.0 3300.0 +1800.0 1900.0 2300.0 2600.0 2900.0 3200.0 +1700.0 1800.0 2200.0 2400.0 2700.0 3000.0 +1800.0 1900.0 2200.0 2500.0 2700.0 3100.0 +1700.0 1900.0 2100.0 2600.0 3100.0 3200.0 +1900.0 2000.0 2300.0 2800.0 3200.0 3300.0 +1800.0 2000.0 2200.0 2700.0 3200.0 3300.0 +1700.0 1800.0 2100.0 2400.0 3200.0 3300.0 +1200.0 1500.0 2400.0 2700.0 2900.0 3000.0 +1700.0 1800.0 2100.0 2200.0 2500.0 3000.0 +1700.0 1800.0 2100.0 2200.0 2400.0 3000.0 +1600.0 1700.0 2000.0 2100.0 2400.0 3000.0 +1600.0 1700.0 1900.0 2000.0 2500.0 3000.0 +1700.0 1900.0 2100.0 2400.0 2600.0 2900.0 +1800.0 2000.0 2200.0 2400.0 2600.0 3000.0 +1600.0 1900.0 2400.0 2500.0 2900.0 3200.0 +1900.0 2100.0 2300.0 2700.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2700.0 2800.0 3000.0 +1900.0 2000.0 2300.0 2700.0 2800.0 3100.0 +1500.0 1600.0 2300.0 2700.0 2900.0 3100.0 +1700.0 2200.0 2700.0 2800.0 3100.0 3300.0 +1600.0 2000.0 2600.0 2800.0 3200.0 3300.0 +1800.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1600.0 2200.0 2600.0 2700.0 3000.0 3100.0 +2000.0 2200.0 2400.0 2600.0 2900.0 3100.0 +1400.0 1600.0 2000.0 2600.0 2800.0 3000.0 +1500.0 1600.0 2500.0 2700.0 3000.0 3100.0 +1300.0 1500.0 2200.0 2600.0 3100.0 3300.0 +1100.0 1600.0 2200.0 2500.0 3000.0 3200.0 +1200.0 1400.0 2200.0 2700.0 2800.0 3000.0 +1200.0 1400.0 2300.0 2600.0 2700.0 3000.0 +1600.0 1700.0 2000.0 2100.0 2600.0 3100.0 +1800.0 2300.0 2400.0 2600.0 2800.0 3100.0 +1700.0 2300.0 2700.0 2800.0 3200.0 3300.0 +1300.0 1600.0 2300.0 2700.0 2900.0 3000.0 +1500.0 1600.0 2200.0 2700.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2700.0 3000.0 3100.0 +1900.0 2000.0 2300.0 2600.0 2800.0 3000.0 +1900.0 2100.0 2300.0 2600.0 2800.0 3000.0 +1500.0 1900.0 2500.0 2700.0 3000.0 3100.0 +1900.0 2400.0 2700.0 2900.0 3100.0 3300.0 +1300.0 1600.0 1800.0 2100.0 2900.0 3200.0 +1700.0 1800.0 2000.0 2200.0 3100.0 3200.0 +2000.0 2300.0 2700.0 3100.0 3300.0 3400.0 +1900.0 2200.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2300.0 2800.0 3000.0 3200.0 3300.0 +2100.0 2300.0 2800.0 2900.0 3200.0 3300.0 +2000.0 2200.0 2800.0 2900.0 3200.0 3300.0 +1700.0 1900.0 2400.0 2800.0 3200.0 3300.0 +1500.0 1600.0 2200.0 2800.0 3200.0 3300.0 +1400.0 1500.0 2200.0 2500.0 2900.0 3200.0 +1300.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1200.0 1800.0 2300.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2500.0 2700.0 3200.0 3300.0 +1900.0 2300.0 2400.0 2700.0 2900.0 3100.0 +1900.0 2200.0 2400.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2100.0 2800.0 3100.0 3200.0 +1800.0 2400.0 2600.0 2700.0 3000.0 3100.0 +1600.0 1700.0 1900.0 2000.0 2500.0 3100.0 +1800.0 1900.0 2100.0 2300.0 2900.0 3300.0 +1300.0 1700.0 2400.0 2700.0 3200.0 3300.0 +1500.0 2000.0 2500.0 2800.0 3100.0 3300.0 +1900.0 2300.0 2400.0 2600.0 3300.0 3400.0 +1900.0 2300.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1600.0 2100.0 2800.0 3100.0 3200.0 +1500.0 1600.0 2100.0 2200.0 2700.0 3200.0 +1500.0 1600.0 1900.0 2000.0 2600.0 3100.0 +1400.0 1500.0 1900.0 2000.0 2600.0 3100.0 +1400.0 1600.0 1900.0 2000.0 2700.0 3200.0 +1700.0 1900.0 2100.0 2400.0 3000.0 3100.0 +1800.0 2000.0 2200.0 2400.0 2900.0 3200.0 +1700.0 2000.0 2200.0 2400.0 2800.0 3100.0 +1800.0 2000.0 2300.0 2700.0 2900.0 3200.0 +1700.0 2000.0 2200.0 2400.0 3000.0 3200.0 +1600.0 1900.0 2100.0 2300.0 3000.0 3200.0 +1700.0 1900.0 2100.0 2300.0 3000.0 3200.0 +1600.0 1900.0 2100.0 2400.0 3000.0 3200.0 +1700.0 1900.0 2200.0 2600.0 2900.0 3100.0 +1500.0 1800.0 1900.0 2400.0 2800.0 3000.0 +1700.0 2000.0 2400.0 2900.0 3100.0 3300.0 +1800.0 2000.0 2700.0 2900.0 3200.0 3400.0 +2000.0 2200.0 2600.0 2900.0 3100.0 3200.0 +1600.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1800.0 2000.0 2200.0 2400.0 2600.0 3100.0 +1700.0 1800.0 2000.0 2100.0 2600.0 3100.0 +1600.0 1700.0 1900.0 2000.0 2700.0 3200.0 +1700.0 1900.0 2100.0 2300.0 2600.0 3100.0 +2000.0 2300.0 2500.0 2600.0 3200.0 3300.0 +1500.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1500.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1600.0 2200.0 2500.0 2800.0 3100.0 3200.0 +1500.0 2100.0 2400.0 2700.0 3100.0 3200.0 +1600.0 2100.0 2400.0 2700.0 3000.0 3100.0 +1800.0 2100.0 2400.0 2700.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2600.0 3000.0 3200.0 +1400.0 1900.0 2400.0 2600.0 3000.0 3300.0 +1400.0 1500.0 2100.0 2600.0 3000.0 3100.0 +1300.0 1500.0 2300.0 2600.0 2800.0 3200.0 +1400.0 1600.0 2200.0 2600.0 3000.0 3200.0 +1700.0 1800.0 2200.0 2600.0 2900.0 3200.0 +1700.0 1800.0 2000.0 2600.0 2900.0 3100.0 +1600.0 1800.0 2000.0 2500.0 3000.0 3200.0 +1300.0 1500.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2300.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2400.0 3000.0 3200.0 +1700.0 1900.0 2200.0 2600.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2600.0 2800.0 2900.0 +1600.0 1700.0 2000.0 2300.0 3100.0 3200.0 +1600.0 1700.0 2100.0 2400.0 3000.0 3200.0 +2000.0 2100.0 2400.0 2800.0 3100.0 3300.0 +1700.0 2200.0 2300.0 2700.0 3000.0 3100.0 +1700.0 2200.0 2400.0 2600.0 3000.0 3200.0 +1900.0 2300.0 2400.0 2600.0 3000.0 3200.0 +2100.0 2200.0 2600.0 2800.0 3200.0 3400.0 +2100.0 2200.0 2700.0 2900.0 3200.0 3400.0 +2000.0 2200.0 2800.0 3000.0 3200.0 3400.0 +2000.0 2200.0 2700.0 3000.0 3200.0 3400.0 +2000.0 2200.0 2700.0 2900.0 3200.0 3400.0 +1700.0 2100.0 2400.0 2900.0 3100.0 3200.0 +1500.0 1800.0 1900.0 2500.0 3000.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2900.0 3300.0 +1800.0 2000.0 2300.0 2400.0 2700.0 3100.0 +1800.0 2100.0 2300.0 2800.0 3000.0 3200.0 +1600.0 2300.0 2500.0 2800.0 3100.0 3200.0 +1600.0 2100.0 2500.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2100.0 2800.0 3000.0 3100.0 +1800.0 2300.0 2600.0 2700.0 3100.0 3200.0 +2000.0 2200.0 2800.0 3000.0 3300.0 3400.0 +2000.0 2200.0 2600.0 2800.0 3200.0 3400.0 +1700.0 1800.0 2200.0 2600.0 2800.0 3200.0 +1600.0 1800.0 2200.0 2500.0 2800.0 3200.0 +1600.0 1700.0 1900.0 2000.0 2600.0 3100.0 +1600.0 1700.0 2200.0 2800.0 3000.0 3200.0 +1700.0 1800.0 2400.0 2900.0 3100.0 3300.0 +1900.0 2200.0 2700.0 2900.0 3400.0 3500.0 +1700.0 1800.0 2000.0 2200.0 2900.0 3200.0 +1700.0 1900.0 2100.0 2300.0 2900.0 3200.0 +1200.0 1400.0 2200.0 2900.0 3100.0 3200.0 +1800.0 1900.0 2300.0 2600.0 2800.0 3200.0 +1600.0 1700.0 2000.0 2200.0 2700.0 3200.0 +1600.0 1700.0 2000.0 2200.0 2800.0 3200.0 +1600.0 1700.0 2000.0 2100.0 2800.0 3200.0 +1600.0 1800.0 2000.0 2100.0 2800.0 3200.0 +1700.0 1800.0 2000.0 2300.0 2900.0 3200.0 +1800.0 1900.0 2200.0 2600.0 3200.0 3300.0 +1800.0 2000.0 2200.0 2500.0 3200.0 3300.0 +1300.0 1500.0 1900.0 2600.0 3100.0 3200.0 +1300.0 1400.0 2000.0 2600.0 3200.0 3300.0 +1600.0 1700.0 2100.0 2700.0 3000.0 3200.0 +1400.0 1500.0 2000.0 2600.0 3100.0 3200.0 +1400.0 1500.0 2000.0 2700.0 3100.0 3200.0 +1500.0 1800.0 2400.0 2700.0 3000.0 3300.0 +1500.0 1600.0 2200.0 2300.0 2700.0 3300.0 +1400.0 1500.0 2200.0 2400.0 2700.0 3200.0 +1300.0 1500.0 2300.0 2600.0 2900.0 3200.0 +1400.0 1700.0 2400.0 2600.0 3000.0 3200.0 +1300.0 1600.0 2400.0 2500.0 2900.0 3200.0 +1400.0 1500.0 2200.0 2400.0 2900.0 3300.0 +1400.0 1600.0 2100.0 2200.0 3200.0 3300.0 +1400.0 1800.0 2200.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1500.0 1700.0 1900.0 2600.0 3200.0 3300.0 +1500.0 1600.0 1800.0 2000.0 2800.0 3200.0 +1500.0 1600.0 1900.0 2000.0 2700.0 3200.0 +1500.0 1600.0 1900.0 2000.0 2800.0 3200.0 +1600.0 1700.0 2000.0 2500.0 3000.0 3200.0 +1600.0 1700.0 2200.0 2700.0 2900.0 3200.0 +1300.0 1500.0 2300.0 2700.0 2900.0 3200.0 +1600.0 1700.0 2600.0 2800.0 2900.0 3200.0 +1300.0 1500.0 2300.0 2500.0 2800.0 3200.0 +1300.0 1400.0 2300.0 2500.0 2800.0 3200.0 +1500.0 1700.0 2200.0 2600.0 2700.0 3100.0 +1500.0 1700.0 2200.0 2600.0 2800.0 3000.0 +1500.0 1700.0 2000.0 2600.0 2700.0 3000.0 +1100.0 1300.0 2300.0 2800.0 3100.0 3200.0 +1600.0 1700.0 2100.0 2500.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2300.0 2700.0 2900.0 3200.0 +1800.0 2000.0 2500.0 2800.0 3100.0 3400.0 +1900.0 2000.0 2800.0 2900.0 3300.0 3400.0 +1800.0 2000.0 2700.0 2800.0 3300.0 3400.0 +1700.0 1800.0 2100.0 2200.0 2600.0 3100.0 +1500.0 1600.0 1800.0 1900.0 2600.0 3200.0 +1600.0 1700.0 1900.0 2000.0 2600.0 3200.0 +1600.0 1700.0 2000.0 2100.0 2600.0 3200.0 +1700.0 1800.0 2000.0 2100.0 2800.0 3300.0 +1600.0 1900.0 2100.0 2400.0 3000.0 3100.0 +1600.0 1800.0 2300.0 2600.0 2900.0 3000.0 +1400.0 1500.0 2100.0 2600.0 2900.0 3100.0 +1400.0 1500.0 2200.0 2600.0 2900.0 3100.0 +1000.0 1200.0 2300.0 2900.0 3100.0 3200.0 +1300.0 1700.0 2400.0 2600.0 3000.0 3200.0 +1100.0 1600.0 2300.0 2600.0 3200.0 3300.0 +1200.0 1600.0 2300.0 2600.0 3100.0 3300.0 +1100.0 1600.0 2200.0 2600.0 3100.0 3300.0 +1600.0 2200.0 2400.0 2700.0 3100.0 3200.0 +1700.0 1800.0 2300.0 2700.0 2800.0 3000.0 +1400.0 1700.0 1900.0 2500.0 3200.0 3300.0 +1700.0 1900.0 2200.0 2400.0 2800.0 3000.0 +1400.0 1600.0 2100.0 2200.0 2700.0 3000.0 +1500.0 1700.0 2200.0 2400.0 2700.0 3100.0 +1500.0 1600.0 2200.0 2400.0 2800.0 3100.0 +1000.0 1900.0 2200.0 2500.0 3200.0 3300.0 +1200.0 1700.0 2100.0 2400.0 3200.0 3300.0 +1700.0 2000.0 2500.0 2600.0 3100.0 3400.0 +1600.0 2200.0 2400.0 2600.0 3200.0 3300.0 +2000.0 2500.0 2600.0 3000.0 3300.0 3400.0 +1400.0 1500.0 2100.0 2300.0 3200.0 3300.0 +1500.0 1700.0 2100.0 2400.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2300.0 3300.0 3400.0 +1800.0 2200.0 2500.0 2700.0 3100.0 3400.0 +1500.0 1900.0 2300.0 2600.0 3200.0 3300.0 +2100.0 2200.0 2600.0 2900.0 3100.0 3300.0 +1500.0 1600.0 1800.0 2600.0 3200.0 3300.0 +1300.0 1500.0 1600.0 2200.0 3100.0 3200.0 +1200.0 1800.0 2300.0 2400.0 3000.0 3200.0 +1100.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1400.0 1700.0 2200.0 2500.0 3100.0 3200.0 +1900.0 2100.0 2300.0 2600.0 3000.0 3300.0 +1900.0 2100.0 2500.0 2800.0 3300.0 3400.0 +1700.0 1900.0 2300.0 2500.0 3100.0 3400.0 +1500.0 1900.0 2200.0 2500.0 2900.0 3200.0 +1200.0 2000.0 2300.0 2400.0 2500.0 3100.0 +1200.0 2000.0 2300.0 2400.0 2600.0 3100.0 +1900.0 2200.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2200.0 2500.0 2700.0 3200.0 3400.0 +1800.0 2100.0 2400.0 2500.0 3200.0 3300.0 +1800.0 2100.0 2300.0 2500.0 3300.0 3400.0 +1500.0 1700.0 1800.0 2500.0 3200.0 3300.0 +1400.0 1600.0 1800.0 2300.0 3200.0 3300.0 +1300.0 1600.0 2300.0 2400.0 3200.0 3400.0 +1200.0 1500.0 1700.0 2100.0 3100.0 3200.0 +2100.0 2300.0 2400.0 2800.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2400.0 3100.0 3300.0 +1400.0 1600.0 2000.0 2100.0 3000.0 3300.0 +1900.0 2000.0 2200.0 2400.0 3000.0 3300.0 +1500.0 1800.0 2200.0 2300.0 3000.0 3300.0 +1300.0 1500.0 2100.0 2200.0 2800.0 3300.0 +1500.0 1800.0 2200.0 2400.0 3000.0 3300.0 +1600.0 1900.0 2300.0 2600.0 3200.0 3400.0 +1300.0 1800.0 2200.0 2500.0 3000.0 3200.0 +1100.0 1600.0 2200.0 2300.0 3100.0 3200.0 +1300.0 1500.0 2000.0 2200.0 3100.0 3300.0 +2300.0 2500.0 2900.0 3100.0 3200.0 3300.0 +2300.0 2400.0 2700.0 2800.0 3100.0 3300.0 +2000.0 2100.0 2400.0 2700.0 3200.0 3300.0 +1600.0 1700.0 1900.0 2100.0 3200.0 3300.0 +1600.0 1800.0 1900.0 2300.0 3200.0 3300.0 +1500.0 1600.0 1900.0 2600.0 3100.0 3200.0 +1300.0 1500.0 1900.0 2300.0 3000.0 3100.0 +1200.0 1600.0 2000.0 2100.0 3200.0 3300.0 +1300.0 2000.0 2200.0 2400.0 2700.0 3100.0 +1100.0 1900.0 2300.0 2400.0 3000.0 3100.0 +1200.0 1500.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1600.0 1900.0 2500.0 3000.0 3100.0 +1300.0 1500.0 1600.0 2300.0 3200.0 3300.0 +1500.0 1800.0 2100.0 2400.0 3100.0 3200.0 +1900.0 2200.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1500.0 2100.0 2300.0 2900.0 3200.0 +1100.0 1600.0 2100.0 2300.0 3100.0 3200.0 +1100.0 1600.0 2100.0 2300.0 3200.0 3300.0 +1000.0 1600.0 2200.0 2300.0 3100.0 3300.0 +1100.0 1600.0 2100.0 2300.0 3000.0 3100.0 +1100.0 1400.0 2300.0 2500.0 3200.0 3300.0 +1700.0 2100.0 2500.0 2800.0 3100.0 3400.0 +1300.0 1600.0 2300.0 2400.0 3200.0 3300.0 +1400.0 1700.0 2300.0 2400.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2400.0 3000.0 3300.0 +1700.0 1900.0 2500.0 2600.0 3000.0 3200.0 +1100.0 1500.0 2400.0 2500.0 3100.0 3200.0 +1700.0 1900.0 2100.0 2400.0 3100.0 3300.0 +1300.0 1700.0 2200.0 2600.0 3100.0 3300.0 +1600.0 1700.0 2000.0 2200.0 3100.0 3300.0 +1800.0 2000.0 2200.0 2400.0 3200.0 3400.0 +1900.0 2100.0 2600.0 2800.0 3000.0 3200.0 +1900.0 2100.0 2600.0 2800.0 3100.0 3200.0 +1400.0 1900.0 2400.0 2500.0 3100.0 3300.0 +1100.0 2100.0 2300.0 2700.0 3100.0 3200.0 +1100.0 1800.0 2200.0 2500.0 3000.0 3100.0 +1100.0 1800.0 2200.0 2400.0 3000.0 3100.0 +1500.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1500.0 2000.0 2400.0 2500.0 3200.0 3400.0 +1800.0 2000.0 2500.0 2600.0 3000.0 3300.0 +1900.0 2400.0 2600.0 2900.0 3200.0 3400.0 +1500.0 2100.0 2500.0 2700.0 3200.0 3300.0 +1400.0 2100.0 2400.0 2700.0 3100.0 3200.0 +1500.0 2100.0 2500.0 2700.0 3000.0 3200.0 +1600.0 2100.0 2500.0 2600.0 3100.0 3300.0 +1500.0 1800.0 2100.0 2700.0 3100.0 3300.0 +1300.0 1600.0 1800.0 2500.0 3200.0 3300.0 +1300.0 1500.0 1600.0 2800.0 3300.0 3400.0 +1300.0 1400.0 2200.0 2300.0 3100.0 3300.0 +1300.0 1600.0 2400.0 2500.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2500.0 3200.0 3400.0 +1400.0 2000.0 2100.0 2400.0 3000.0 3100.0 +1300.0 1900.0 2100.0 2400.0 3100.0 3200.0 +1600.0 1700.0 2200.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2300.0 2400.0 2900.0 3200.0 +1300.0 1600.0 2200.0 2400.0 3000.0 3200.0 +1200.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1500.0 1600.0 2200.0 2400.0 3100.0 3300.0 +1000.0 1600.0 2500.0 2600.0 3100.0 3200.0 +900.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1400.0 1700.0 2500.0 2700.0 3100.0 3300.0 +1300.0 1900.0 2500.0 2700.0 3200.0 3300.0 +1600.0 2000.0 2400.0 2500.0 2900.0 3100.0 +1400.0 1600.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1600.0 2600.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2600.0 2700.0 3100.0 3400.0 +1600.0 2100.0 2600.0 2900.0 3300.0 3400.0 +1800.0 2100.0 2800.0 3000.0 3300.0 3400.0 +1800.0 2300.0 2700.0 2900.0 3400.0 3500.0 +1800.0 2400.0 2900.0 3100.0 3300.0 3400.0 +1200.0 1800.0 2300.0 2400.0 3000.0 3100.0 +1300.0 1600.0 2400.0 2500.0 3100.0 3200.0 +1400.0 1800.0 2400.0 2500.0 3200.0 3400.0 +2000.0 2500.0 2700.0 3100.0 3300.0 3400.0 +1900.0 2000.0 2400.0 2800.0 3100.0 3300.0 +1500.0 1800.0 1900.0 2500.0 3100.0 3200.0 +1600.0 1800.0 2000.0 2600.0 3100.0 3200.0 +1700.0 2000.0 2200.0 2700.0 3000.0 3100.0 +1700.0 2000.0 2300.0 2600.0 2900.0 3000.0 +2300.0 2400.0 2700.0 2900.0 3200.0 3300.0 +1200.0 1600.0 2200.0 2300.0 3000.0 3100.0 +1400.0 2000.0 2300.0 2500.0 3100.0 3200.0 +1500.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1300.0 1700.0 1800.0 2400.0 2900.0 3000.0 +1300.0 1500.0 1600.0 2200.0 2800.0 2900.0 +1900.0 2100.0 2500.0 2700.0 3000.0 3300.0 +1500.0 1900.0 2400.0 2600.0 2900.0 3300.0 +1400.0 1800.0 2300.0 2500.0 3100.0 3300.0 +1300.0 1800.0 2500.0 2700.0 3100.0 3300.0 +1300.0 1800.0 2400.0 2600.0 3100.0 3200.0 +1200.0 1700.0 2400.0 2500.0 2900.0 3100.0 +1100.0 1800.0 2000.0 2200.0 3000.0 3100.0 +1300.0 1600.0 1700.0 2600.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2400.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2400.0 3000.0 3100.0 +1800.0 1900.0 2400.0 2500.0 3000.0 3100.0 +1500.0 2200.0 2500.0 2700.0 3300.0 3400.0 +1900.0 2500.0 2700.0 3000.0 3300.0 3400.0 +1400.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1400.0 1800.0 2100.0 2500.0 3000.0 3100.0 +1200.0 1500.0 1600.0 2600.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2300.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2200.0 3100.0 3200.0 +1200.0 1500.0 1600.0 2200.0 3100.0 3200.0 +1200.0 1500.0 1600.0 2300.0 3000.0 3100.0 +1300.0 1800.0 2400.0 2600.0 3000.0 3200.0 +1300.0 1800.0 2200.0 2400.0 3100.0 3300.0 +1400.0 1800.0 2200.0 2400.0 3100.0 3300.0 +1600.0 1700.0 2100.0 2300.0 2700.0 3100.0 +1700.0 1800.0 2100.0 2300.0 2700.0 3200.0 +1700.0 1800.0 2200.0 2300.0 2800.0 3200.0 +1700.0 2200.0 2400.0 2800.0 3100.0 3200.0 +1100.0 2000.0 2200.0 2400.0 3000.0 3100.0 +1100.0 1900.0 2000.0 2400.0 3000.0 3100.0 +1300.0 1500.0 1600.0 2700.0 3200.0 3300.0 +1300.0 1500.0 1600.0 2600.0 3300.0 3400.0 +1600.0 1700.0 2000.0 2600.0 3100.0 3200.0 +1700.0 2200.0 2500.0 2700.0 2900.0 3200.0 +1100.0 1700.0 2200.0 2300.0 3100.0 3200.0 +1100.0 1800.0 2100.0 2200.0 3100.0 3200.0 +1100.0 1600.0 2000.0 2100.0 3100.0 3200.0 +1100.0 1600.0 1900.0 2100.0 3100.0 3200.0 +1200.0 1600.0 1800.0 2000.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2000.0 3100.0 3200.0 +1300.0 1600.0 1700.0 2000.0 3000.0 3100.0 +1200.0 1500.0 1600.0 2000.0 3000.0 3100.0 +1500.0 1700.0 1900.0 2400.0 2800.0 2900.0 +1600.0 2000.0 2300.0 2600.0 2900.0 3100.0 +2200.0 2400.0 2700.0 2800.0 3100.0 3300.0 +1700.0 2100.0 2300.0 2400.0 2800.0 3200.0 +1600.0 1800.0 2300.0 2400.0 2800.0 3200.0 +1000.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1000.0 1900.0 2800.0 2900.0 3300.0 3400.0 +1400.0 1600.0 1800.0 2400.0 2700.0 3000.0 +1800.0 2000.0 2300.0 2500.0 2900.0 3100.0 +1200.0 1800.0 2600.0 2700.0 3200.0 3300.0 +1300.0 1800.0 2400.0 2500.0 3000.0 3300.0 +1500.0 1900.0 2500.0 2700.0 3200.0 3400.0 +1400.0 1800.0 2500.0 2600.0 3100.0 3300.0 +1600.0 1800.0 2200.0 2300.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2400.0 2700.0 3100.0 +1700.0 1900.0 2200.0 2500.0 2700.0 3100.0 +1300.0 1400.0 2200.0 2800.0 3100.0 3200.0 +1700.0 2100.0 2300.0 2500.0 2800.0 3100.0 +1500.0 1600.0 2200.0 2700.0 2900.0 3100.0 +1200.0 1400.0 2200.0 2800.0 3000.0 3200.0 +1200.0 1400.0 2300.0 2800.0 3100.0 3200.0 +1900.0 2000.0 2600.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2500.0 2800.0 3000.0 3300.0 +2100.0 2300.0 2500.0 2700.0 2900.0 3200.0 +1900.0 2000.0 2700.0 2900.0 3100.0 3400.0 +1900.0 2000.0 2600.0 2900.0 3200.0 3300.0 +1900.0 2000.0 2600.0 2900.0 3200.0 3400.0 +900.0 1500.0 2500.0 2600.0 3200.0 3400.0 +1800.0 1900.0 2400.0 2800.0 2900.0 3100.0 +1600.0 1900.0 2300.0 2600.0 2900.0 3100.0 +1400.0 1500.0 2000.0 2400.0 2900.0 3100.0 +1500.0 1800.0 2200.0 2400.0 2600.0 2800.0 +2000.0 2400.0 2800.0 2900.0 3100.0 3400.0 +1900.0 2300.0 2800.0 2900.0 3100.0 3300.0 +1200.0 1400.0 1900.0 2600.0 3100.0 3200.0 +2100.0 2300.0 2800.0 2900.0 3100.0 3200.0 +2000.0 2400.0 2600.0 2700.0 3100.0 3300.0 +2000.0 2400.0 2600.0 2700.0 3000.0 3200.0 +2000.0 2300.0 2600.0 2700.0 2900.0 3200.0 +1800.0 1900.0 2300.0 2600.0 2800.0 3000.0 +2000.0 2300.0 2500.0 2800.0 3000.0 3200.0 +1700.0 2000.0 2200.0 2600.0 2800.0 3000.0 +1900.0 2000.0 2400.0 2800.0 2900.0 3100.0 +2200.0 2600.0 2800.0 2900.0 3200.0 3400.0 +1600.0 1700.0 2200.0 2400.0 2700.0 3200.0 +1500.0 1600.0 2300.0 2400.0 2700.0 3200.0 +1300.0 1500.0 2200.0 2500.0 2700.0 3100.0 +1700.0 1800.0 2100.0 2200.0 2700.0 3200.0 +1900.0 2000.0 2600.0 2900.0 3000.0 3200.0 +1800.0 2100.0 2400.0 2500.0 2800.0 3100.0 +1400.0 1500.0 2200.0 2500.0 2700.0 3100.0 +1500.0 1600.0 2200.0 2400.0 2700.0 3100.0 +1700.0 1800.0 2300.0 2400.0 2700.0 3100.0 +1900.0 2000.0 2300.0 2500.0 2700.0 3100.0 +1900.0 2200.0 2400.0 2700.0 2800.0 3100.0 +1600.0 1700.0 2200.0 2600.0 2700.0 3100.0 +2100.0 2400.0 2600.0 2800.0 3000.0 3200.0 +2100.0 2300.0 2700.0 2800.0 3200.0 3400.0 +1800.0 2300.0 2600.0 2800.0 3000.0 3200.0 +2000.0 2200.0 2400.0 2700.0 3000.0 3300.0 +1900.0 2200.0 2400.0 2600.0 3000.0 3300.0 +1700.0 2000.0 2300.0 2600.0 2800.0 3000.0 +1600.0 1800.0 2100.0 2500.0 2700.0 3000.0 +1600.0 1700.0 2300.0 2600.0 2800.0 3000.0 +1600.0 1700.0 2400.0 2600.0 2800.0 3000.0 +2000.0 2300.0 2600.0 2700.0 3300.0 3400.0 +1700.0 1800.0 2100.0 2500.0 3000.0 3300.0 +1300.0 1500.0 2300.0 2400.0 3000.0 3300.0 +1500.0 1600.0 1900.0 2100.0 3000.0 3100.0 +1900.0 2000.0 2500.0 2800.0 3100.0 3200.0 +2000.0 2400.0 2900.0 3000.0 3200.0 3400.0 +1700.0 1800.0 2100.0 2500.0 2700.0 3100.0 +1500.0 2000.0 2400.0 2500.0 3000.0 3300.0 +1500.0 1600.0 2300.0 2400.0 2700.0 3100.0 +1600.0 1700.0 2300.0 2400.0 2700.0 3200.0 +1700.0 1800.0 2200.0 2500.0 2600.0 3000.0 +1800.0 1900.0 2200.0 2500.0 2700.0 3000.0 +1800.0 1900.0 2200.0 2600.0 2700.0 3000.0 +1800.0 2200.0 2500.0 2700.0 2900.0 3200.0 +1200.0 1600.0 2500.0 2600.0 3000.0 3300.0 +1000.0 1300.0 2400.0 2900.0 3100.0 3200.0 +1300.0 1600.0 2500.0 2800.0 3000.0 3200.0 +1800.0 2100.0 2600.0 2800.0 3000.0 3300.0 +1300.0 1600.0 2500.0 2800.0 2900.0 3200.0 +1200.0 1500.0 2300.0 2700.0 2900.0 3200.0 +1200.0 1400.0 2300.0 2700.0 2900.0 3200.0 +1400.0 1600.0 2100.0 2500.0 3100.0 3300.0 +1700.0 2300.0 2600.0 2800.0 3100.0 3200.0 +2000.0 2200.0 2400.0 2700.0 2800.0 3100.0 +1400.0 1500.0 2300.0 2800.0 3000.0 3100.0 +1500.0 1600.0 2300.0 2800.0 2900.0 3100.0 +1500.0 1600.0 2400.0 2800.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2700.0 2800.0 3000.0 +1800.0 1900.0 2600.0 2700.0 2900.0 3200.0 +1800.0 2000.0 2700.0 2800.0 3200.0 3400.0 +1800.0 2000.0 2600.0 2800.0 3000.0 3300.0 +1700.0 1800.0 2400.0 2600.0 2900.0 3100.0 +2000.0 2200.0 2500.0 2600.0 3000.0 3100.0 +2000.0 2100.0 2500.0 2900.0 3200.0 3300.0 +1800.0 2000.0 2600.0 2900.0 3100.0 3300.0 +1700.0 1900.0 2200.0 2700.0 2800.0 3000.0 +1700.0 2000.0 2500.0 2600.0 3200.0 3300.0 +1400.0 1600.0 2300.0 2500.0 2700.0 3100.0 +1900.0 2300.0 2800.0 3000.0 3400.0 3500.0 +1600.0 1800.0 2300.0 2400.0 2800.0 3300.0 +1600.0 1700.0 2200.0 2400.0 2800.0 3000.0 +1600.0 1700.0 2300.0 2600.0 3000.0 3100.0 +1800.0 2100.0 2700.0 2900.0 3300.0 3500.0 +1600.0 1700.0 2300.0 2800.0 2900.0 3100.0 +1300.0 1500.0 2200.0 2700.0 2900.0 3100.0 +1200.0 1400.0 2500.0 2900.0 3000.0 3200.0 +1900.0 2200.0 2400.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2600.0 2900.0 3100.0 3400.0 +1600.0 1700.0 2100.0 2600.0 2700.0 3100.0 +1500.0 1600.0 2300.0 2500.0 2700.0 3100.0 +1500.0 1600.0 2200.0 2800.0 3100.0 3300.0 +1300.0 1500.0 2000.0 2700.0 3100.0 3200.0 +1300.0 1500.0 1900.0 2600.0 3200.0 3300.0 +1300.0 1400.0 2000.0 2400.0 3200.0 3300.0 +1300.0 1400.0 2000.0 2300.0 3100.0 3300.0 +1300.0 1500.0 2000.0 2300.0 3100.0 3200.0 +1800.0 2000.0 2200.0 2400.0 3100.0 3300.0 +1700.0 1900.0 2300.0 2400.0 2800.0 3300.0 +1200.0 2200.0 2500.0 2700.0 3200.0 3300.0 +1300.0 2100.0 2300.0 2700.0 3200.0 3300.0 +1400.0 2200.0 2400.0 2900.0 3300.0 3400.0 +1500.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1200.0 1900.0 2400.0 2500.0 3000.0 3200.0 +1200.0 2000.0 2400.0 2600.0 3000.0 3200.0 +1200.0 1900.0 2400.0 2500.0 3200.0 3300.0 +2000.0 2300.0 2700.0 3000.0 3200.0 3400.0 +1900.0 2100.0 2600.0 3000.0 3300.0 3400.0 +1500.0 1900.0 2200.0 2600.0 3000.0 3300.0 +1400.0 1800.0 2200.0 2500.0 3000.0 3300.0 +1800.0 2000.0 2300.0 2400.0 3300.0 3400.0 +1600.0 2100.0 2300.0 2400.0 3100.0 3300.0 +1900.0 2300.0 2800.0 3000.0 3200.0 3400.0 +1700.0 2100.0 2400.0 2700.0 3100.0 3400.0 +1400.0 1800.0 2300.0 2600.0 3200.0 3400.0 +1700.0 2000.0 2200.0 2400.0 3100.0 3200.0 +1500.0 1800.0 2200.0 2500.0 3000.0 3300.0 +1700.0 1900.0 2200.0 2600.0 2900.0 3200.0 +1400.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1500.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1600.0 2100.0 2300.0 2700.0 3100.0 3200.0 +1600.0 1700.0 1900.0 2800.0 3000.0 3100.0 +1500.0 1700.0 1900.0 2600.0 3000.0 3100.0 +1500.0 1600.0 2100.0 2600.0 3200.0 3300.0 +2200.0 2300.0 2600.0 2900.0 3100.0 3300.0 +1900.0 2200.0 2400.0 2700.0 3000.0 3300.0 +1400.0 1700.0 2300.0 2400.0 3000.0 3100.0 +1900.0 2000.0 2400.0 2500.0 3100.0 3200.0 +2000.0 2500.0 2600.0 2800.0 3300.0 3400.0 +2000.0 2400.0 2600.0 3000.0 3200.0 3300.0 +1500.0 1800.0 2300.0 2500.0 2900.0 3200.0 +1300.0 1900.0 2200.0 2300.0 3000.0 3200.0 +1600.0 1700.0 2500.0 2800.0 3200.0 3400.0 +1500.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1900.0 2200.0 2500.0 2700.0 3000.0 3300.0 +1300.0 1600.0 1800.0 2100.0 3000.0 3100.0 +1000.0 1900.0 2200.0 2500.0 3100.0 3200.0 +1200.0 2000.0 2300.0 2600.0 3300.0 3400.0 +1400.0 1600.0 1800.0 2600.0 2900.0 3100.0 +1400.0 1700.0 2000.0 2600.0 3100.0 3200.0 +1300.0 1800.0 2000.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2300.0 2400.0 2700.0 3100.0 +1700.0 1800.0 2000.0 2400.0 3100.0 3200.0 +1800.0 1900.0 2100.0 2500.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2500.0 2800.0 3100.0 +1600.0 1800.0 2100.0 2400.0 2700.0 2800.0 +1300.0 1700.0 2100.0 2200.0 3100.0 3300.0 +1300.0 1700.0 2100.0 2200.0 3000.0 3200.0 +1500.0 1800.0 2200.0 2400.0 2700.0 3200.0 +1600.0 1800.0 2200.0 2300.0 2900.0 3200.0 +1500.0 1800.0 2100.0 2400.0 2900.0 3200.0 +1400.0 1700.0 1900.0 2200.0 2800.0 2900.0 +1500.0 1800.0 2100.0 2500.0 3000.0 3100.0 +1500.0 1900.0 2100.0 2500.0 3000.0 3100.0 +1500.0 2000.0 2200.0 2700.0 3200.0 3300.0 +1400.0 1800.0 2200.0 2500.0 3200.0 3300.0 +1500.0 2000.0 2200.0 2400.0 2900.0 3200.0 +1800.0 2000.0 2700.0 2900.0 3300.0 3400.0 +1500.0 1800.0 2100.0 2500.0 3200.0 3300.0 +1400.0 1700.0 1800.0 2200.0 3100.0 3200.0 +1400.0 1600.0 1700.0 2300.0 3000.0 3100.0 +1300.0 2000.0 2100.0 2700.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2500.0 3100.0 3200.0 +1400.0 1700.0 1800.0 2300.0 3000.0 3100.0 +1600.0 1700.0 1900.0 2600.0 3000.0 3100.0 +1800.0 2100.0 2300.0 2700.0 3300.0 3400.0 +1700.0 2100.0 2300.0 2700.0 3300.0 3400.0 +1800.0 2100.0 2300.0 2400.0 2700.0 3100.0 +1500.0 1700.0 1900.0 2600.0 3100.0 3200.0 +1300.0 2000.0 2200.0 2800.0 3200.0 3300.0 +1700.0 1900.0 2600.0 2900.0 3200.0 3400.0 +1200.0 1800.0 2600.0 2700.0 3100.0 3200.0 +1900.0 2000.0 2200.0 2500.0 3200.0 3400.0 +1300.0 1700.0 2300.0 2400.0 2900.0 3200.0 +1200.0 1600.0 2200.0 2400.0 2800.0 3100.0 +1200.0 1800.0 2200.0 2600.0 3200.0 3300.0 +1300.0 1800.0 2300.0 2700.0 3300.0 3400.0 +1700.0 2000.0 2400.0 2500.0 3000.0 3200.0 +1600.0 1900.0 2200.0 2300.0 2900.0 3100.0 +1400.0 1700.0 1900.0 2400.0 3000.0 3100.0 +1600.0 1900.0 2400.0 2700.0 3300.0 3400.0 +1800.0 2300.0 2700.0 3000.0 3200.0 3400.0 +1300.0 1700.0 2300.0 2600.0 3000.0 3300.0 +1200.0 1800.0 2200.0 2600.0 3100.0 3300.0 +1700.0 2000.0 2400.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2400.0 2600.0 3000.0 +1600.0 1700.0 2100.0 2400.0 2600.0 3000.0 +1700.0 1900.0 2200.0 2400.0 2800.0 3200.0 +1700.0 2100.0 2300.0 2700.0 2800.0 3000.0 +1600.0 1900.0 2100.0 2600.0 2900.0 3000.0 +1800.0 2000.0 2700.0 2800.0 3100.0 3400.0 +1500.0 1600.0 2200.0 2800.0 3000.0 3100.0 +1300.0 1500.0 2100.0 2700.0 3000.0 3100.0 +1500.0 1800.0 2300.0 2600.0 3000.0 3100.0 +1600.0 1700.0 2300.0 2700.0 2900.0 3000.0 +1600.0 1800.0 2200.0 2600.0 2800.0 3100.0 +1500.0 1600.0 2300.0 2600.0 2900.0 3100.0 +1600.0 1800.0 2200.0 2700.0 3000.0 3300.0 +2100.0 2200.0 2600.0 2700.0 2900.0 3100.0 +1800.0 1900.0 2300.0 2700.0 2800.0 3000.0 +1800.0 1900.0 2200.0 2700.0 2800.0 3000.0 +1500.0 1800.0 2000.0 2600.0 3000.0 3100.0 +1500.0 1700.0 2100.0 2500.0 2700.0 3000.0 +1500.0 1600.0 1900.0 2000.0 2400.0 3100.0 +1200.0 1500.0 2100.0 2200.0 2700.0 3200.0 +1300.0 1700.0 2400.0 2700.0 3000.0 3200.0 +1600.0 1700.0 2400.0 2800.0 2900.0 3200.0 +1500.0 1800.0 2000.0 2500.0 2900.0 3200.0 +1800.0 2000.0 2200.0 2500.0 2700.0 3000.0 +1800.0 1900.0 2300.0 2600.0 2700.0 3200.0 +1500.0 1700.0 2200.0 2700.0 2900.0 3200.0 +1300.0 1400.0 2100.0 2600.0 3000.0 3200.0 +1400.0 1500.0 2100.0 2700.0 3000.0 3200.0 +1500.0 1600.0 2300.0 2800.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2600.0 2900.0 3300.0 +1600.0 1700.0 2100.0 2400.0 2900.0 3300.0 +1500.0 1600.0 1900.0 2100.0 2500.0 3100.0 +1700.0 1900.0 2100.0 2400.0 2700.0 3100.0 +1400.0 1500.0 2100.0 2800.0 3100.0 3200.0 +1400.0 1600.0 2100.0 2800.0 3000.0 3200.0 +1700.0 1800.0 2100.0 2700.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2600.0 2700.0 3000.0 +1500.0 1600.0 2100.0 2600.0 2700.0 3100.0 +1600.0 1700.0 2000.0 2500.0 2900.0 3200.0 +1900.0 2000.0 2300.0 2400.0 2700.0 3100.0 +1900.0 2100.0 2300.0 2500.0 2700.0 3100.0 +1900.0 2100.0 2400.0 2600.0 2800.0 3100.0 +1700.0 2200.0 2400.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2600.0 2900.0 3200.0 3300.0 +2000.0 2100.0 2300.0 2500.0 2800.0 3100.0 +1800.0 1900.0 2200.0 2400.0 2800.0 3200.0 +1900.0 2100.0 2700.0 2900.0 3200.0 3400.0 +1800.0 2100.0 2300.0 2800.0 2900.0 3100.0 +1800.0 2000.0 2200.0 2700.0 2900.0 3000.0 +1800.0 1900.0 2200.0 2700.0 2900.0 3000.0 +2100.0 2200.0 2600.0 2800.0 3000.0 3200.0 +1600.0 1700.0 2100.0 2400.0 2700.0 3100.0 +1800.0 2000.0 2200.0 2300.0 2600.0 3100.0 +1700.0 1900.0 2300.0 2600.0 2700.0 3000.0 +1800.0 2000.0 2300.0 2500.0 2900.0 3200.0 +1200.0 1400.0 2300.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2800.0 3000.0 3200.0 +1600.0 1800.0 2300.0 2700.0 3000.0 3100.0 +1700.0 1800.0 2300.0 2700.0 2900.0 3000.0 +1400.0 1500.0 2000.0 2200.0 2900.0 3200.0 +2000.0 2300.0 2400.0 2700.0 2900.0 3100.0 +1400.0 2100.0 2400.0 2800.0 3100.0 3200.0 +1500.0 1600.0 1900.0 2100.0 2900.0 3200.0 +1500.0 1700.0 2400.0 2600.0 3000.0 3200.0 +1300.0 1500.0 2300.0 2700.0 3100.0 3300.0 +1600.0 2100.0 2300.0 2600.0 3000.0 3200.0 +1900.0 2300.0 2400.0 2700.0 3000.0 3100.0 +1700.0 2300.0 2600.0 2900.0 3200.0 3300.0 +1700.0 2000.0 2200.0 2600.0 2800.0 3100.0 +1800.0 1900.0 2200.0 2600.0 2800.0 3100.0 +2000.0 2100.0 2500.0 2800.0 3000.0 3300.0 +2000.0 2100.0 2700.0 2900.0 3100.0 3300.0 +2100.0 2300.0 2800.0 2900.0 3100.0 3300.0 +1800.0 1900.0 2100.0 2500.0 2800.0 3200.0 +1700.0 1800.0 2200.0 2500.0 2700.0 3000.0 +1500.0 1700.0 2100.0 2500.0 2800.0 3100.0 +1800.0 2100.0 2400.0 2900.0 3200.0 3300.0 +1800.0 2100.0 2700.0 2900.0 3100.0 3300.0 +1700.0 2000.0 2200.0 2500.0 2800.0 3100.0 +1300.0 1900.0 2200.0 2600.0 2800.0 3000.0 +1400.0 1900.0 2300.0 2700.0 2900.0 3200.0 +1800.0 2200.0 2500.0 2800.0 3000.0 3100.0 +1800.0 2300.0 2600.0 2700.0 3000.0 3200.0 +1500.0 1700.0 2200.0 2500.0 2800.0 3100.0 +1500.0 1700.0 2100.0 2600.0 2800.0 3100.0 +1400.0 1500.0 1900.0 2700.0 3100.0 3200.0 +2000.0 2500.0 2900.0 3100.0 3300.0 3400.0 +1200.0 1800.0 2400.0 2700.0 3100.0 3300.0 +1700.0 1900.0 2100.0 2500.0 2700.0 3100.0 +1500.0 2300.0 2500.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2600.0 2700.0 3000.0 +1800.0 1900.0 2300.0 2500.0 2700.0 3100.0 +1900.0 2000.0 2300.0 2600.0 3000.0 3300.0 +1400.0 1600.0 2200.0 2600.0 2800.0 3200.0 +1400.0 1700.0 2300.0 2600.0 3000.0 3100.0 +1500.0 1700.0 2100.0 2500.0 2800.0 3200.0 +2200.0 2600.0 2900.0 3100.0 3400.0 3500.0 +2200.0 2500.0 2900.0 3100.0 3300.0 3500.0 +1800.0 2100.0 2400.0 2900.0 3100.0 3300.0 +1600.0 1800.0 2300.0 2600.0 2900.0 3100.0 +1200.0 1400.0 2200.0 2400.0 3000.0 3200.0 +1300.0 1700.0 2100.0 2400.0 2900.0 3100.0 +1600.0 1700.0 2100.0 2200.0 3000.0 3200.0 +1500.0 1600.0 2500.0 2800.0 3100.0 3300.0 +1400.0 1600.0 2300.0 2700.0 3000.0 3300.0 +1400.0 1600.0 2200.0 2500.0 2900.0 3100.0 +1300.0 1600.0 2300.0 2600.0 3100.0 3300.0 +1600.0 1700.0 2200.0 2400.0 2900.0 3200.0 +1700.0 1800.0 2100.0 2300.0 3000.0 3300.0 +1300.0 1400.0 2300.0 2600.0 2900.0 3200.0 +1300.0 1500.0 2300.0 2500.0 2900.0 3200.0 +1800.0 1900.0 2200.0 2400.0 2700.0 3100.0 +1800.0 1900.0 2200.0 2400.0 2800.0 3100.0 +1600.0 1700.0 2200.0 2400.0 2700.0 3100.0 +1400.0 1600.0 2200.0 2500.0 3000.0 3300.0 +1500.0 1700.0 2200.0 2400.0 3000.0 3400.0 +1600.0 1700.0 2200.0 2500.0 2700.0 3200.0 +1700.0 1800.0 2100.0 2200.0 2800.0 3200.0 +1600.0 1700.0 2100.0 2200.0 3100.0 3300.0 +1500.0 1600.0 2100.0 2200.0 3100.0 3300.0 +1000.0 1800.0 2200.0 2500.0 3100.0 3300.0 +1100.0 1700.0 2200.0 2500.0 3000.0 3200.0 +1400.0 1800.0 2100.0 2400.0 2800.0 3000.0 +1500.0 1800.0 2500.0 2700.0 3000.0 3200.0 +1900.0 2500.0 2800.0 3000.0 3400.0 3500.0 +2000.0 2500.0 2900.0 3200.0 3400.0 3500.0 +1400.0 1700.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1900.0 2300.0 2500.0 3000.0 3200.0 +1400.0 2000.0 2300.0 2600.0 2900.0 3100.0 +1400.0 1900.0 2200.0 2500.0 2700.0 3100.0 +1600.0 1800.0 2000.0 2400.0 3000.0 3200.0 +1300.0 1800.0 2400.0 2700.0 3100.0 3300.0 +1400.0 1600.0 2400.0 2600.0 3100.0 3200.0 +1400.0 1500.0 1600.0 2400.0 3200.0 3300.0 +1900.0 2300.0 2600.0 2900.0 3100.0 3200.0 +1100.0 1700.0 2500.0 2600.0 3100.0 3300.0 +1300.0 1700.0 2400.0 2500.0 3000.0 3300.0 +1400.0 1700.0 2400.0 2500.0 3000.0 3400.0 +1400.0 1600.0 2400.0 2500.0 2900.0 3400.0 +1400.0 1700.0 2400.0 2500.0 3100.0 3400.0 +1500.0 1600.0 2300.0 2600.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2400.0 3000.0 3200.0 +1600.0 1800.0 2200.0 2300.0 3000.0 3100.0 +1500.0 1900.0 2400.0 2700.0 3000.0 3200.0 +1300.0 1800.0 2400.0 2700.0 3300.0 3400.0 +1400.0 1700.0 2200.0 2500.0 2900.0 3200.0 +1800.0 2100.0 2500.0 2700.0 3100.0 3400.0 +1000.0 1500.0 1800.0 2200.0 3000.0 3100.0 +2100.0 2600.0 2900.0 3100.0 3300.0 3400.0 +1900.0 2000.0 2200.0 2500.0 3100.0 3300.0 +1700.0 1900.0 2300.0 2600.0 2900.0 3300.0 +1600.0 1800.0 2000.0 2200.0 3100.0 3300.0 +1300.0 1700.0 2300.0 2600.0 3100.0 3200.0 +1400.0 2100.0 2400.0 2700.0 3100.0 3300.0 +1200.0 1500.0 2200.0 2600.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2500.0 3000.0 3100.0 +1600.0 1900.0 2300.0 2500.0 3000.0 3100.0 +1500.0 1800.0 2600.0 2800.0 3200.0 3400.0 +1600.0 1700.0 2300.0 2500.0 3100.0 3400.0 +1500.0 1600.0 2300.0 2600.0 3100.0 3400.0 +1200.0 1500.0 2500.0 2600.0 3100.0 3400.0 +1200.0 1500.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1600.0 2500.0 2600.0 3100.0 3300.0 +1900.0 2300.0 2600.0 2900.0 3400.0 3500.0 +900.0 1500.0 2600.0 2700.0 3100.0 3200.0 +2100.0 2500.0 2900.0 3100.0 3300.0 3400.0 +1400.0 2100.0 2300.0 2500.0 3000.0 3300.0 +1200.0 1600.0 1700.0 2300.0 3100.0 3200.0 +1100.0 1800.0 2200.0 2600.0 3000.0 3200.0 +1500.0 2000.0 2400.0 2700.0 3100.0 3200.0 +2000.0 2100.0 2400.0 2600.0 2900.0 3300.0 +1400.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1200.0 1600.0 2300.0 2500.0 3000.0 3200.0 +1500.0 1600.0 2300.0 2500.0 3100.0 3200.0 +2300.0 2500.0 2700.0 2800.0 3100.0 3300.0 +2200.0 2300.0 2500.0 2700.0 3100.0 3200.0 +1300.0 1900.0 2300.0 2500.0 2800.0 3000.0 +1200.0 1800.0 2300.0 2500.0 3000.0 3300.0 +1400.0 1600.0 2400.0 2600.0 3200.0 3400.0 +1500.0 1600.0 2300.0 2500.0 3100.0 3400.0 +1400.0 1900.0 2400.0 2500.0 2700.0 3100.0 +1200.0 1600.0 2200.0 2600.0 3100.0 3300.0 +1300.0 1600.0 2300.0 2600.0 3100.0 3400.0 +1500.0 1600.0 2200.0 2500.0 3100.0 3400.0 +1600.0 2000.0 2500.0 2700.0 3000.0 3200.0 +1600.0 1700.0 2000.0 2300.0 3000.0 3200.0 +1400.0 1700.0 1800.0 2300.0 3100.0 3200.0 +2100.0 2200.0 2400.0 2600.0 3200.0 3300.0 +1600.0 1900.0 2400.0 2500.0 2700.0 3200.0 +2200.0 2300.0 2500.0 2700.0 3100.0 3300.0 +2200.0 2300.0 2600.0 2700.0 3100.0 3300.0 +1400.0 1800.0 2300.0 2500.0 2800.0 3200.0 +1600.0 1800.0 2300.0 2500.0 2700.0 3100.0 +1400.0 1600.0 1800.0 2500.0 2900.0 3000.0 +1400.0 1600.0 1900.0 2600.0 3000.0 3200.0 +1500.0 1700.0 2000.0 2600.0 3000.0 3200.0 +1400.0 1700.0 2400.0 2500.0 3100.0 3300.0 +2300.0 2400.0 2700.0 3000.0 3200.0 3400.0 +1300.0 1700.0 2100.0 2300.0 3100.0 3200.0 +1300.0 1700.0 2100.0 2300.0 3000.0 3100.0 +1300.0 1700.0 2000.0 2200.0 3000.0 3100.0 +1400.0 1700.0 1900.0 2300.0 3000.0 3100.0 +1400.0 1600.0 1800.0 2300.0 2900.0 3000.0 +1300.0 1800.0 2400.0 2600.0 3000.0 3300.0 +2200.0 2300.0 2500.0 2800.0 3000.0 3200.0 +1900.0 2200.0 2400.0 2600.0 2900.0 3300.0 +1900.0 2100.0 2400.0 2600.0 3200.0 3400.0 +1900.0 2400.0 2600.0 2800.0 3200.0 3400.0 +1800.0 2100.0 2500.0 2600.0 3200.0 3400.0 +1500.0 1900.0 2400.0 2600.0 2900.0 3100.0 +1200.0 1600.0 2300.0 2500.0 3200.0 3300.0 +1100.0 1400.0 2300.0 2400.0 3000.0 3300.0 +1000.0 1800.0 2400.0 2500.0 3300.0 3400.0 +1000.0 1700.0 2400.0 2500.0 3300.0 3400.0 +2000.0 2400.0 2800.0 3000.0 3300.0 3500.0 +1400.0 2100.0 2500.0 2700.0 3300.0 3400.0 +1200.0 1900.0 2500.0 2600.0 3200.0 3300.0 +1400.0 2000.0 2500.0 2600.0 3100.0 3300.0 +1800.0 2200.0 2700.0 3000.0 3300.0 3500.0 +1700.0 2200.0 2400.0 2700.0 3100.0 3300.0 +1000.0 2000.0 2300.0 2400.0 3300.0 3400.0 +1400.0 1900.0 2400.0 2600.0 3300.0 3400.0 +1300.0 1800.0 2400.0 2500.0 3100.0 3300.0 +1600.0 2000.0 2500.0 2600.0 3200.0 3300.0 +2100.0 2500.0 2700.0 3000.0 3200.0 3400.0 +1600.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1400.0 1700.0 1900.0 2100.0 3300.0 3400.0 +1500.0 1700.0 2000.0 2200.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2300.0 2600.0 2900.0 +1600.0 1700.0 2300.0 2500.0 2800.0 3000.0 +1600.0 1700.0 2200.0 2300.0 2900.0 3200.0 +1300.0 1500.0 2300.0 2400.0 2800.0 3200.0 +1400.0 1700.0 2300.0 2400.0 3000.0 3200.0 +1600.0 1700.0 2100.0 2300.0 2900.0 3300.0 +1500.0 2100.0 2300.0 2600.0 3100.0 3300.0 +1100.0 1500.0 2200.0 2300.0 3100.0 3300.0 +1000.0 1800.0 2300.0 2400.0 3100.0 3200.0 +900.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1000.0 1800.0 2400.0 2500.0 3100.0 3200.0 +1700.0 2200.0 2500.0 2900.0 3400.0 3500.0 +1300.0 1900.0 2300.0 2400.0 3300.0 3400.0 +1100.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1200.0 1700.0 2300.0 2400.0 3200.0 3400.0 +1300.0 1700.0 2300.0 2500.0 3200.0 3300.0 +1200.0 1500.0 2200.0 2300.0 3000.0 3200.0 +1200.0 1800.0 2200.0 2300.0 3000.0 3200.0 +1000.0 1800.0 2400.0 2500.0 3100.0 3300.0 +900.0 1800.0 2600.0 2700.0 3300.0 3400.0 +900.0 1900.0 2700.0 2800.0 3300.0 3400.0 +1800.0 2400.0 2700.0 3100.0 3400.0 3500.0 +1400.0 1600.0 2200.0 2400.0 2900.0 3200.0 +1700.0 2300.0 2500.0 2700.0 3300.0 3400.0 +1400.0 1900.0 2400.0 2600.0 3200.0 3400.0 +1300.0 1500.0 2200.0 2400.0 2700.0 3100.0 +1500.0 1600.0 2000.0 2200.0 2900.0 3100.0 +1500.0 1600.0 1800.0 1900.0 2800.0 3300.0 +1700.0 1800.0 2000.0 2300.0 3000.0 3300.0 +2200.0 2400.0 2600.0 2700.0 3300.0 3400.0 +1700.0 1900.0 2300.0 2400.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2400.0 2700.0 3100.0 +1700.0 2300.0 2600.0 3000.0 3300.0 3400.0 +2200.0 2300.0 2500.0 2700.0 3100.0 3400.0 +1600.0 1800.0 2000.0 2200.0 3200.0 3300.0 +2100.0 2500.0 2700.0 2900.0 3400.0 3500.0 +2100.0 2400.0 2600.0 2700.0 3100.0 3300.0 +2100.0 2400.0 2700.0 3100.0 3300.0 3400.0 +1400.0 1700.0 2200.0 2600.0 2900.0 3200.0 +1000.0 1900.0 2200.0 2400.0 3100.0 3200.0 +1100.0 1600.0 2500.0 2600.0 3100.0 3300.0 +1300.0 1600.0 2200.0 2300.0 2800.0 3300.0 +1000.0 2000.0 2500.0 2600.0 3300.0 3400.0 +1700.0 2200.0 2400.0 2700.0 3200.0 3400.0 +1200.0 2000.0 2400.0 2500.0 3100.0 3200.0 +1100.0 1700.0 2100.0 2200.0 3000.0 3200.0 +1100.0 1600.0 2100.0 2200.0 3100.0 3300.0 +1100.0 1600.0 2200.0 2300.0 3200.0 3300.0 +1300.0 1700.0 2300.0 2400.0 3300.0 3400.0 +1300.0 1800.0 2300.0 2400.0 3300.0 3400.0 +1000.0 1800.0 2300.0 2400.0 3100.0 3300.0 +1400.0 2000.0 2300.0 2500.0 2900.0 3200.0 +1100.0 1900.0 2400.0 2500.0 3100.0 3200.0 +1000.0 2000.0 2600.0 2700.0 3300.0 3400.0 +1200.0 1600.0 2200.0 2300.0 3100.0 3300.0 +1300.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1000.0 1700.0 2400.0 2600.0 3300.0 3400.0 +1000.0 1700.0 2400.0 2600.0 3200.0 3300.0 +2000.0 2400.0 2700.0 3100.0 3300.0 3400.0 +1500.0 1900.0 2200.0 2400.0 3200.0 3300.0 +1400.0 1700.0 2100.0 2200.0 3100.0 3300.0 +2200.0 2400.0 2600.0 2900.0 3300.0 3400.0 +1300.0 1900.0 2100.0 2500.0 3000.0 3200.0 +1900.0 2100.0 2300.0 2400.0 3000.0 3300.0 +1100.0 2200.0 2600.0 2700.0 3300.0 3400.0 +1700.0 1900.0 2400.0 2500.0 3000.0 3400.0 +1800.0 2100.0 2600.0 2900.0 3100.0 3400.0 +1900.0 2300.0 2900.0 3100.0 3300.0 3400.0 +1900.0 2400.0 2600.0 3000.0 3300.0 3500.0 +1400.0 2100.0 2400.0 2500.0 2700.0 3000.0 +1300.0 1600.0 1900.0 2100.0 2900.0 3000.0 +1900.0 2000.0 2200.0 2300.0 3000.0 3300.0 +1300.0 1600.0 2200.0 2500.0 3000.0 3300.0 +1100.0 1800.0 2300.0 2500.0 3100.0 3300.0 +1100.0 1700.0 2300.0 2500.0 3000.0 3200.0 +1200.0 1600.0 2300.0 2400.0 3000.0 3200.0 +1300.0 1600.0 2200.0 2400.0 2900.0 3200.0 +1800.0 2300.0 2600.0 3000.0 3300.0 3500.0 +1500.0 2000.0 2400.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2200.0 2500.0 2800.0 3000.0 +1800.0 2100.0 2300.0 2400.0 2700.0 3000.0 +1800.0 2100.0 2300.0 2500.0 2900.0 3200.0 +1700.0 1900.0 2100.0 2700.0 2900.0 3200.0 +1800.0 2100.0 2300.0 2600.0 2900.0 3000.0 +1600.0 1800.0 2100.0 2400.0 2600.0 2900.0 +1800.0 1900.0 2400.0 2800.0 3000.0 3100.0 +2000.0 2400.0 2700.0 2900.0 3200.0 3400.0 +1900.0 2100.0 2800.0 2900.0 3200.0 3400.0 +2000.0 2100.0 2500.0 2800.0 2900.0 3100.0 +1800.0 1900.0 2500.0 2600.0 2900.0 3300.0 +1600.0 1700.0 2000.0 2100.0 3000.0 3200.0 +1600.0 1700.0 2000.0 2100.0 2900.0 3200.0 +2000.0 2200.0 2400.0 2800.0 3100.0 3300.0 +2100.0 2300.0 2800.0 2900.0 3300.0 3400.0 +1900.0 2000.0 2300.0 2400.0 2900.0 3100.0 +1500.0 1800.0 2300.0 2500.0 3000.0 3300.0 +1200.0 1800.0 2500.0 2600.0 2900.0 3000.0 +1400.0 1700.0 2200.0 2600.0 2900.0 3000.0 +1500.0 1700.0 2200.0 2600.0 3000.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2900.0 3200.0 +1800.0 1900.0 2200.0 2600.0 2900.0 3200.0 +1800.0 2000.0 2200.0 2400.0 2800.0 3100.0 +1400.0 1600.0 1900.0 2100.0 2700.0 3200.0 +1500.0 2000.0 2200.0 2500.0 3000.0 3200.0 +1700.0 1800.0 2000.0 2200.0 3100.0 3300.0 +1800.0 1900.0 2100.0 2400.0 3000.0 3100.0 +1800.0 2100.0 2400.0 2600.0 3000.0 3100.0 +2000.0 2300.0 2600.0 2800.0 3000.0 3300.0 +2100.0 2300.0 2800.0 2900.0 3200.0 3400.0 +1800.0 1900.0 2500.0 2800.0 3100.0 3200.0 +1800.0 2000.0 2200.0 2500.0 2900.0 3000.0 +1700.0 1800.0 2100.0 2700.0 2900.0 3000.0 +1700.0 1800.0 2600.0 2800.0 3100.0 3300.0 +1600.0 2000.0 2300.0 2800.0 3100.0 3300.0 +1500.0 1600.0 1900.0 2000.0 2900.0 3200.0 +2100.0 2300.0 2700.0 2800.0 3000.0 3200.0 +2000.0 2200.0 2400.0 2600.0 3100.0 3200.0 +1800.0 2100.0 2400.0 2500.0 3000.0 3200.0 +1800.0 2100.0 2500.0 2600.0 2900.0 3200.0 +2100.0 2400.0 2800.0 2900.0 3300.0 3400.0 +1800.0 2000.0 2300.0 2600.0 3100.0 3400.0 +1700.0 2000.0 2300.0 2600.0 2900.0 3300.0 +1800.0 1900.0 2300.0 2500.0 2800.0 3000.0 +1400.0 1600.0 2200.0 2500.0 2900.0 3300.0 +1600.0 1700.0 2100.0 2300.0 2600.0 3100.0 +1700.0 1800.0 2100.0 2500.0 2800.0 3200.0 +1500.0 1600.0 2200.0 2700.0 2800.0 3200.0 +2100.0 2300.0 2700.0 2800.0 3100.0 3300.0 +1600.0 1700.0 2000.0 2400.0 3000.0 3300.0 +1500.0 1600.0 2600.0 2800.0 3100.0 3300.0 +1800.0 2000.0 2400.0 2600.0 2900.0 3100.0 +1700.0 1800.0 2300.0 2500.0 2600.0 3100.0 +1500.0 1800.0 2100.0 2500.0 2900.0 3300.0 +1600.0 1800.0 2100.0 2500.0 3000.0 3300.0 +1700.0 1800.0 2300.0 2400.0 2800.0 3100.0 +1600.0 1700.0 2000.0 2300.0 2800.0 3100.0 +1700.0 1800.0 2200.0 2400.0 2700.0 3100.0 +2000.0 2500.0 2800.0 3000.0 3400.0 3500.0 +1900.0 2400.0 2800.0 2900.0 3400.0 3500.0 +1600.0 1700.0 2400.0 2700.0 2900.0 3100.0 +1600.0 1700.0 2500.0 2600.0 2900.0 3100.0 +1500.0 1700.0 2200.0 2600.0 2900.0 3100.0 +1700.0 2000.0 2200.0 2500.0 2900.0 3200.0 +1500.0 1700.0 2200.0 2700.0 3200.0 3300.0 +1400.0 1500.0 2100.0 2500.0 3000.0 3200.0 +1200.0 1500.0 2200.0 2400.0 2800.0 3200.0 +1500.0 1600.0 2000.0 2100.0 2900.0 3200.0 +1800.0 1900.0 2100.0 2500.0 2900.0 3200.0 +1500.0 1800.0 2300.0 2500.0 2800.0 3200.0 +1500.0 1800.0 2500.0 2800.0 3100.0 3300.0 +1300.0 1800.0 2500.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2300.0 2700.0 2900.0 3000.0 +1500.0 1600.0 2200.0 2400.0 2600.0 3100.0 +1600.0 2000.0 2500.0 2600.0 3000.0 3300.0 +1500.0 1600.0 2000.0 2600.0 2800.0 3000.0 +1500.0 1600.0 2200.0 2600.0 2700.0 3000.0 +1200.0 1600.0 2200.0 2400.0 3000.0 3200.0 +1800.0 2300.0 2500.0 2800.0 3000.0 3100.0 +1500.0 1600.0 2500.0 2800.0 2900.0 3200.0 +1300.0 1500.0 2300.0 2800.0 3100.0 3200.0 +1700.0 1800.0 2100.0 2500.0 2800.0 3000.0 +1400.0 1800.0 2200.0 2600.0 3000.0 3200.0 +1500.0 1700.0 2000.0 2700.0 3100.0 3200.0 +1400.0 1600.0 2300.0 2600.0 3000.0 3300.0 +1700.0 2100.0 2700.0 2900.0 3300.0 3500.0 +1700.0 1800.0 2300.0 2700.0 2800.0 3100.0 +1600.0 1800.0 2200.0 2600.0 2700.0 3000.0 +1900.0 2300.0 2400.0 2600.0 2800.0 3100.0 +1300.0 1600.0 2100.0 2200.0 3100.0 3300.0 +1500.0 1800.0 2400.0 2700.0 3000.0 3100.0 +1600.0 1800.0 2000.0 2600.0 2900.0 3000.0 +1600.0 1800.0 2100.0 2700.0 2900.0 3000.0 +1600.0 1700.0 2300.0 2700.0 3000.0 3100.0 +1700.0 1800.0 2400.0 2700.0 2900.0 3100.0 +1800.0 1900.0 2500.0 2600.0 3000.0 3100.0 +1700.0 1800.0 2100.0 2400.0 2700.0 3200.0 +1700.0 2000.0 2200.0 2500.0 2800.0 3000.0 +2000.0 2400.0 2500.0 2700.0 3000.0 3100.0 +1800.0 2000.0 2600.0 2700.0 3100.0 3200.0 +2200.0 2400.0 2700.0 2900.0 3100.0 3300.0 +2300.0 2500.0 2700.0 2900.0 3100.0 3300.0 +1800.0 2200.0 2300.0 2600.0 3000.0 3100.0 +1700.0 2100.0 2300.0 2800.0 3100.0 3200.0 +2000.0 2400.0 2600.0 2800.0 3000.0 3200.0 +1500.0 2000.0 2200.0 2600.0 3100.0 3300.0 +1100.0 1600.0 2200.0 2600.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2500.0 2700.0 3000.0 +1900.0 2300.0 2400.0 2600.0 2800.0 3000.0 +1700.0 2100.0 2300.0 2600.0 2900.0 3000.0 +1600.0 1700.0 2000.0 2200.0 2600.0 3100.0 +1600.0 1900.0 2200.0 2400.0 3000.0 3100.0 +1300.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1600.0 2100.0 2300.0 2600.0 2900.0 3000.0 +1700.0 2100.0 2300.0 2500.0 2800.0 3000.0 +1600.0 2100.0 2300.0 2500.0 2800.0 3000.0 +1500.0 1800.0 2000.0 2300.0 2800.0 2900.0 +1300.0 1600.0 2300.0 2600.0 2900.0 3200.0 +1200.0 1700.0 2100.0 2600.0 3100.0 3300.0 +1800.0 2200.0 2600.0 2700.0 3200.0 3300.0 +1600.0 1700.0 1900.0 2100.0 3100.0 3200.0 +1500.0 2000.0 2300.0 2500.0 3000.0 3300.0 +1600.0 1700.0 2000.0 2500.0 2700.0 2900.0 +1600.0 1800.0 2100.0 2500.0 2900.0 3000.0 +1600.0 1700.0 2100.0 2500.0 2700.0 2900.0 +1600.0 1700.0 2200.0 2500.0 2700.0 2900.0 +1500.0 1700.0 2000.0 2600.0 2800.0 3000.0 +1200.0 1600.0 2200.0 2400.0 2800.0 3000.0 +1800.0 2200.0 2400.0 2600.0 2800.0 3000.0 +1700.0 2000.0 2200.0 2500.0 2700.0 3100.0 +1700.0 2000.0 2200.0 2500.0 2700.0 3000.0 +1600.0 1900.0 2300.0 2600.0 2800.0 3200.0 +1200.0 1400.0 2000.0 2600.0 2800.0 3000.0 +1400.0 1600.0 2200.0 2600.0 3000.0 3300.0 +1500.0 1700.0 2200.0 2400.0 2700.0 2900.0 +1600.0 1700.0 2200.0 2500.0 2800.0 3000.0 +1600.0 1700.0 2100.0 2400.0 2700.0 3000.0 +1900.0 2100.0 2400.0 2600.0 3000.0 3100.0 +1900.0 2500.0 2700.0 2800.0 3100.0 3200.0 +1800.0 2200.0 2500.0 2600.0 3000.0 3200.0 +1900.0 2200.0 2400.0 2500.0 2800.0 3100.0 +1800.0 2100.0 2300.0 2500.0 2700.0 3000.0 +2000.0 2300.0 2400.0 2600.0 2900.0 3100.0 +1400.0 1600.0 1800.0 1900.0 2700.0 3200.0 +1400.0 1600.0 1700.0 1900.0 2800.0 3100.0 +2100.0 2200.0 2600.0 3000.0 3200.0 3300.0 +1700.0 2000.0 2200.0 2400.0 2700.0 2900.0 +1500.0 1600.0 1900.0 2400.0 2600.0 2700.0 +1600.0 1700.0 2000.0 2400.0 2600.0 2800.0 +1900.0 2000.0 2500.0 2800.0 2900.0 3200.0 +1500.0 1600.0 1900.0 2100.0 2700.0 3200.0 +1500.0 1700.0 2000.0 2200.0 2900.0 3300.0 +1800.0 2000.0 2700.0 2800.0 3200.0 3300.0 +1700.0 1800.0 2400.0 2700.0 3300.0 3400.0 +1600.0 1900.0 2500.0 2700.0 3300.0 3400.0 +1200.0 1800.0 2100.0 2400.0 3100.0 3200.0 +1200.0 1800.0 2100.0 2500.0 3200.0 3300.0 +1600.0 1700.0 2200.0 2600.0 2900.0 3200.0 +1800.0 2200.0 2500.0 2600.0 3200.0 3400.0 +1000.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1100.0 2000.0 2600.0 2700.0 3200.0 3300.0 +1300.0 1800.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1700.0 1800.0 2400.0 3000.0 3100.0 +1500.0 1800.0 2000.0 2400.0 3100.0 3200.0 +1200.0 1400.0 1500.0 2300.0 3100.0 3200.0 +2100.0 2200.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2100.0 2400.0 2900.0 3100.0 +1400.0 1500.0 2100.0 2400.0 2800.0 3200.0 +1100.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1200.0 2000.0 2300.0 2700.0 3100.0 3200.0 +1300.0 1700.0 2200.0 2500.0 2900.0 3000.0 +1400.0 1700.0 1900.0 2600.0 2900.0 3100.0 +1200.0 2000.0 2300.0 2700.0 3200.0 3300.0 +1500.0 2200.0 2400.0 2600.0 3200.0 3300.0 +1400.0 1800.0 2000.0 2500.0 3000.0 3100.0 +1400.0 2000.0 2300.0 2500.0 3200.0 3300.0 +1900.0 2400.0 2600.0 2700.0 3100.0 3300.0 +1300.0 1600.0 1700.0 2200.0 3000.0 3100.0 +1300.0 1600.0 2500.0 2600.0 3100.0 3300.0 +1500.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1600.0 2400.0 2600.0 3200.0 3400.0 +1400.0 2000.0 2300.0 2500.0 2700.0 3000.0 +1500.0 1900.0 2300.0 2500.0 2700.0 3100.0 +1500.0 1600.0 1800.0 2500.0 2800.0 3000.0 +1300.0 1800.0 2200.0 2600.0 3100.0 3200.0 +1300.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1300.0 1700.0 2100.0 2400.0 3100.0 3300.0 +1300.0 1900.0 2300.0 2600.0 3000.0 3200.0 +1200.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1700.0 2200.0 2500.0 2600.0 3200.0 3400.0 +1600.0 2000.0 2200.0 2300.0 3100.0 3200.0 +1800.0 1900.0 2300.0 2600.0 3200.0 3300.0 +1800.0 1900.0 2100.0 2500.0 3200.0 3300.0 +1900.0 2000.0 2100.0 2500.0 3300.0 3400.0 +1700.0 2100.0 2600.0 2800.0 3300.0 3500.0 +1600.0 1800.0 2200.0 2700.0 3200.0 3300.0 +1400.0 2000.0 2300.0 2400.0 2600.0 3000.0 +1400.0 1600.0 2100.0 2300.0 3100.0 3200.0 +1100.0 1900.0 2500.0 2600.0 3300.0 3400.0 +1200.0 1600.0 2300.0 2600.0 3100.0 3400.0 +1400.0 1600.0 2100.0 2400.0 3000.0 3300.0 +1400.0 1700.0 2100.0 2500.0 3100.0 3300.0 +1200.0 2000.0 2700.0 2800.0 3300.0 3400.0 +1700.0 1800.0 2000.0 2300.0 3300.0 3400.0 +1300.0 1600.0 1800.0 2100.0 3100.0 3200.0 +1800.0 1900.0 2100.0 2200.0 3200.0 3400.0 +1800.0 1900.0 2100.0 2300.0 3300.0 3400.0 +1800.0 1900.0 2200.0 2300.0 3100.0 3300.0 +1800.0 2300.0 2800.0 2900.0 3200.0 3300.0 +1900.0 2200.0 2500.0 2600.0 3200.0 3300.0 +1300.0 1600.0 2300.0 2500.0 2900.0 3300.0 +1400.0 1600.0 2300.0 2500.0 2900.0 3300.0 +1400.0 1700.0 2400.0 2500.0 2900.0 3200.0 +1500.0 1700.0 2100.0 2200.0 3100.0 3200.0 +1500.0 1700.0 2100.0 2200.0 3100.0 3300.0 +1500.0 1600.0 2100.0 2300.0 2900.0 3300.0 +1300.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1200.0 1900.0 2200.0 2500.0 3000.0 3200.0 +1000.0 1300.0 2100.0 2200.0 2900.0 3200.0 +1400.0 1600.0 1700.0 2000.0 3300.0 3400.0 +1300.0 1500.0 1600.0 2000.0 3300.0 3400.0 +1300.0 1500.0 1700.0 1900.0 3300.0 3400.0 +1500.0 1600.0 2100.0 2300.0 3100.0 3400.0 +1500.0 1600.0 2300.0 2500.0 2700.0 3200.0 +1400.0 2000.0 2300.0 2400.0 2700.0 3200.0 +1200.0 1500.0 2400.0 2600.0 2900.0 3200.0 +1500.0 1600.0 2300.0 2400.0 2700.0 3300.0 +1500.0 1700.0 2200.0 2400.0 2600.0 3100.0 +1500.0 1700.0 2300.0 2500.0 3100.0 3400.0 +1600.0 1700.0 2400.0 2600.0 3000.0 3400.0 +1600.0 1700.0 2500.0 2700.0 3100.0 3400.0 +1400.0 1500.0 2300.0 2400.0 3000.0 3300.0 +1500.0 1600.0 2100.0 2300.0 3000.0 3200.0 +1500.0 1600.0 2200.0 2400.0 2900.0 3200.0 +1500.0 1700.0 2400.0 2500.0 2900.0 3200.0 +1400.0 1900.0 2200.0 2300.0 2800.0 3200.0 +1500.0 1800.0 2100.0 2200.0 3000.0 3300.0 +2000.0 2100.0 2500.0 2600.0 3000.0 3400.0 +1000.0 1600.0 2200.0 2300.0 3200.0 3400.0 +1300.0 1500.0 2300.0 2600.0 2900.0 3300.0 +1400.0 1600.0 2500.0 2600.0 2900.0 3200.0 +1400.0 1600.0 2100.0 2400.0 3100.0 3300.0 +1500.0 2000.0 2300.0 2500.0 3100.0 3300.0 +1000.0 1700.0 2100.0 2200.0 3200.0 3300.0 +1500.0 1700.0 2200.0 2400.0 3200.0 3400.0 +1600.0 1800.0 2300.0 2400.0 3000.0 3100.0 +1300.0 1500.0 2100.0 2200.0 3000.0 3300.0 +1200.0 1400.0 2200.0 2300.0 3000.0 3300.0 +1600.0 1700.0 1900.0 2200.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2300.0 3000.0 3400.0 +1400.0 1500.0 2200.0 2500.0 2800.0 3100.0 +1800.0 1900.0 2300.0 2500.0 3000.0 3400.0 +1500.0 1700.0 2100.0 2500.0 2700.0 3100.0 +1600.0 1900.0 2400.0 2700.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2500.0 2700.0 3300.0 +1800.0 1900.0 2400.0 2500.0 2800.0 3300.0 +1300.0 1600.0 2100.0 2300.0 3000.0 3300.0 +1300.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1100.0 1500.0 2500.0 2600.0 3100.0 3400.0 +1600.0 1700.0 2200.0 2500.0 2600.0 3100.0 +1500.0 1600.0 2200.0 2500.0 2600.0 3100.0 +1600.0 2200.0 2600.0 2800.0 3100.0 3300.0 +2000.0 2200.0 2600.0 2700.0 3300.0 3400.0 +1500.0 2000.0 2200.0 2400.0 2600.0 2900.0 +1500.0 1800.0 2200.0 2400.0 3100.0 3400.0 +1800.0 2200.0 2600.0 2800.0 3400.0 3500.0 +1600.0 1700.0 2200.0 2600.0 3200.0 3400.0 +1800.0 2000.0 2300.0 2600.0 3200.0 3400.0 +1600.0 1800.0 2200.0 2600.0 3200.0 3400.0 +1500.0 1600.0 2100.0 2400.0 2800.0 3200.0 +1500.0 1800.0 2000.0 2600.0 3200.0 3300.0 +1200.0 1800.0 1900.0 2200.0 3100.0 3200.0 +1500.0 1600.0 2200.0 2400.0 3200.0 3300.0 +1800.0 1900.0 2600.0 2800.0 3000.0 3300.0 +1300.0 1600.0 2300.0 2400.0 3000.0 3100.0 +2000.0 2100.0 2400.0 2600.0 3000.0 3100.0 +2000.0 2100.0 2500.0 2600.0 2900.0 3100.0 +1800.0 2000.0 2500.0 2600.0 3000.0 3100.0 +1800.0 2300.0 2700.0 2800.0 3400.0 3500.0 +1200.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1600.0 2000.0 2500.0 2700.0 3100.0 3400.0 +1900.0 2100.0 2600.0 2700.0 3000.0 3200.0 +1500.0 1900.0 2600.0 2800.0 3200.0 3300.0 +1600.0 1800.0 2200.0 2700.0 3200.0 3400.0 +1400.0 1800.0 2400.0 2600.0 2900.0 3200.0 +1500.0 1700.0 2500.0 2600.0 3000.0 3200.0 +1800.0 2100.0 2600.0 2800.0 3400.0 3500.0 +1700.0 2000.0 2600.0 2800.0 3000.0 3300.0 +1800.0 2100.0 2700.0 2900.0 3400.0 3500.0 +1600.0 1700.0 2600.0 2700.0 3100.0 3400.0 +1800.0 1900.0 2400.0 2600.0 2800.0 3000.0 +1600.0 2000.0 2500.0 2600.0 2900.0 3200.0 +1400.0 1800.0 2400.0 2500.0 2900.0 3100.0 +1500.0 1800.0 2400.0 2500.0 2900.0 3200.0 +1200.0 1400.0 2300.0 2500.0 2900.0 3200.0 +1400.0 1600.0 2500.0 2700.0 3000.0 3300.0 +1500.0 1900.0 2500.0 2700.0 3000.0 3300.0 +1000.0 1400.0 2600.0 2700.0 3100.0 3300.0 +1400.0 1700.0 2100.0 2300.0 2900.0 3000.0 +1700.0 1800.0 2400.0 2600.0 2800.0 3000.0 +1500.0 2000.0 2100.0 2500.0 3000.0 3100.0 +2000.0 2100.0 2300.0 2400.0 3100.0 3300.0 +2100.0 2200.0 2600.0 2800.0 3100.0 3200.0 +2100.0 2200.0 2600.0 2700.0 3000.0 3200.0 +1800.0 2000.0 2600.0 2800.0 3100.0 3400.0 +1700.0 2000.0 2500.0 2900.0 3100.0 3300.0 +1700.0 2000.0 2500.0 2900.0 3100.0 3400.0 +1600.0 1800.0 2500.0 2800.0 3000.0 3200.0 +1500.0 1800.0 2200.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2300.0 2600.0 3200.0 3300.0 +1500.0 1600.0 2400.0 2600.0 2800.0 3100.0 +1200.0 1600.0 2200.0 2600.0 3000.0 3200.0 +1500.0 1600.0 2000.0 2300.0 2900.0 3200.0 +1900.0 2000.0 2400.0 2700.0 3200.0 3400.0 +1900.0 2000.0 2400.0 2700.0 2800.0 3200.0 +1500.0 1700.0 2300.0 2600.0 3200.0 3400.0 +1700.0 1800.0 2400.0 2500.0 2800.0 3100.0 +1500.0 1600.0 2200.0 2400.0 2900.0 3100.0 +1500.0 1600.0 2200.0 2500.0 3100.0 3300.0 +1600.0 2000.0 2200.0 2400.0 2700.0 3100.0 +1500.0 1700.0 2300.0 2600.0 2900.0 3300.0 +1700.0 1800.0 2100.0 2300.0 2900.0 3100.0 +1400.0 1500.0 2000.0 2500.0 2700.0 3000.0 +1800.0 1900.0 2300.0 2400.0 2800.0 3100.0 +1300.0 1800.0 2200.0 2500.0 2900.0 3100.0 +1300.0 1900.0 2300.0 2700.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2500.0 2700.0 3100.0 +1600.0 1700.0 2200.0 2600.0 3100.0 3300.0 +1400.0 1500.0 2300.0 2500.0 2800.0 3000.0 +1300.0 1700.0 2100.0 2500.0 3000.0 3300.0 +1600.0 1800.0 2200.0 2400.0 2800.0 3200.0 +1400.0 1500.0 2200.0 2500.0 3200.0 3300.0 +1800.0 1900.0 2200.0 2500.0 3000.0 3100.0 +1300.0 1500.0 2200.0 2400.0 2900.0 3100.0 +1300.0 1500.0 2300.0 2500.0 3100.0 3300.0 +1100.0 1500.0 2400.0 2500.0 3000.0 3200.0 +1600.0 1700.0 2400.0 2600.0 2800.0 3100.0 +1500.0 1600.0 2400.0 2500.0 2800.0 3100.0 +1500.0 1600.0 2000.0 2500.0 2800.0 3100.0 +1200.0 1700.0 2400.0 2600.0 3200.0 3300.0 +1100.0 1600.0 2400.0 2500.0 3200.0 3400.0 +1100.0 1500.0 2400.0 2500.0 3000.0 3400.0 +1100.0 1600.0 2400.0 2500.0 3100.0 3300.0 +1900.0 2000.0 2400.0 2500.0 2900.0 3100.0 +1300.0 1500.0 2200.0 2300.0 2700.0 3100.0 +1600.0 1900.0 2500.0 2800.0 3200.0 3300.0 +1900.0 2100.0 2600.0 2900.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2600.0 3000.0 3300.0 +1800.0 1900.0 2400.0 2500.0 2900.0 3000.0 +1300.0 1500.0 2300.0 2400.0 2900.0 3000.0 +1200.0 1700.0 1800.0 2300.0 2900.0 3000.0 +1200.0 1600.0 1800.0 2200.0 2900.0 3000.0 +1200.0 1700.0 2100.0 2300.0 3100.0 3200.0 +1400.0 1900.0 2100.0 2400.0 3000.0 3200.0 +1100.0 1500.0 2500.0 2600.0 3000.0 3300.0 +1300.0 1400.0 2400.0 2500.0 2800.0 3300.0 +1300.0 1500.0 2300.0 2500.0 3200.0 3400.0 +1300.0 1900.0 2300.0 2700.0 3100.0 3200.0 +1700.0 1900.0 2200.0 2400.0 2700.0 3100.0 +1400.0 1500.0 2000.0 2500.0 2600.0 3000.0 +1500.0 1600.0 2000.0 2400.0 2600.0 3000.0 +1400.0 1700.0 2400.0 2600.0 3000.0 3300.0 +2000.0 2100.0 2300.0 2500.0 2900.0 3100.0 +1900.0 2000.0 2400.0 2500.0 2800.0 3000.0 +1800.0 1900.0 2200.0 2400.0 2700.0 3000.0 +1400.0 1600.0 1900.0 2300.0 2600.0 3000.0 +1600.0 2000.0 2600.0 2800.0 3300.0 3400.0 +1200.0 1600.0 1800.0 2100.0 3200.0 3300.0 +1900.0 2300.0 2700.0 2800.0 3400.0 3500.0 +1500.0 1600.0 2200.0 2500.0 2700.0 3100.0 +1700.0 2100.0 2300.0 2500.0 2900.0 3200.0 +1300.0 1500.0 2200.0 2500.0 3000.0 3300.0 +1400.0 1500.0 2100.0 2500.0 2600.0 2900.0 +1500.0 1600.0 2200.0 2300.0 2800.0 3300.0 +1500.0 1600.0 1800.0 2100.0 2800.0 2900.0 +1700.0 1800.0 2200.0 2400.0 2600.0 3100.0 +1600.0 1900.0 2600.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2600.0 3000.0 3400.0 +1200.0 1500.0 2300.0 2400.0 2900.0 3300.0 +1600.0 2100.0 2500.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2300.0 2500.0 2600.0 2900.0 +1500.0 1600.0 2400.0 2600.0 3000.0 3100.0 +1600.0 1800.0 2600.0 2800.0 3000.0 3200.0 +1400.0 1700.0 2200.0 2500.0 3100.0 3400.0 +1600.0 1700.0 2300.0 2600.0 2700.0 3100.0 +1600.0 1700.0 2100.0 2500.0 2700.0 3100.0 +2000.0 2200.0 2500.0 2700.0 3100.0 3400.0 +1900.0 2100.0 2400.0 2600.0 3000.0 3400.0 +1400.0 1800.0 2100.0 2600.0 2900.0 3100.0 +1000.0 1800.0 2100.0 2300.0 3100.0 3200.0 +1400.0 1500.0 2200.0 2400.0 3000.0 3300.0 +1300.0 1800.0 2200.0 2300.0 3000.0 3200.0 +1100.0 1500.0 2300.0 2400.0 3000.0 3200.0 +1400.0 1500.0 2300.0 2400.0 2900.0 3300.0 +1400.0 1500.0 2200.0 2400.0 2800.0 3300.0 +1200.0 1600.0 2100.0 2200.0 3200.0 3300.0 +1600.0 1800.0 2100.0 2300.0 2500.0 3100.0 +1500.0 1600.0 2400.0 2600.0 3000.0 3400.0 +1500.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1900.0 2500.0 2600.0 2900.0 3200.0 3300.0 +1300.0 1500.0 2100.0 2500.0 2700.0 3100.0 +1200.0 1400.0 2400.0 2500.0 2800.0 3200.0 +1600.0 1700.0 2300.0 2400.0 2900.0 3400.0 +1100.0 1800.0 2200.0 2300.0 3300.0 3400.0 +1800.0 2200.0 2500.0 2800.0 3100.0 3400.0 +1200.0 1700.0 2100.0 2700.0 3100.0 3200.0 +1300.0 1600.0 2100.0 2600.0 3000.0 3200.0 +2000.0 2200.0 2300.0 2400.0 3100.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3100.0 3400.0 +1300.0 1700.0 2000.0 2600.0 3200.0 3300.0 +1100.0 1700.0 2300.0 2400.0 3200.0 3400.0 +1100.0 1600.0 2300.0 2400.0 3200.0 3400.0 +1700.0 2300.0 2800.0 3000.0 3300.0 3400.0 +1700.0 2000.0 2300.0 2800.0 3200.0 3300.0 +1800.0 1900.0 2100.0 2600.0 3000.0 3200.0 +1300.0 2000.0 2200.0 2600.0 3000.0 3200.0 +1300.0 1500.0 2300.0 2400.0 3000.0 3400.0 +1600.0 1700.0 2100.0 2300.0 2800.0 3200.0 +1700.0 1800.0 2400.0 2700.0 2800.0 3200.0 +1800.0 1900.0 2500.0 2700.0 2800.0 3200.0 +1700.0 1800.0 2100.0 2300.0 2900.0 3300.0 +1500.0 1700.0 2300.0 2400.0 2700.0 3200.0 +1600.0 2100.0 2500.0 2800.0 3100.0 3200.0 +1400.0 1700.0 2300.0 2700.0 3000.0 3300.0 +900.0 1400.0 2300.0 2500.0 3100.0 3300.0 +1700.0 1800.0 2300.0 2400.0 3000.0 3400.0 +2000.0 2100.0 2400.0 2600.0 2900.0 3100.0 +1900.0 2500.0 2600.0 2800.0 3300.0 3400.0 +1400.0 1500.0 2200.0 2300.0 2900.0 3300.0 +1600.0 1700.0 2000.0 2500.0 2600.0 3100.0 +1700.0 1800.0 2200.0 2300.0 2900.0 3200.0 +2100.0 2500.0 2800.0 3100.0 3300.0 3500.0 +1900.0 2400.0 2600.0 2700.0 3300.0 3400.0 +1700.0 2100.0 2500.0 2600.0 3300.0 3400.0 +1100.0 1500.0 2300.0 2400.0 3100.0 3400.0 +1200.0 1500.0 2300.0 2400.0 3300.0 3400.0 +1200.0 1800.0 2200.0 2400.0 3300.0 3400.0 +1500.0 1900.0 2200.0 2300.0 3100.0 3300.0 +1300.0 1600.0 1800.0 2100.0 3200.0 3300.0 +1600.0 1800.0 2400.0 2600.0 2900.0 3300.0 +1700.0 1900.0 2400.0 2600.0 3000.0 3400.0 +1300.0 1800.0 2200.0 2300.0 2900.0 3200.0 +1400.0 1700.0 2200.0 2300.0 3200.0 3400.0 +1400.0 1600.0 2200.0 2400.0 3200.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3200.0 3500.0 +1600.0 1700.0 2500.0 2600.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2500.0 2900.0 3400.0 +1700.0 1800.0 2300.0 2400.0 2900.0 3500.0 +1700.0 1800.0 2300.0 2400.0 3000.0 3500.0 +1600.0 1700.0 2300.0 2500.0 2700.0 3400.0 +1800.0 1900.0 2400.0 2500.0 3000.0 3500.0 +1300.0 1600.0 1800.0 2500.0 3100.0 3300.0 +1200.0 1700.0 2000.0 2200.0 3200.0 3300.0 +1200.0 1600.0 2200.0 2300.0 3200.0 3400.0 +1200.0 1600.0 2200.0 2400.0 3200.0 3400.0 +1600.0 2300.0 2600.0 2900.0 3300.0 3400.0 +1300.0 1600.0 2200.0 2300.0 3000.0 3400.0 +1900.0 2100.0 2400.0 2500.0 2800.0 3100.0 +1400.0 2000.0 2500.0 2700.0 3100.0 3200.0 +1700.0 1800.0 2400.0 2500.0 2800.0 3300.0 +1900.0 2000.0 2400.0 2600.0 2800.0 3400.0 +1600.0 2200.0 2500.0 2800.0 3200.0 3300.0 +1200.0 1700.0 2300.0 2400.0 3000.0 3300.0 +1200.0 1400.0 2200.0 2300.0 2900.0 3200.0 +1600.0 1800.0 2400.0 2700.0 3200.0 3400.0 +1600.0 1900.0 2400.0 2600.0 3100.0 3400.0 +1500.0 1800.0 2400.0 2600.0 3000.0 3400.0 +1600.0 1700.0 2400.0 2500.0 3100.0 3500.0 +1500.0 1600.0 2100.0 2300.0 2700.0 3200.0 +1500.0 1600.0 2100.0 2200.0 2600.0 3100.0 +1700.0 1900.0 2400.0 2700.0 3300.0 3400.0 +1200.0 1500.0 2200.0 2300.0 3300.0 3400.0 +1300.0 1600.0 2100.0 2200.0 3300.0 3400.0 +1400.0 1500.0 2100.0 2200.0 3200.0 3400.0 +1800.0 1900.0 2300.0 2400.0 2800.0 3300.0 +1900.0 2000.0 2400.0 2500.0 2800.0 3200.0 +2000.0 2100.0 2400.0 2600.0 2800.0 3200.0 +1500.0 2100.0 2300.0 2500.0 2800.0 3200.0 +1500.0 1800.0 2300.0 2400.0 3000.0 3200.0 +1700.0 1800.0 2600.0 2800.0 3000.0 3200.0 +1900.0 2500.0 2800.0 2900.0 3200.0 3300.0 +1100.0 1400.0 2500.0 2800.0 3000.0 3200.0 +1200.0 1400.0 2700.0 2900.0 3100.0 3300.0 +1200.0 1400.0 2600.0 2900.0 3000.0 3300.0 +1200.0 1400.0 2700.0 2900.0 3000.0 3400.0 +1200.0 1600.0 2600.0 2800.0 3100.0 3400.0 +1300.0 1800.0 2400.0 2500.0 2900.0 3200.0 +1400.0 1700.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1900.0 2300.0 2400.0 2900.0 3300.0 +1800.0 1900.0 2600.0 2700.0 3100.0 3400.0 +1800.0 2000.0 2600.0 2700.0 3100.0 3400.0 +1800.0 1900.0 2600.0 2700.0 3000.0 3400.0 +1400.0 1800.0 2300.0 2500.0 2700.0 3000.0 +1600.0 1700.0 2500.0 2700.0 3200.0 3400.0 +1500.0 1700.0 2400.0 2700.0 3000.0 3200.0 +1500.0 1900.0 2400.0 2700.0 3100.0 3200.0 +1900.0 2100.0 2700.0 2800.0 3200.0 3300.0 +1600.0 2000.0 2300.0 2400.0 3200.0 3400.0 +1500.0 1700.0 2500.0 2700.0 3200.0 3300.0 +1700.0 1800.0 2500.0 2700.0 3200.0 3300.0 +1800.0 1900.0 2600.0 2800.0 3100.0 3400.0 +1700.0 1800.0 2500.0 2800.0 2900.0 3200.0 +1600.0 1700.0 2500.0 2700.0 3000.0 3300.0 +1200.0 1700.0 2700.0 2800.0 3100.0 3300.0 +1200.0 1500.0 2700.0 2900.0 3100.0 3300.0 +1500.0 1800.0 2400.0 2700.0 3100.0 3400.0 +1400.0 1600.0 2600.0 2800.0 3000.0 3300.0 +1600.0 1800.0 2500.0 2700.0 3000.0 3400.0 +1500.0 1800.0 2300.0 2600.0 3100.0 3400.0 +1500.0 1700.0 2300.0 2500.0 2700.0 3300.0 +2000.0 2100.0 2500.0 2700.0 2900.0 3300.0 +2200.0 2300.0 2600.0 2700.0 3200.0 3400.0 +1400.0 1800.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2600.0 2700.0 3100.0 3400.0 +1300.0 1700.0 2100.0 2500.0 3100.0 3300.0 +2100.0 2200.0 2600.0 2800.0 3300.0 3400.0 +2100.0 2300.0 2700.0 2800.0 3300.0 3400.0 +1600.0 1700.0 2500.0 2700.0 3100.0 3300.0 +1400.0 1700.0 2600.0 2700.0 3200.0 3400.0 +1200.0 1500.0 2600.0 2800.0 3100.0 3300.0 +1800.0 1900.0 2500.0 2600.0 3000.0 3400.0 +1700.0 1800.0 2400.0 2600.0 2900.0 3000.0 +1200.0 1600.0 2800.0 3000.0 3200.0 3300.0 +1600.0 1700.0 2300.0 2600.0 3200.0 3400.0 +1700.0 1800.0 2200.0 2500.0 2800.0 3300.0 +1700.0 1800.0 2600.0 2700.0 3000.0 3400.0 +1500.0 1600.0 2600.0 2800.0 3000.0 3300.0 +1100.0 1300.0 2400.0 2900.0 3000.0 3200.0 +1100.0 1500.0 2700.0 2800.0 3100.0 3300.0 +1600.0 1800.0 2000.0 2300.0 3300.0 3400.0 +1800.0 2000.0 2100.0 2400.0 3300.0 3400.0 +1800.0 2000.0 2500.0 2600.0 2900.0 3300.0 +1600.0 1700.0 2400.0 2700.0 2900.0 3300.0 +1600.0 1700.0 2600.0 2800.0 3100.0 3300.0 +1500.0 1700.0 1900.0 2100.0 3000.0 3300.0 +1900.0 2000.0 2100.0 2300.0 3200.0 3400.0 +2100.0 2200.0 2500.0 2600.0 2900.0 3300.0 +1800.0 2000.0 2200.0 2400.0 3300.0 3400.0 +1700.0 1800.0 2100.0 2300.0 3300.0 3400.0 +2000.0 2200.0 2500.0 2600.0 3200.0 3400.0 +1700.0 1900.0 2100.0 2800.0 3100.0 3200.0 +1800.0 1900.0 2500.0 2900.0 3100.0 3200.0 +1800.0 1900.0 2500.0 2900.0 3000.0 3200.0 +1300.0 1500.0 1800.0 1900.0 2700.0 3200.0 +1000.0 1300.0 2400.0 3000.0 3300.0 3400.0 +1400.0 1600.0 1800.0 1900.0 2900.0 3300.0 +1500.0 1700.0 1900.0 2000.0 2800.0 3200.0 +1800.0 2000.0 2300.0 2500.0 2700.0 3100.0 +1800.0 1900.0 2200.0 2300.0 2800.0 3200.0 +1200.0 1900.0 2500.0 2600.0 2900.0 3000.0 +1200.0 1900.0 2400.0 2600.0 2900.0 3000.0 +1800.0 2000.0 2100.0 2400.0 3000.0 3200.0 +1900.0 2200.0 2600.0 2900.0 3100.0 3200.0 +1600.0 1700.0 2000.0 2100.0 2700.0 3200.0 +1600.0 1800.0 2300.0 2800.0 3100.0 3200.0 +1700.0 1900.0 2400.0 2700.0 2900.0 3300.0 +1900.0 2000.0 2400.0 2800.0 3200.0 3300.0 +1400.0 1600.0 2300.0 2500.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2200.0 2700.0 3200.0 +2000.0 2100.0 2600.0 2900.0 3300.0 3400.0 +1200.0 1500.0 2300.0 2500.0 2900.0 3200.0 +1200.0 1400.0 2200.0 2400.0 2900.0 3200.0 +1600.0 2200.0 2400.0 2600.0 3200.0 3400.0 +1700.0 1800.0 2400.0 2500.0 3000.0 3100.0 +1700.0 1800.0 2200.0 2600.0 3100.0 3200.0 +1200.0 1900.0 2300.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2000.0 2800.0 3200.0 3300.0 +1500.0 1700.0 2400.0 2500.0 3000.0 3100.0 +1400.0 2000.0 2400.0 2600.0 3000.0 3300.0 +1200.0 1400.0 2400.0 2800.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2100.0 2900.0 3300.0 +1500.0 1600.0 2000.0 2200.0 2800.0 3300.0 +1200.0 1500.0 2100.0 2200.0 3000.0 3300.0 +1400.0 2000.0 2300.0 2700.0 3100.0 3300.0 +1600.0 1700.0 2000.0 2700.0 3200.0 3300.0 +1700.0 1900.0 2300.0 2600.0 2800.0 3200.0 +2100.0 2300.0 2600.0 2800.0 3100.0 3200.0 +1400.0 1800.0 2400.0 2500.0 3000.0 3200.0 +1500.0 2100.0 2400.0 2700.0 3000.0 3300.0 +1600.0 1700.0 2100.0 2700.0 3000.0 3100.0 +1500.0 1800.0 2200.0 2700.0 3100.0 3300.0 +1300.0 1500.0 2400.0 2500.0 2900.0 3200.0 +1200.0 1500.0 2500.0 2600.0 3000.0 3200.0 +1100.0 1500.0 2400.0 2500.0 2900.0 3300.0 +1800.0 1900.0 2400.0 2500.0 2800.0 3000.0 +1700.0 1800.0 2100.0 2800.0 3100.0 3200.0 +1900.0 2200.0 2400.0 2900.0 3100.0 3200.0 +1500.0 1700.0 2300.0 2600.0 2800.0 3100.0 +1300.0 1500.0 1900.0 2500.0 3000.0 3100.0 +1700.0 1800.0 2400.0 2700.0 3100.0 3200.0 +1900.0 2500.0 2900.0 3100.0 3300.0 3400.0 +1500.0 1800.0 2000.0 2600.0 2900.0 3100.0 +1900.0 2300.0 2500.0 2800.0 3200.0 3400.0 +1500.0 2100.0 2500.0 2700.0 3200.0 3400.0 +1500.0 2100.0 2500.0 2700.0 2900.0 3200.0 +1800.0 2300.0 2800.0 2900.0 3300.0 3400.0 +1600.0 1900.0 2200.0 2600.0 3000.0 3300.0 +1400.0 1900.0 2400.0 2600.0 2800.0 3100.0 +1300.0 1700.0 2500.0 2600.0 3000.0 3200.0 +1400.0 1800.0 2100.0 2500.0 2800.0 3100.0 +1700.0 2400.0 2600.0 3000.0 3300.0 3400.0 +2200.0 2400.0 2700.0 3000.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2700.0 3000.0 3200.0 +1300.0 1700.0 2300.0 2600.0 2900.0 3200.0 +1400.0 1900.0 2200.0 2500.0 2700.0 3000.0 +1500.0 1900.0 2200.0 2800.0 3100.0 3300.0 +1400.0 1600.0 1800.0 2200.0 3200.0 3400.0 +1700.0 2000.0 2200.0 2700.0 3200.0 3300.0 +1400.0 1900.0 2500.0 2700.0 3300.0 3400.0 +1500.0 2100.0 2300.0 2500.0 2800.0 3100.0 +1500.0 2000.0 2300.0 2500.0 2800.0 3100.0 +1500.0 1600.0 2400.0 2800.0 3000.0 3200.0 +1400.0 1600.0 2200.0 2700.0 3000.0 3100.0 +1200.0 1800.0 2000.0 2300.0 2900.0 3100.0 +1300.0 1900.0 2400.0 2700.0 3200.0 3300.0 +2200.0 2500.0 2800.0 3100.0 3400.0 3500.0 +2100.0 2400.0 2900.0 3000.0 3100.0 3300.0 +1200.0 1500.0 1700.0 2300.0 2900.0 3000.0 +1600.0 2200.0 2600.0 2800.0 3200.0 3300.0 +1700.0 2300.0 2500.0 2800.0 3100.0 3300.0 +1400.0 1900.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1700.0 2500.0 2600.0 3100.0 3400.0 +1300.0 1700.0 2500.0 2600.0 3100.0 3400.0 +1400.0 2100.0 2300.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1100.0 1900.0 2100.0 2500.0 3100.0 3200.0 +1300.0 1400.0 2500.0 2600.0 3000.0 3300.0 +1300.0 2000.0 2400.0 2600.0 3100.0 3300.0 +1500.0 2000.0 2300.0 2600.0 3200.0 3400.0 +1400.0 1900.0 2200.0 2700.0 3000.0 3200.0 +1600.0 2100.0 2500.0 2600.0 3000.0 3200.0 +1600.0 2100.0 2500.0 2700.0 3000.0 3200.0 +1500.0 2000.0 2500.0 2700.0 3000.0 3200.0 +1900.0 2400.0 2600.0 2900.0 3400.0 3500.0 +1400.0 1700.0 2300.0 2700.0 3000.0 3200.0 +1800.0 2300.0 2900.0 3100.0 3400.0 3500.0 +1700.0 2100.0 2300.0 2500.0 3000.0 3100.0 +1900.0 2100.0 2500.0 3000.0 3300.0 3400.0 +1300.0 1500.0 1800.0 2500.0 2800.0 3000.0 +1300.0 1400.0 2000.0 2400.0 2800.0 3200.0 +1300.0 2100.0 2400.0 2600.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2600.0 3000.0 3200.0 +1400.0 1900.0 2400.0 2600.0 3100.0 3200.0 +1300.0 1800.0 2500.0 2600.0 3100.0 3200.0 +1500.0 2100.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1700.0 2000.0 2700.0 2900.0 3100.0 +1400.0 2000.0 2200.0 2400.0 2700.0 3100.0 +1200.0 1400.0 2600.0 2700.0 2900.0 3100.0 +1500.0 2100.0 2300.0 2500.0 2700.0 3100.0 +1800.0 2100.0 2500.0 2600.0 3100.0 3200.0 +1200.0 1700.0 2100.0 2500.0 3200.0 3300.0 +1400.0 2100.0 2300.0 2700.0 3200.0 3300.0 +1700.0 2000.0 2600.0 2800.0 3100.0 3200.0 +1400.0 1700.0 2300.0 2700.0 3200.0 3300.0 +1300.0 1600.0 2200.0 2400.0 3100.0 3200.0 +1400.0 1500.0 2200.0 2500.0 3000.0 3200.0 +1400.0 1700.0 2300.0 2500.0 2800.0 3100.0 +1500.0 1700.0 2200.0 2500.0 2700.0 3100.0 +1500.0 1700.0 2200.0 2500.0 2900.0 3100.0 +1800.0 2000.0 2700.0 2900.0 3100.0 3400.0 +1300.0 1700.0 2100.0 2200.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2700.0 2900.0 3300.0 +1500.0 1600.0 2700.0 2800.0 3000.0 3300.0 +1400.0 1500.0 2500.0 2700.0 2900.0 3200.0 +1100.0 1600.0 2400.0 2600.0 3000.0 3200.0 +1600.0 2000.0 2700.0 2900.0 3300.0 3400.0 +1400.0 1500.0 2600.0 2800.0 3000.0 3300.0 +1400.0 1500.0 2600.0 2700.0 3000.0 3300.0 +1400.0 1500.0 2500.0 2700.0 2900.0 3300.0 +1700.0 1900.0 2600.0 2900.0 3100.0 3300.0 +1500.0 1600.0 2300.0 2700.0 3100.0 3200.0 +1200.0 1700.0 2300.0 2700.0 3000.0 3200.0 +1500.0 1600.0 2500.0 2800.0 3000.0 3300.0 +1500.0 1600.0 1700.0 1800.0 3100.0 3400.0 +1500.0 1600.0 2300.0 2700.0 3000.0 3300.0 +1300.0 1500.0 2600.0 2700.0 3200.0 3300.0 +2100.0 2200.0 2500.0 2700.0 3100.0 3200.0 +2100.0 2200.0 2800.0 3000.0 3200.0 3300.0 +1500.0 1700.0 2400.0 2600.0 2800.0 3100.0 +1500.0 1800.0 2400.0 2700.0 3000.0 3200.0 +1400.0 1700.0 2400.0 2700.0 3100.0 3200.0 +900.0 1500.0 2800.0 2900.0 3100.0 3300.0 +1400.0 1700.0 2500.0 2700.0 3100.0 3400.0 +1800.0 2000.0 2300.0 2800.0 3100.0 3300.0 +1200.0 1600.0 2300.0 2400.0 2900.0 3200.0 +1800.0 1900.0 2300.0 2600.0 3000.0 3100.0 +1300.0 1600.0 1900.0 2400.0 2900.0 3200.0 +1400.0 1600.0 2500.0 2700.0 2900.0 3300.0 +900.0 1600.0 2200.0 2300.0 3200.0 3300.0 +1300.0 1900.0 2200.0 2300.0 3100.0 3300.0 +1700.0 1900.0 2500.0 2900.0 3200.0 3300.0 +1400.0 1900.0 2500.0 2700.0 3200.0 3400.0 +1700.0 2000.0 2200.0 2500.0 2900.0 3000.0 +1200.0 1500.0 2600.0 2800.0 3100.0 3400.0 +1400.0 1700.0 2100.0 2600.0 3000.0 3300.0 +1400.0 1700.0 2500.0 2800.0 3200.0 3300.0 +1800.0 2400.0 2600.0 2900.0 3400.0 3500.0 +1900.0 2100.0 2500.0 2600.0 3100.0 3200.0 +2200.0 2500.0 2800.0 3000.0 3400.0 3500.0 +1600.0 1800.0 1900.0 2500.0 3100.0 3200.0 +1100.0 1600.0 2500.0 2600.0 3200.0 3400.0 +1700.0 2200.0 2500.0 2700.0 3100.0 3400.0 +1000.0 1700.0 2200.0 2300.0 3200.0 3300.0 +1100.0 1700.0 2200.0 2600.0 3100.0 3300.0 +1100.0 1700.0 2300.0 2700.0 3200.0 3300.0 +1500.0 1800.0 2100.0 2600.0 3200.0 3300.0 +1300.0 2100.0 2400.0 2600.0 2800.0 3200.0 +1800.0 1900.0 2200.0 2600.0 2800.0 3200.0 +1800.0 1900.0 2500.0 2600.0 3100.0 3200.0 +1400.0 2100.0 2300.0 2500.0 2700.0 3100.0 +1300.0 2000.0 2400.0 2500.0 2800.0 3200.0 +1600.0 2100.0 2600.0 2800.0 3200.0 3400.0 +1400.0 1800.0 2200.0 2400.0 3300.0 3400.0 +1300.0 1700.0 2200.0 2300.0 3300.0 3400.0 +1300.0 1600.0 2200.0 2300.0 3300.0 3400.0 +1300.0 1600.0 2300.0 2400.0 3300.0 3400.0 +1100.0 1700.0 2200.0 2300.0 3300.0 3400.0 +1500.0 1900.0 2200.0 2500.0 2700.0 3100.0 +1300.0 1700.0 1900.0 2200.0 3000.0 3100.0 +1400.0 1600.0 2500.0 2600.0 3300.0 3400.0 +1500.0 1600.0 2500.0 2600.0 3200.0 3400.0 +1000.0 1700.0 2600.0 2700.0 3300.0 3400.0 +1000.0 1600.0 2600.0 2700.0 3300.0 3400.0 +1400.0 1700.0 2500.0 2600.0 3000.0 3400.0 +1400.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1500.0 1600.0 2400.0 2600.0 3200.0 3400.0 +1600.0 2200.0 2500.0 2600.0 3200.0 3300.0 +1000.0 1900.0 2400.0 2500.0 3300.0 3400.0 +1200.0 1700.0 2200.0 2400.0 3200.0 3400.0 +2000.0 2200.0 2600.0 2900.0 3300.0 3400.0 +2200.0 2300.0 2700.0 2800.0 3300.0 3400.0 +2200.0 2300.0 2700.0 2800.0 3200.0 3300.0 +2000.0 2300.0 2400.0 2700.0 3100.0 3300.0 +2200.0 2300.0 2600.0 2800.0 3200.0 3300.0 +1500.0 2000.0 2300.0 2400.0 3200.0 3300.0 +1500.0 1600.0 1800.0 2500.0 3200.0 3300.0 +1100.0 1900.0 2200.0 2400.0 3000.0 3300.0 +1500.0 2100.0 2600.0 2700.0 3200.0 3400.0 +1400.0 1900.0 2400.0 2600.0 3000.0 3200.0 +1200.0 1800.0 2400.0 2600.0 3200.0 3300.0 +1200.0 1700.0 2700.0 2800.0 3200.0 3300.0 +1200.0 1600.0 2600.0 2700.0 3200.0 3300.0 +1300.0 1600.0 2500.0 2600.0 3000.0 3300.0 +1500.0 1600.0 2500.0 2700.0 2900.0 3300.0 +1500.0 1700.0 1800.0 2500.0 3100.0 3200.0 +1400.0 1700.0 1900.0 2600.0 3100.0 3200.0 +1300.0 1700.0 2500.0 2600.0 3200.0 3300.0 +1100.0 1400.0 2600.0 3000.0 3200.0 3300.0 +1100.0 1400.0 2600.0 2900.0 3100.0 3300.0 +1600.0 1800.0 1900.0 2600.0 3200.0 3300.0 +2000.0 2100.0 2600.0 2700.0 3100.0 3200.0 +1300.0 1700.0 2100.0 2300.0 3200.0 3300.0 +1100.0 1700.0 2800.0 2900.0 3200.0 3300.0 +1500.0 1700.0 2500.0 2600.0 2900.0 3200.0 +1400.0 1800.0 2600.0 2700.0 3200.0 3300.0 +1600.0 1700.0 2100.0 2400.0 3000.0 3300.0 +1300.0 1500.0 1600.0 2200.0 3000.0 3100.0 +1300.0 2000.0 2500.0 2700.0 3100.0 3200.0 +1800.0 2200.0 2500.0 2600.0 3200.0 3300.0 +1700.0 2200.0 2400.0 2600.0 2800.0 3100.0 +2000.0 2200.0 2600.0 2800.0 3000.0 3300.0 +1300.0 1400.0 2400.0 2700.0 3100.0 3300.0 +1500.0 1600.0 1900.0 2000.0 2900.0 3300.0 +1000.0 1200.0 2400.0 2500.0 3100.0 3400.0 +1800.0 1900.0 2200.0 2400.0 2600.0 3000.0 +1900.0 2000.0 2200.0 2600.0 2800.0 3000.0 +1300.0 1800.0 2200.0 2400.0 2900.0 3200.0 +1800.0 2100.0 2300.0 2500.0 2800.0 3000.0 +1500.0 2000.0 2300.0 2600.0 2800.0 3100.0 +1000.0 1400.0 2400.0 2500.0 3100.0 3300.0 +1300.0 1900.0 2700.0 2800.0 3200.0 3300.0 +1900.0 2200.0 2300.0 2500.0 2800.0 3100.0 +1900.0 2000.0 2200.0 2600.0 2800.0 3100.0 +1600.0 1700.0 2100.0 2200.0 2900.0 3200.0 +1500.0 1900.0 2200.0 2500.0 3000.0 3300.0 +1400.0 1900.0 2400.0 2800.0 3100.0 3300.0 +1900.0 2000.0 2300.0 2600.0 2800.0 3200.0 +1900.0 2100.0 2300.0 2600.0 2800.0 3200.0 +1600.0 1700.0 2300.0 2700.0 3100.0 3300.0 +1600.0 1800.0 2100.0 2300.0 2600.0 3000.0 +1600.0 1800.0 2100.0 2400.0 2600.0 3000.0 +1700.0 2000.0 2200.0 2500.0 3100.0 3300.0 +1600.0 1700.0 2000.0 2400.0 2600.0 3000.0 +1300.0 1500.0 2200.0 2400.0 2800.0 3200.0 +1300.0 1700.0 2200.0 2400.0 2900.0 3200.0 +1700.0 1900.0 2100.0 2300.0 2800.0 3100.0 +1200.0 1400.0 2300.0 2400.0 2900.0 3300.0 +1400.0 1500.0 2000.0 2200.0 2700.0 3000.0 +1200.0 1900.0 2400.0 2600.0 3000.0 3300.0 +1700.0 1800.0 2100.0 2300.0 2600.0 3100.0 +1900.0 2000.0 2200.0 2400.0 2700.0 3000.0 +1900.0 2100.0 2300.0 2400.0 2700.0 3000.0 +1400.0 1800.0 2200.0 2400.0 2700.0 3200.0 +1700.0 1800.0 2200.0 2300.0 2900.0 3300.0 +1700.0 2000.0 2500.0 2800.0 3400.0 3500.0 +1300.0 1500.0 2200.0 2300.0 3100.0 3200.0 +1400.0 1800.0 2100.0 2600.0 3000.0 3200.0 +1300.0 1900.0 2200.0 2500.0 3100.0 3300.0 +1500.0 2100.0 2600.0 2700.0 3200.0 3300.0 +1300.0 1800.0 2600.0 2700.0 3200.0 3300.0 +1000.0 1500.0 2700.0 2800.0 3100.0 3300.0 +2200.0 2300.0 2500.0 2900.0 3200.0 3400.0 +2100.0 2200.0 2500.0 2900.0 3100.0 3300.0 +1500.0 1600.0 2400.0 2700.0 3000.0 3300.0 +1300.0 1500.0 1600.0 2000.0 3200.0 3400.0 +1400.0 1600.0 1700.0 2000.0 3200.0 3400.0 +1700.0 1900.0 2700.0 2800.0 3200.0 3300.0 +1700.0 1900.0 2700.0 2800.0 3100.0 3300.0 +1500.0 1600.0 2300.0 2700.0 2800.0 3200.0 +1500.0 1600.0 2200.0 2500.0 2900.0 3300.0 +1200.0 1500.0 2100.0 2600.0 3000.0 3300.0 +1800.0 2300.0 2700.0 2800.0 3200.0 3400.0 +1000.0 1400.0 2400.0 2500.0 2900.0 3300.0 +1000.0 1500.0 2500.0 2600.0 2900.0 3200.0 +1900.0 2400.0 2700.0 3000.0 3200.0 3400.0 +1700.0 1900.0 2300.0 2400.0 3000.0 3400.0 +1300.0 1600.0 1700.0 2200.0 3100.0 3300.0 +1800.0 1900.0 2600.0 2900.0 3100.0 3300.0 +2300.0 2600.0 2800.0 2900.0 3300.0 3400.0 +1000.0 1500.0 2400.0 2500.0 3200.0 3300.0 +1400.0 1600.0 2100.0 2300.0 2900.0 3200.0 +1500.0 2000.0 2400.0 2600.0 2800.0 3000.0 +1400.0 1900.0 2300.0 2600.0 2800.0 3100.0 +1600.0 1700.0 2500.0 2600.0 2800.0 3200.0 +2000.0 2200.0 2800.0 3000.0 3300.0 3500.0 +2000.0 2400.0 2700.0 2800.0 3200.0 3300.0 +1400.0 1600.0 1700.0 1900.0 3200.0 3400.0 +2100.0 2200.0 2400.0 2700.0 3000.0 3300.0 +2100.0 2400.0 2800.0 3000.0 3100.0 3300.0 +1800.0 2000.0 2300.0 2400.0 3100.0 3400.0 +1400.0 1700.0 2600.0 2700.0 3000.0 3300.0 +1300.0 1700.0 2200.0 2500.0 3200.0 3400.0 +1500.0 1900.0 2300.0 2600.0 2800.0 3100.0 +2200.0 2500.0 2700.0 2800.0 3200.0 3400.0 +2100.0 2200.0 2500.0 2800.0 3000.0 3200.0 +1700.0 1900.0 2300.0 2600.0 2800.0 3000.0 +1800.0 2000.0 2400.0 2700.0 2900.0 3300.0 +1500.0 1800.0 2000.0 2400.0 3000.0 3100.0 +1500.0 1700.0 1800.0 2600.0 3100.0 3200.0 +1200.0 1700.0 2300.0 2600.0 3000.0 3200.0 +1400.0 1500.0 1900.0 2700.0 3000.0 3100.0 +1600.0 2100.0 2300.0 2700.0 3000.0 3100.0 +1700.0 2300.0 2400.0 2700.0 3100.0 3200.0 +1800.0 2300.0 2400.0 2700.0 2900.0 3100.0 +1400.0 1500.0 1900.0 2500.0 2800.0 3000.0 +1300.0 1500.0 1900.0 2600.0 3000.0 3100.0 +1500.0 1600.0 2000.0 2500.0 2900.0 3100.0 +1500.0 1900.0 2300.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2500.0 2700.0 3000.0 3100.0 +1400.0 1500.0 2000.0 2500.0 2800.0 3000.0 +1400.0 1500.0 2000.0 2600.0 3000.0 3100.0 +1700.0 2000.0 2200.0 2600.0 2700.0 3000.0 +1400.0 1700.0 2000.0 2500.0 3100.0 3200.0 +1700.0 1900.0 2400.0 2700.0 2800.0 3100.0 +1700.0 2000.0 2300.0 2500.0 2800.0 3100.0 +1400.0 1600.0 1900.0 2400.0 2700.0 3000.0 +1500.0 1700.0 1900.0 2400.0 2700.0 3000.0 +1400.0 1500.0 1900.0 2800.0 3100.0 3200.0 +1400.0 1900.0 2200.0 2600.0 3100.0 3200.0 +1200.0 1600.0 2200.0 2500.0 3000.0 3100.0 +1500.0 1800.0 2500.0 2800.0 3000.0 3200.0 +1200.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1700.0 2100.0 2300.0 2500.0 2700.0 3200.0 +1300.0 1600.0 2100.0 2300.0 2800.0 3200.0 +1800.0 2000.0 2200.0 2800.0 3100.0 3200.0 +2100.0 2400.0 2900.0 3000.0 3300.0 3500.0 +1700.0 1900.0 2600.0 2900.0 3200.0 3300.0 +2100.0 2500.0 2900.0 3000.0 3200.0 3300.0 +2000.0 2300.0 2800.0 2900.0 3100.0 3400.0 +1300.0 1500.0 2100.0 2400.0 2800.0 3200.0 +1600.0 1700.0 2000.0 2700.0 3000.0 3100.0 +1500.0 1800.0 2000.0 2500.0 3000.0 3100.0 +1500.0 1800.0 2200.0 2700.0 2900.0 3100.0 +1600.0 1700.0 2100.0 2400.0 2600.0 3100.0 +1500.0 1900.0 2300.0 2400.0 2900.0 3300.0 +1300.0 2000.0 2400.0 2700.0 3100.0 3200.0 +1300.0 2000.0 2300.0 2700.0 3300.0 3400.0 +1700.0 2200.0 2400.0 2800.0 3200.0 3300.0 +1400.0 1900.0 2600.0 2900.0 3200.0 3300.0 +1400.0 1700.0 2000.0 2400.0 3100.0 3200.0 +1400.0 1600.0 2300.0 2500.0 2700.0 3000.0 +1500.0 1600.0 2300.0 2600.0 3100.0 3200.0 +1500.0 1900.0 2200.0 2400.0 3300.0 3400.0 +1200.0 1900.0 2100.0 2400.0 2900.0 3100.0 +1000.0 2300.0 2600.0 2800.0 3200.0 3300.0 +2200.0 2300.0 2600.0 2900.0 3300.0 3400.0 +1400.0 1600.0 2600.0 2700.0 3200.0 3300.0 +1300.0 2100.0 2500.0 2700.0 3100.0 3200.0 +1400.0 1600.0 2500.0 2600.0 3000.0 3400.0 +1200.0 1800.0 2700.0 2800.0 3000.0 3100.0 +1100.0 2000.0 2600.0 2700.0 3100.0 3200.0 +1000.0 1900.0 2700.0 2800.0 3100.0 3200.0 +1100.0 1900.0 2700.0 2800.0 3200.0 3300.0 +1200.0 1800.0 2500.0 2600.0 3000.0 3200.0 +2000.0 2100.0 2500.0 2600.0 3100.0 3200.0 +1400.0 2000.0 2500.0 2700.0 3200.0 3300.0 +2300.0 2400.0 2900.0 3100.0 3300.0 3400.0 +1600.0 1900.0 2300.0 2500.0 2900.0 3100.0 +1300.0 2200.0 2400.0 2900.0 3300.0 3400.0 +1300.0 2100.0 2200.0 2500.0 3200.0 3300.0 +1300.0 1900.0 2500.0 2600.0 3000.0 3100.0 +1300.0 1900.0 2500.0 2600.0 3100.0 3200.0 +1300.0 2000.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1700.0 1800.0 2300.0 2600.0 3000.0 3400.0 +1600.0 1800.0 2300.0 2700.0 3200.0 3400.0 +1300.0 1500.0 1600.0 2600.0 3200.0 3300.0 +1300.0 1500.0 1600.0 2500.0 3300.0 3400.0 +1300.0 1500.0 1600.0 2700.0 3300.0 3400.0 +2100.0 2500.0 3000.0 3100.0 3300.0 3400.0 +1400.0 1900.0 2300.0 2400.0 3100.0 3200.0 +1600.0 2200.0 2300.0 2600.0 3300.0 3400.0 +1300.0 1600.0 1700.0 2700.0 3100.0 3200.0 +1800.0 2300.0 2500.0 2800.0 3100.0 3300.0 +1500.0 1600.0 2400.0 2600.0 3100.0 3400.0 +1200.0 1900.0 2200.0 2400.0 3000.0 3100.0 +1400.0 1900.0 2200.0 2700.0 3100.0 3200.0 +1300.0 1700.0 2300.0 2600.0 2900.0 3100.0 +1300.0 2000.0 2300.0 2600.0 3200.0 3300.0 +1800.0 1900.0 2400.0 2600.0 3200.0 3500.0 +1700.0 1800.0 2400.0 2700.0 2900.0 3300.0 +1400.0 2000.0 2400.0 2500.0 2700.0 2900.0 +1400.0 2100.0 2400.0 2500.0 2700.0 3100.0 +1500.0 1700.0 2300.0 2700.0 2900.0 3200.0 +1200.0 1300.0 2300.0 2800.0 3000.0 3200.0 +1200.0 1400.0 2100.0 2600.0 3000.0 3300.0 +1600.0 1700.0 2500.0 2700.0 2800.0 3200.0 +1700.0 2100.0 2200.0 2700.0 3000.0 3100.0 +1400.0 1500.0 2100.0 2400.0 2900.0 3200.0 +1700.0 2100.0 2200.0 2600.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2500.0 2900.0 3000.0 +1300.0 1500.0 2000.0 2600.0 2900.0 3000.0 +1800.0 1900.0 2100.0 2300.0 3000.0 3200.0 +1100.0 1500.0 2500.0 2800.0 3000.0 3200.0 +1900.0 2000.0 2200.0 2400.0 2800.0 3200.0 +1800.0 1900.0 2700.0 2800.0 3100.0 3300.0 +1200.0 1400.0 2000.0 2700.0 3000.0 3100.0 +1300.0 1400.0 1900.0 2000.0 2600.0 3200.0 +1000.0 1300.0 2400.0 2600.0 2800.0 3200.0 +1700.0 1800.0 2200.0 2400.0 2600.0 3000.0 +2000.0 2300.0 2400.0 2700.0 2900.0 3000.0 +1600.0 1700.0 2000.0 2200.0 2500.0 3100.0 +1700.0 2300.0 2700.0 2800.0 3200.0 3400.0 +1600.0 1700.0 2300.0 2600.0 2700.0 3000.0 +1400.0 1500.0 2000.0 2700.0 2900.0 3100.0 +1100.0 1400.0 2200.0 2600.0 2800.0 3000.0 +1700.0 2100.0 2300.0 2600.0 3000.0 3300.0 +1400.0 1500.0 1700.0 1800.0 2700.0 3200.0 +1500.0 1600.0 1900.0 2000.0 2600.0 3200.0 +1000.0 1300.0 2400.0 2600.0 2900.0 3300.0 +1300.0 1500.0 1900.0 2500.0 2700.0 3000.0 +1800.0 1900.0 2200.0 2600.0 2900.0 3300.0 +1300.0 1400.0 1700.0 1800.0 2700.0 3200.0 +1700.0 1800.0 2000.0 2500.0 2700.0 2900.0 +1800.0 2000.0 2300.0 2700.0 2800.0 3100.0 +1600.0 1700.0 2200.0 2800.0 2900.0 3100.0 +1800.0 2100.0 2800.0 2900.0 3200.0 3400.0 +1700.0 2100.0 2800.0 2900.0 3100.0 3400.0 +1900.0 2400.0 2700.0 2800.0 3400.0 3500.0 +1600.0 1700.0 2400.0 2700.0 2800.0 3200.0 +1600.0 1900.0 2200.0 2500.0 3000.0 3300.0 +1400.0 1500.0 2000.0 2500.0 2800.0 3100.0 +1200.0 1300.0 2100.0 2500.0 2700.0 3000.0 +1900.0 2200.0 2600.0 2800.0 3400.0 3500.0 +1500.0 1900.0 2600.0 2700.0 2900.0 3300.0 +1400.0 1500.0 2000.0 2100.0 2700.0 3100.0 +1600.0 1700.0 2100.0 2200.0 2600.0 3200.0 +1700.0 2200.0 2500.0 2700.0 3000.0 3100.0 +1800.0 2300.0 2500.0 2600.0 2900.0 3100.0 +1100.0 1300.0 2500.0 2700.0 2900.0 3200.0 +1400.0 1500.0 1900.0 2000.0 2600.0 3200.0 +1600.0 1700.0 2000.0 2100.0 2800.0 3300.0 +1300.0 1900.0 2300.0 2600.0 2700.0 3000.0 +1800.0 1900.0 2500.0 2700.0 2900.0 3100.0 +2100.0 2200.0 2700.0 3000.0 3100.0 3300.0 +2000.0 2100.0 2700.0 2900.0 3200.0 3400.0 +1500.0 1700.0 1800.0 2200.0 3200.0 3300.0 +1500.0 1800.0 2000.0 2700.0 3200.0 3300.0 +1800.0 1900.0 2100.0 2400.0 3100.0 3200.0 +1500.0 1600.0 2400.0 2500.0 3200.0 3300.0 +1400.0 1800.0 2400.0 2600.0 3300.0 3400.0 +1400.0 1800.0 2400.0 2600.0 3200.0 3400.0 +2300.0 2600.0 2800.0 3100.0 3300.0 3400.0 +2000.0 2100.0 2800.0 2900.0 3300.0 3400.0 +1400.0 1700.0 2600.0 2700.0 3200.0 3300.0 +1300.0 1700.0 2500.0 2700.0 3200.0 3300.0 +1500.0 1800.0 2200.0 2700.0 3000.0 3300.0 +1800.0 2000.0 2300.0 2500.0 2900.0 3300.0 +1300.0 1800.0 2400.0 2500.0 3200.0 3400.0 +1500.0 1900.0 2500.0 2600.0 3000.0 3300.0 +1700.0 1800.0 2700.0 2800.0 3200.0 3400.0 +1500.0 1800.0 2700.0 2800.0 3200.0 3400.0 +1500.0 1800.0 2700.0 2800.0 3300.0 3400.0 +1400.0 1600.0 2400.0 2500.0 3200.0 3300.0 +1600.0 1800.0 2400.0 2800.0 3100.0 3300.0 +1500.0 2100.0 2500.0 2600.0 3100.0 3300.0 +1500.0 1600.0 2500.0 2600.0 3000.0 3400.0 +1200.0 1900.0 2300.0 2500.0 3100.0 3300.0 +1500.0 1600.0 2300.0 2500.0 3200.0 3300.0 +1600.0 2300.0 2600.0 2800.0 3300.0 3400.0 +2100.0 2400.0 2500.0 2700.0 3200.0 3300.0 +1100.0 1800.0 2500.0 2600.0 2900.0 3200.0 +1400.0 1700.0 2100.0 2600.0 3000.0 3200.0 +1700.0 2000.0 2500.0 2600.0 3000.0 3100.0 +1100.0 1500.0 2500.0 2600.0 3100.0 3300.0 +1500.0 1600.0 2200.0 2400.0 2600.0 3200.0 +1600.0 1800.0 2300.0 2500.0 2900.0 3300.0 +1600.0 1700.0 2100.0 2300.0 3000.0 3200.0 +2000.0 2200.0 2600.0 2800.0 3300.0 3400.0 +1600.0 1700.0 1900.0 2400.0 3100.0 3300.0 +1200.0 1700.0 2300.0 2500.0 3100.0 3400.0 +1100.0 1600.0 1900.0 2200.0 3000.0 3100.0 +1400.0 1900.0 2300.0 2600.0 2900.0 3000.0 +1900.0 2200.0 2800.0 3000.0 3200.0 3400.0 +1400.0 1500.0 2200.0 2300.0 2700.0 3100.0 +1800.0 1900.0 2200.0 2600.0 3000.0 3300.0 +1700.0 1900.0 2200.0 2500.0 2700.0 3000.0 +1600.0 1800.0 2000.0 2400.0 2700.0 2800.0 +1900.0 2300.0 2700.0 2900.0 3100.0 3200.0 +1400.0 1500.0 2000.0 2400.0 2900.0 3000.0 +1800.0 2100.0 2200.0 2500.0 2700.0 3000.0 +1200.0 1300.0 1900.0 2500.0 3000.0 3100.0 +1100.0 1200.0 2500.0 2900.0 3000.0 3200.0 +1400.0 1500.0 1900.0 2000.0 2500.0 3100.0 +1400.0 1600.0 2000.0 2200.0 2500.0 3100.0 +1200.0 1700.0 2300.0 2700.0 3100.0 3300.0 +1900.0 2200.0 2300.0 2500.0 2700.0 3100.0 +1500.0 1600.0 2000.0 2100.0 2800.0 3300.0 +1500.0 1800.0 2000.0 2300.0 2600.0 2900.0 +2100.0 2200.0 2600.0 2700.0 3000.0 3100.0 +2100.0 2300.0 2700.0 2900.0 3200.0 3400.0 +1600.0 1700.0 1900.0 2000.0 2700.0 3100.0 +1300.0 1500.0 1800.0 1900.0 2500.0 3100.0 +1900.0 2500.0 2700.0 2900.0 3200.0 3300.0 +1200.0 1400.0 2000.0 2700.0 3200.0 3300.0 +1900.0 2500.0 2700.0 2800.0 3200.0 3300.0 +1200.0 1600.0 2200.0 2400.0 2900.0 3200.0 +2000.0 2200.0 2600.0 2700.0 3100.0 3400.0 +1500.0 1700.0 2000.0 2300.0 2600.0 3000.0 +1700.0 2100.0 2500.0 2700.0 3000.0 3100.0 +1800.0 2200.0 2500.0 2700.0 3000.0 3100.0 +2000.0 2400.0 2600.0 2900.0 3100.0 3200.0 +1700.0 2400.0 2500.0 2700.0 3100.0 3200.0 +1600.0 2000.0 2100.0 2600.0 3000.0 3100.0 +1500.0 2100.0 2400.0 2600.0 3000.0 3200.0 +1400.0 1600.0 2000.0 2600.0 3100.0 3200.0 +1500.0 1700.0 2000.0 2800.0 3100.0 3200.0 +1600.0 1700.0 2000.0 2700.0 3100.0 3200.0 +1400.0 2000.0 2300.0 2500.0 3000.0 3200.0 +1600.0 1800.0 2000.0 2300.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2700.0 2900.0 3200.0 +1100.0 1400.0 2200.0 2300.0 3200.0 3300.0 +1800.0 2400.0 2800.0 2900.0 3200.0 3300.0 +1700.0 2400.0 2800.0 2900.0 3200.0 3300.0 +2000.0 2200.0 2800.0 3000.0 3400.0 3500.0 +1300.0 1400.0 2200.0 2900.0 3100.0 3200.0 +1200.0 1400.0 2300.0 2900.0 3100.0 3200.0 +1600.0 1900.0 2300.0 2600.0 2900.0 3300.0 +1700.0 2200.0 2300.0 2700.0 3100.0 3200.0 +1200.0 1700.0 2400.0 2700.0 3000.0 3300.0 +1500.0 1700.0 1900.0 2500.0 2900.0 3100.0 +1700.0 1800.0 2200.0 2600.0 2900.0 3300.0 +1300.0 1400.0 1900.0 2600.0 3000.0 3100.0 +1200.0 1400.0 2200.0 2500.0 2900.0 3300.0 +1500.0 1800.0 2000.0 2500.0 2900.0 3000.0 +1300.0 1400.0 2300.0 2500.0 2900.0 3300.0 +1700.0 2100.0 2300.0 2700.0 3000.0 3100.0 +1700.0 2100.0 2300.0 2800.0 3000.0 3100.0 +1200.0 1300.0 2100.0 2800.0 3200.0 3300.0 +1300.0 1600.0 2100.0 2600.0 2900.0 3100.0 +1300.0 1400.0 1800.0 2500.0 2800.0 3000.0 +1500.0 1700.0 2400.0 2600.0 2900.0 3000.0 +2100.0 2200.0 2500.0 2600.0 3000.0 3100.0 +2200.0 2300.0 2500.0 2700.0 3000.0 3200.0 +1400.0 1800.0 2000.0 2300.0 3200.0 3300.0 +1600.0 1700.0 2400.0 2700.0 3100.0 3200.0 +1600.0 1700.0 2500.0 2700.0 3000.0 3200.0 +1900.0 2500.0 2600.0 2800.0 3200.0 3300.0 +1200.0 1400.0 2600.0 2800.0 3000.0 3300.0 +1800.0 2300.0 2500.0 3000.0 3300.0 3400.0 +1200.0 1400.0 2200.0 2700.0 3200.0 3300.0 +1100.0 1400.0 2400.0 2500.0 3100.0 3400.0 +1100.0 1300.0 2400.0 2500.0 3200.0 3400.0 +1000.0 1400.0 2400.0 2500.0 3000.0 3300.0 +1800.0 1900.0 2400.0 2700.0 3200.0 3400.0 +1600.0 1700.0 2200.0 2500.0 2800.0 3300.0 +2000.0 2200.0 2400.0 2800.0 2900.0 3100.0 +1300.0 1800.0 2700.0 2800.0 3200.0 3400.0 +1800.0 2200.0 2700.0 3000.0 3400.0 3500.0 +1800.0 1900.0 2300.0 2600.0 2700.0 3000.0 +1900.0 2000.0 2400.0 2600.0 2900.0 3400.0 +1600.0 1700.0 2300.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2500.0 2700.0 3200.0 3300.0 +2100.0 2500.0 2800.0 3000.0 3200.0 3400.0 +1800.0 2000.0 2300.0 2400.0 3000.0 3100.0 +2300.0 2400.0 2600.0 2900.0 3100.0 3300.0 +1600.0 1800.0 2400.0 2500.0 3000.0 3100.0 +2100.0 2500.0 2900.0 3100.0 3200.0 3300.0 +1600.0 1900.0 2500.0 2900.0 3100.0 3300.0 +1500.0 1800.0 2300.0 2400.0 3200.0 3400.0 +1300.0 1500.0 2700.0 2800.0 3100.0 3300.0 +1200.0 1500.0 2600.0 2700.0 3200.0 3300.0 +1000.0 1500.0 2700.0 2800.0 3200.0 3300.0 +1100.0 1600.0 2600.0 2700.0 3200.0 3300.0 +1500.0 1700.0 2600.0 2700.0 3000.0 3300.0 +1100.0 1700.0 2800.0 2900.0 3200.0 3400.0 +1300.0 1700.0 2300.0 2500.0 3300.0 3400.0 +1700.0 2100.0 2400.0 2500.0 3200.0 3300.0 +1500.0 1800.0 2100.0 2400.0 3300.0 3400.0 +2000.0 2100.0 2400.0 2600.0 2800.0 3100.0 +1600.0 1700.0 2300.0 2800.0 3100.0 3300.0 +1900.0 2100.0 2800.0 3000.0 3300.0 3400.0 +2000.0 2100.0 2300.0 2600.0 2900.0 3200.0 +1100.0 1500.0 2500.0 2700.0 2900.0 3300.0 +1600.0 1800.0 2200.0 2500.0 2700.0 2800.0 +2000.0 2200.0 2500.0 2600.0 3100.0 3200.0 +1400.0 1600.0 2100.0 2900.0 3100.0 3200.0 +1900.0 2400.0 2800.0 3000.0 3200.0 3300.0 +2000.0 2300.0 2500.0 2700.0 2900.0 3200.0 +1700.0 2100.0 2300.0 2800.0 3200.0 3300.0 +1400.0 2000.0 2300.0 2500.0 3100.0 3300.0 +2000.0 2500.0 2600.0 3000.0 3200.0 3300.0 +1500.0 1700.0 2500.0 2600.0 3000.0 3400.0 +1100.0 2000.0 2500.0 2700.0 3200.0 3300.0 +1400.0 1600.0 2600.0 2900.0 3100.0 3400.0 +1800.0 2300.0 2800.0 3000.0 3200.0 3300.0 +1700.0 2000.0 2100.0 2300.0 3300.0 3400.0 +1400.0 1700.0 1800.0 2300.0 3300.0 3400.0 +1400.0 1500.0 2300.0 2500.0 3000.0 3400.0 +1400.0 1700.0 2600.0 2700.0 3100.0 3200.0 +1500.0 1700.0 2600.0 2700.0 3200.0 3300.0 +1600.0 1800.0 2600.0 2700.0 3100.0 3300.0 +1200.0 1400.0 1500.0 2200.0 3100.0 3200.0 +1500.0 1600.0 2100.0 2400.0 2700.0 3200.0 +1000.0 1500.0 2600.0 2700.0 3000.0 3300.0 +1200.0 1500.0 1600.0 2100.0 3100.0 3200.0 +1800.0 2200.0 2600.0 3000.0 3400.0 3500.0 +1000.0 2300.0 2600.0 2700.0 3200.0 3300.0 +1400.0 1600.0 2100.0 2500.0 2800.0 3200.0 +1300.0 1900.0 2300.0 2500.0 2900.0 3300.0 +1500.0 1600.0 2400.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2500.0 2800.0 3100.0 3200.0 +1000.0 2100.0 2500.0 2600.0 3100.0 3400.0 +1700.0 1800.0 2100.0 2400.0 3000.0 3100.0 +2200.0 2300.0 2600.0 2700.0 3000.0 3300.0 +1900.0 2000.0 2700.0 2800.0 3300.0 3400.0 +1500.0 1700.0 2400.0 2500.0 2900.0 3100.0 +1100.0 1600.0 2800.0 2900.0 3200.0 3300.0 +2000.0 2600.0 2800.0 3000.0 3400.0 3500.0 +1900.0 2500.0 2800.0 3100.0 3400.0 3500.0 +1200.0 1700.0 2700.0 2800.0 3200.0 3400.0 +1300.0 1600.0 2700.0 2800.0 3100.0 3400.0 +1500.0 1700.0 2700.0 2800.0 3100.0 3400.0 +1300.0 1400.0 2500.0 2800.0 3200.0 3400.0 +1700.0 2000.0 2700.0 2800.0 3300.0 3400.0 +1800.0 1900.0 2600.0 2700.0 3300.0 3400.0 +1100.0 1800.0 2700.0 2800.0 3200.0 3300.0 +2100.0 2600.0 2700.0 3000.0 3300.0 3400.0 +1300.0 1600.0 1800.0 2100.0 2900.0 3000.0 +1300.0 1500.0 2200.0 2400.0 3100.0 3400.0 +1200.0 1500.0 1700.0 2000.0 3000.0 3100.0 +1200.0 1500.0 1700.0 2100.0 3000.0 3100.0 +1300.0 2000.0 2200.0 2400.0 2700.0 3000.0 +1500.0 1800.0 2100.0 2300.0 3300.0 3400.0 +1100.0 1600.0 1800.0 2200.0 3000.0 3100.0 +1000.0 1800.0 2100.0 2400.0 3000.0 3100.0 +1500.0 1600.0 2300.0 2400.0 2900.0 3400.0 +1400.0 1600.0 1800.0 2100.0 2900.0 3000.0 +1100.0 1500.0 2100.0 2200.0 3100.0 3200.0 +1300.0 1700.0 1800.0 2200.0 3000.0 3100.0 +1500.0 1700.0 2100.0 2300.0 2700.0 2900.0 +1100.0 1700.0 1900.0 2100.0 2900.0 3000.0 +1400.0 1700.0 2100.0 2400.0 2900.0 3200.0 +1300.0 1600.0 1800.0 2300.0 3000.0 3100.0 +1200.0 1500.0 1700.0 2300.0 3000.0 3100.0 +1600.0 1800.0 1900.0 2300.0 3000.0 3100.0 +1700.0 2200.0 2600.0 2900.0 3100.0 3300.0 +1900.0 2400.0 2500.0 2700.0 2900.0 3100.0 +1800.0 2000.0 2100.0 2400.0 3100.0 3200.0 +1700.0 2400.0 2700.0 2800.0 3000.0 3200.0 +1800.0 1900.0 2300.0 2600.0 2800.0 3300.0 +1300.0 1900.0 2500.0 2600.0 3200.0 3400.0 +1400.0 1600.0 2300.0 2400.0 2800.0 3100.0 +1900.0 2000.0 2300.0 2700.0 3000.0 3300.0 +1700.0 1800.0 2400.0 2700.0 3200.0 3400.0 +1800.0 2000.0 2300.0 2600.0 2900.0 3300.0 +2100.0 2300.0 2600.0 2700.0 3300.0 3400.0 +1400.0 1600.0 2200.0 2400.0 3200.0 3300.0 +1300.0 1600.0 1800.0 2200.0 2800.0 2900.0 +1500.0 1700.0 1900.0 2600.0 2800.0 3000.0 +1700.0 2200.0 2500.0 2600.0 3100.0 3300.0 +1200.0 1700.0 1800.0 2100.0 3000.0 3100.0 +1100.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1100.0 1900.0 2100.0 2300.0 2900.0 3000.0 +1200.0 1700.0 2400.0 2600.0 3100.0 3400.0 +1100.0 1700.0 2600.0 2700.0 3000.0 3300.0 +1000.0 1700.0 2700.0 2800.0 3200.0 3400.0 +1100.0 1900.0 2200.0 2300.0 3200.0 3300.0 +1300.0 1900.0 2300.0 2500.0 3000.0 3300.0 +1200.0 1600.0 2600.0 2700.0 3100.0 3400.0 +1300.0 1600.0 1800.0 2400.0 3000.0 3200.0 +1400.0 1700.0 1800.0 2100.0 3200.0 3400.0 +1000.0 1500.0 2300.0 2400.0 3200.0 3400.0 +900.0 1700.0 2600.0 2700.0 3300.0 3400.0 +1100.0 1400.0 2500.0 2700.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2500.0 2800.0 2900.0 +2100.0 2300.0 2700.0 2900.0 3400.0 3500.0 +2100.0 2200.0 2300.0 2400.0 3000.0 3300.0 +1800.0 2000.0 2400.0 2500.0 2800.0 3000.0 +1700.0 1900.0 2300.0 2500.0 2700.0 3000.0 +1300.0 1400.0 2300.0 2900.0 3100.0 3200.0 +2100.0 2300.0 2600.0 2900.0 3100.0 3200.0 +1400.0 1800.0 2200.0 2300.0 3200.0 3400.0 +2100.0 2500.0 2900.0 3200.0 3400.0 3500.0 +1700.0 1900.0 2100.0 2400.0 3200.0 3400.0 +1600.0 1700.0 2300.0 2600.0 2800.0 2900.0 +1800.0 2000.0 2300.0 2700.0 2800.0 3000.0 +1900.0 2300.0 2600.0 2800.0 3000.0 3100.0 +1300.0 1600.0 2200.0 2600.0 3100.0 3200.0 +1500.0 1600.0 2400.0 2500.0 2900.0 3400.0 +1600.0 1800.0 2000.0 2700.0 3100.0 3200.0 +1000.0 1800.0 2600.0 2700.0 3200.0 3400.0 +900.0 1800.0 2500.0 2600.0 3300.0 3400.0 +1300.0 2200.0 2300.0 2700.0 3200.0 3300.0 +1200.0 2000.0 2300.0 2500.0 3300.0 3400.0 +1100.0 1500.0 2400.0 2500.0 3100.0 3400.0 +1300.0 1700.0 1900.0 2100.0 3000.0 3100.0 +2000.0 2100.0 2500.0 2600.0 3300.0 3500.0 +1500.0 1800.0 2000.0 2500.0 3300.0 3400.0 +2000.0 2100.0 2800.0 2900.0 3100.0 3300.0 +2300.0 2400.0 2600.0 2800.0 3200.0 3300.0 +1400.0 1900.0 2200.0 2300.0 3100.0 3200.0 +1500.0 1900.0 2600.0 2700.0 3200.0 3300.0 +1500.0 1600.0 2200.0 2600.0 3100.0 3400.0 +1700.0 1800.0 2500.0 2700.0 3300.0 3400.0 +1100.0 1600.0 2400.0 2500.0 3300.0 3400.0 +900.0 1600.0 2600.0 2700.0 3300.0 3400.0 +1400.0 1500.0 2200.0 2600.0 3200.0 3400.0 +1200.0 2000.0 2400.0 2500.0 2700.0 3200.0 +1300.0 1500.0 2500.0 2600.0 3200.0 3300.0 +1500.0 1600.0 2300.0 2600.0 3200.0 3400.0 +1300.0 2000.0 2300.0 2800.0 3000.0 3200.0 +2000.0 2100.0 2600.0 2700.0 3000.0 3100.0 +2000.0 2200.0 2600.0 2700.0 3000.0 3100.0 +2100.0 2200.0 2800.0 2900.0 3100.0 3200.0 +1900.0 2100.0 2500.0 2600.0 3000.0 3100.0 +1900.0 2100.0 2300.0 2500.0 2800.0 2900.0 +1800.0 2000.0 2600.0 2700.0 3000.0 3400.0 +1400.0 1700.0 1800.0 2500.0 2800.0 3200.0 +1300.0 1800.0 2200.0 2300.0 3200.0 3400.0 +1400.0 1600.0 1700.0 2200.0 3200.0 3400.0 +1400.0 1500.0 1600.0 2100.0 3200.0 3400.0 +1700.0 2100.0 2300.0 2500.0 3300.0 3400.0 +1600.0 2000.0 2600.0 2800.0 3200.0 3400.0 +1400.0 1600.0 2700.0 2800.0 3000.0 3300.0 +1400.0 1500.0 1600.0 2200.0 3300.0 3400.0 +1600.0 1700.0 2500.0 2600.0 3300.0 3400.0 +1000.0 1500.0 2300.0 2400.0 3000.0 3100.0 +1400.0 1500.0 1700.0 1800.0 3200.0 3300.0 +1600.0 2000.0 2300.0 2500.0 2800.0 3100.0 +1900.0 2500.0 2600.0 2900.0 3400.0 3500.0 +1800.0 1900.0 2500.0 2600.0 3300.0 3500.0 +1500.0 1900.0 2200.0 2300.0 3200.0 3300.0 +1900.0 2200.0 2500.0 2600.0 3300.0 3400.0 +1400.0 2000.0 2300.0 2600.0 3100.0 3300.0 +1800.0 1900.0 2300.0 2400.0 3200.0 3500.0 +1100.0 1900.0 2500.0 2600.0 2900.0 3000.0 +1600.0 1700.0 2300.0 2400.0 2900.0 3000.0 +1700.0 2300.0 2500.0 2700.0 3000.0 3100.0 +2100.0 2200.0 2700.0 2900.0 3100.0 3400.0 +1400.0 1900.0 2300.0 2600.0 2800.0 2900.0 +1800.0 2000.0 2200.0 2400.0 2600.0 2900.0 +1400.0 2100.0 2500.0 2600.0 2900.0 3100.0 +1700.0 1900.0 2400.0 2800.0 3200.0 3400.0 +1000.0 1500.0 2300.0 2400.0 3000.0 3300.0 +1500.0 2000.0 2300.0 2800.0 3200.0 3300.0 +1900.0 2000.0 2300.0 2600.0 3100.0 3400.0 +1300.0 1500.0 2400.0 2600.0 3300.0 3400.0 +2100.0 2500.0 2900.0 3100.0 3200.0 3400.0 +1400.0 1700.0 1800.0 2400.0 3200.0 3300.0 +1400.0 1500.0 2300.0 2600.0 3100.0 3400.0 +1000.0 1900.0 2600.0 2700.0 3000.0 3100.0 +1100.0 1800.0 2500.0 2700.0 3200.0 3300.0 +1700.0 1800.0 2200.0 2700.0 2800.0 3200.0 +2000.0 2200.0 2700.0 2800.0 3100.0 3200.0 +1300.0 2100.0 2400.0 2500.0 2900.0 3100.0 +1300.0 2000.0 2400.0 2500.0 2800.0 3000.0 +1500.0 2100.0 2500.0 2600.0 2900.0 3100.0 +1700.0 2200.0 2500.0 2700.0 3000.0 3200.0 +1600.0 2100.0 2500.0 2600.0 3000.0 3100.0 +1700.0 2200.0 2500.0 2600.0 3000.0 3200.0 +1800.0 2200.0 2300.0 2600.0 3000.0 3200.0 +1300.0 1500.0 1700.0 2100.0 3300.0 3400.0 +1300.0 1500.0 1700.0 2000.0 3300.0 3400.0 +1300.0 1900.0 2700.0 2800.0 3200.0 3400.0 +1700.0 2500.0 2700.0 2900.0 3300.0 3400.0 +1100.0 1700.0 2100.0 2200.0 3300.0 3400.0 +1000.0 1800.0 2700.0 2900.0 3300.0 3400.0 +1500.0 1600.0 2500.0 2600.0 3200.0 3300.0 +1100.0 1900.0 2600.0 2800.0 3000.0 3100.0 +1300.0 1500.0 2400.0 2500.0 3200.0 3300.0 +1700.0 2100.0 2300.0 2400.0 2800.0 3300.0 +1300.0 1500.0 1700.0 1800.0 3200.0 3400.0 +2000.0 2100.0 2400.0 2700.0 2900.0 3300.0 +1400.0 1500.0 2500.0 2600.0 3000.0 3200.0 +1400.0 1500.0 2000.0 2900.0 3300.0 3400.0 +1300.0 1500.0 2600.0 2700.0 3100.0 3200.0 +1100.0 1300.0 2700.0 2800.0 3200.0 3300.0 +1100.0 1300.0 2500.0 2600.0 2900.0 3100.0 +1900.0 2300.0 2400.0 2600.0 2700.0 3100.0 +1300.0 2100.0 2200.0 2600.0 3200.0 3300.0 +1100.0 1800.0 2400.0 2500.0 2900.0 3100.0 +1000.0 1800.0 2200.0 2300.0 3200.0 3300.0 +1500.0 1700.0 1800.0 2600.0 3200.0 3400.0 +1500.0 2000.0 2400.0 2600.0 2700.0 3100.0 +2000.0 2100.0 2300.0 2500.0 2700.0 3300.0 +1000.0 1500.0 2700.0 2800.0 3300.0 3400.0 diff --git a/gr-vocoder/lib/codec2/codebook/lspjvm1.txt b/gr-vocoder/lib/codec2/codebook/lspjvm1.txt new file mode 100644 index 0000000000..9cd10ed35c --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspjvm1.txt @@ -0,0 +1,513 @@ +10 512 +0.435217 0.668864 1.010296 1.220420 1.503978 1.784675 2.135458 2.357467 2.618905 2.738042 +0.179285 0.333160 0.500638 0.796950 1.039987 1.234969 1.652301 1.848233 2.625555 2.804968 +0.268785 0.356576 0.595753 1.044339 1.249382 1.428680 1.686986 1.864689 2.339905 2.513801 +0.120070 0.165585 0.484694 0.959160 1.237528 1.529146 1.837513 2.107730 2.487495 2.766846 +0.150214 0.229487 0.628240 0.961255 1.337065 1.598306 1.919745 2.217861 2.537318 2.759560 +0.268624 0.345980 0.569637 0.754737 0.916538 1.508543 1.786354 1.954418 2.369530 2.501822 +0.246064 0.468874 0.662711 0.890015 1.147153 1.510431 1.781056 2.095943 2.655391 2.800369 +0.191631 0.280628 0.393229 0.611761 1.420170 1.707741 1.873032 2.101553 2.280348 2.499488 +0.361668 0.507047 0.789974 1.045992 1.502378 1.677032 1.905337 2.162555 2.432259 2.590873 +0.208160 0.294285 0.448634 0.694229 0.872517 1.070315 1.703352 2.168742 2.426189 2.603657 +0.316939 0.513618 0.705487 0.917036 1.175989 1.311140 1.618599 2.037840 2.450523 2.579395 +0.241068 0.377728 0.521595 0.717203 1.310414 1.539991 1.736431 2.098926 2.297917 2.587348 +0.234937 0.281875 0.780422 1.440733 1.609428 1.756430 1.977206 2.148605 2.602032 2.722501 +0.178679 0.242672 0.416988 0.708348 0.955620 1.176671 1.781798 2.054488 2.281591 2.448112 +0.345036 0.421080 0.740887 1.165442 1.324944 1.488798 1.763463 1.906174 2.395050 2.649158 +0.249586 0.357494 0.520747 0.847195 1.428408 1.597779 1.778194 2.178502 2.413437 2.564662 +0.295235 0.574231 1.249097 1.464097 1.727559 1.926790 2.095363 2.284830 2.567065 2.722480 +0.341930 0.427307 0.634001 0.804212 0.905629 1.333373 1.790329 1.892756 2.445823 2.602828 +0.363948 0.508985 0.667357 0.946354 1.437562 1.626545 1.811141 2.039091 2.291882 2.435493 +0.163514 0.277407 0.409207 0.902065 1.189070 1.339636 1.802411 1.960770 2.652930 2.818987 +0.302643 0.359753 0.651207 1.208021 1.423702 1.548149 1.882130 2.015591 2.260535 2.578896 +0.155928 0.216908 0.381812 0.654803 1.112373 1.589935 1.847562 1.976716 2.224078 2.725337 +0.274981 0.347675 0.572000 0.736046 0.894248 1.632373 1.891391 2.056890 2.602900 2.721779 +0.154496 0.243461 0.348174 0.689505 1.573807 1.700306 1.943182 2.101580 2.564661 2.773169 +0.292612 0.466612 0.795936 1.047468 1.413693 1.750848 2.062894 2.340073 2.613612 2.769493 +0.242896 0.361500 0.555859 0.793597 0.932291 1.409467 1.863863 2.009534 2.464500 2.677491 +0.221646 0.344724 0.554564 0.729403 1.136575 1.301772 1.529181 2.163590 2.395821 2.610805 +0.160969 0.224467 0.371545 0.626879 1.160953 1.444229 1.675966 1.879779 2.478590 2.672023 +0.214172 0.341585 0.676575 0.977397 1.325429 1.720096 2.072595 2.369539 2.635285 2.778792 +0.203311 0.289438 0.458739 0.914153 1.122885 1.302925 1.583844 1.886828 2.187869 2.427039 +0.280383 0.371600 0.824827 1.100246 1.236225 1.398923 1.578041 2.016000 2.368973 2.506732 +0.170627 0.251778 0.393686 0.608347 1.287599 1.446665 1.793278 2.036554 2.310153 2.752439 +0.180580 0.288746 0.987854 1.431706 1.677216 1.915661 2.124939 2.289452 2.589612 2.754264 +0.176335 0.266263 0.445421 0.706403 0.875402 1.422918 1.758670 1.960910 2.410676 2.601751 +0.216173 0.287404 0.480696 1.009765 1.291304 1.476644 1.895584 2.064286 2.284064 2.483108 +0.176523 0.273934 0.403407 0.966139 1.304724 1.436612 1.944728 2.084836 2.544458 2.762416 +0.311836 0.550501 0.879591 1.096228 1.276661 1.477859 1.817706 2.154340 2.560467 2.779841 +0.179765 0.250560 0.455939 1.023886 1.225132 1.475662 1.734617 1.918713 2.147342 2.438235 +0.271033 0.457235 0.599622 0.821049 0.940125 1.200937 1.849716 1.986656 2.548168 2.751578 +0.179326 0.248002 0.426405 0.817060 1.285888 1.565019 2.117359 2.298712 2.572404 2.752701 +0.374409 0.535936 0.897009 1.185070 1.591569 1.757202 1.967944 2.179985 2.457394 2.622641 +0.185472 0.282752 0.409439 0.657499 0.856446 1.029396 1.879933 2.069323 2.344742 2.753103 +0.375964 0.578457 0.758945 0.929339 1.127475 1.259437 1.704109 2.122973 2.336031 2.498298 +0.225641 0.361030 0.501679 0.783379 1.314851 1.452621 1.714150 1.987157 2.225703 2.724361 +0.144996 0.252919 0.632145 1.226038 1.575343 1.901549 2.171481 2.390554 2.682293 2.809834 +0.172022 0.263338 0.448634 0.729435 0.984007 1.171597 1.757049 1.990232 2.321305 2.771210 +0.235731 0.351117 0.796871 1.055711 1.300224 1.591818 1.895875 2.122918 2.417888 2.599817 +0.254053 0.319371 0.455623 1.086141 1.664667 1.915882 2.059084 2.233416 2.452037 2.586788 +0.375538 0.742993 1.139911 1.337758 1.735562 2.013906 2.315012 2.483433 2.651575 2.755211 +0.247245 0.481131 0.710366 0.897602 1.121094 1.271709 1.787346 2.199502 2.429663 2.740668 +0.226103 0.311441 0.501648 0.844424 1.362818 1.531338 1.777474 1.989925 2.187493 2.358501 +0.195862 0.296224 0.609554 0.783241 1.243472 1.445477 1.637032 2.022645 2.483557 2.646137 +0.233302 0.299441 0.472792 1.249457 1.457875 1.601860 1.831433 1.993719 2.597193 2.755433 +0.168096 0.224183 0.382700 0.596214 1.060587 1.294418 1.605760 1.848489 2.357695 2.569186 +0.330050 0.445912 0.661713 0.874446 1.000792 1.452973 1.943987 2.076916 2.423883 2.612359 +0.226382 0.287303 0.517631 0.806229 1.309009 1.885280 2.160514 2.286410 2.526377 2.660822 +0.203170 0.499314 0.887358 1.235074 1.462922 1.698260 1.999316 2.229225 2.571613 2.766691 +0.307531 0.378353 0.573606 0.712218 0.850169 1.308996 2.059092 2.263816 2.497943 2.676815 +0.276203 0.510250 0.686800 0.902844 1.205197 1.327979 1.718894 2.038947 2.256393 2.697149 +0.161948 0.229115 0.393619 0.683613 1.137811 1.322692 1.783723 1.961584 2.389073 2.636082 +0.201334 0.276773 0.468994 0.967017 1.475971 1.632424 1.965774 2.197278 2.480593 2.701553 +0.214587 0.315421 0.469498 0.733397 1.146003 1.277911 1.727839 2.227135 2.440264 2.681122 +0.255602 0.394609 0.743393 0.977796 1.199085 1.405972 1.918336 2.224828 2.479187 2.663394 +0.245989 0.352625 0.517055 0.802830 1.558712 1.795653 1.944055 2.133640 2.333267 2.479982 +0.337423 0.480433 0.869036 1.139571 1.630764 1.822959 2.074843 2.292613 2.479130 2.625317 +0.220974 0.358850 0.571640 0.752791 0.937013 1.151721 1.674398 2.062466 2.558717 2.784838 +0.267518 0.331708 0.541111 1.116547 1.411121 1.532868 1.792949 1.933520 2.248940 2.628644 +0.084613 0.105083 0.297424 0.916949 1.256301 1.567029 1.885388 2.189875 2.522795 2.792102 +0.205328 0.287223 0.724462 1.032395 1.457708 1.642169 1.925628 2.175524 2.429638 2.605488 +0.232554 0.338724 0.502115 0.859975 1.044090 1.245652 1.806555 1.999641 2.261164 2.459984 +0.291638 0.379172 0.626072 0.792796 0.959124 1.504886 1.734465 1.919612 2.614359 2.722709 +0.191554 0.263114 0.426797 0.610628 1.077406 1.829543 2.021948 2.210572 2.427652 2.613828 +0.389151 0.679476 0.915414 1.036635 1.250846 1.586610 2.040972 2.281500 2.567941 2.718815 +0.203200 0.301280 0.470357 0.668716 0.851737 0.980327 1.570862 2.037617 2.289067 2.693877 +0.304064 0.405934 0.710274 0.962705 1.128820 1.341667 1.635050 1.845382 2.079916 2.507510 +0.171777 0.240705 0.409371 0.786432 1.223202 1.375689 1.691760 1.866080 2.350406 2.493942 +0.231251 0.277994 0.557867 1.325822 1.660352 1.779477 2.007138 2.172322 2.440457 2.652308 +0.188101 0.259494 0.412543 0.624843 0.839549 1.033700 1.634128 1.931944 2.246076 2.425773 +0.361304 0.419465 0.795676 1.184605 1.296796 1.578447 1.841746 1.997361 2.540538 2.687139 +0.274372 0.338938 0.492443 0.963516 1.509514 1.706378 1.869885 2.077166 2.261281 2.444183 +0.415990 0.652103 1.031293 1.269551 1.572746 1.772975 2.004659 2.175272 2.430606 2.596553 +0.242045 0.370942 0.534392 0.763529 1.001165 1.129764 1.682192 2.144644 2.324478 2.715697 +0.377438 0.588168 0.765394 0.976873 1.356652 1.490088 1.737970 2.006774 2.213691 2.389973 +0.191625 0.284123 0.405342 1.016777 1.432730 1.547592 1.813930 1.958317 2.470765 2.649257 +0.272672 0.349555 0.633911 1.152234 1.303938 1.547640 1.919504 2.047696 2.562779 2.730575 +0.168423 0.236330 0.421468 0.831345 1.083543 1.553448 1.880726 2.064701 2.370864 2.632945 +0.219318 0.301481 0.513617 0.765086 1.026019 1.514647 2.048203 2.248568 2.499810 2.657069 +0.232695 0.347947 0.495203 0.718830 1.423013 1.722493 1.879584 2.165044 2.420251 2.589658 +0.270284 0.336865 0.684929 1.155789 1.690421 1.876744 2.027359 2.226178 2.446748 2.582000 +0.149701 0.193747 0.352019 0.520123 0.823974 1.434753 1.686592 1.961148 2.370914 2.693067 +0.254818 0.412303 0.601514 0.771438 1.175450 1.376569 1.539029 1.937039 2.408576 2.563621 +0.233713 0.355886 0.593725 0.762880 1.271479 1.563900 1.797523 2.094688 2.538627 2.711734 +0.179028 0.237103 0.396818 1.042021 1.633539 1.762676 2.123935 2.322391 2.588193 2.751345 +0.182027 0.251039 0.434581 0.714302 0.950997 1.437895 1.813570 1.969103 2.145882 2.353968 +0.501538 0.692148 0.848860 1.071308 1.350543 1.489476 1.841643 2.104284 2.341536 2.515294 +0.274530 0.381470 0.526682 0.922143 1.444946 1.573605 1.858767 2.066747 2.284796 2.626819 +0.360617 0.583131 0.979491 1.254083 1.488351 1.797557 2.219518 2.482176 2.742366 2.862025 +0.140913 0.220301 0.619552 0.818307 1.052429 1.339972 1.830726 2.133953 2.536378 2.751128 +0.293514 0.391691 0.790080 0.962740 1.160319 1.526602 1.805491 2.041462 2.361619 2.564962 +0.199542 0.290571 0.452891 0.689515 1.258530 1.409879 1.886242 2.228126 2.465677 2.726646 +0.296920 0.356356 0.784287 0.996540 1.146175 1.623865 1.815498 2.038297 2.600627 2.705700 +0.206451 0.276025 0.537547 0.802572 1.220407 1.642060 1.863625 2.001978 2.215339 2.585384 +0.333650 0.464751 0.653772 0.966306 1.103865 1.340203 1.784701 1.914591 2.470171 2.686916 +0.181861 0.244870 0.376456 0.554383 1.329897 1.810440 2.047836 2.202318 2.660855 2.817057 +0.450565 0.647291 0.951172 1.229431 1.519644 1.686812 2.049107 2.267169 2.501284 2.650596 +0.219996 0.320591 0.427747 0.601183 0.753448 0.929578 1.741979 2.285789 2.472633 2.749566 +0.333848 0.423373 0.658791 1.031299 1.222625 1.365771 1.901889 2.121101 2.290306 2.531185 +0.166064 0.233902 0.383355 0.661806 1.226567 1.399684 1.771269 1.974537 2.173487 2.566344 +0.189286 0.243602 0.390584 1.387930 1.588719 1.763237 2.091118 2.316314 2.593526 2.755080 +0.158404 0.224878 0.385000 0.668463 0.942954 1.411967 1.700313 1.828069 2.059396 2.692546 +0.325989 0.461263 0.851471 1.045709 1.284028 1.516199 1.797341 2.088387 2.437669 2.627215 +0.223709 0.289190 0.632812 0.858738 1.541903 1.746766 1.935738 2.184816 2.404330 2.583013 +0.545842 0.952420 1.340820 1.516838 1.838879 2.012890 2.244968 2.403170 2.592285 2.691119 +0.238526 0.349079 0.494582 0.987665 1.170746 1.348229 1.468645 2.296964 2.644160 2.787381 +0.270857 0.442003 0.655998 0.881913 1.259254 1.428358 1.769867 1.998528 2.395589 2.652840 +0.154384 0.211806 0.489481 0.997257 1.249817 1.541232 1.778865 1.949397 2.319136 2.623391 +0.268258 0.312888 0.589114 1.258625 1.572705 1.675430 1.912780 2.070458 2.279933 2.564230 +0.170715 0.224965 0.374011 0.540197 1.161887 1.499072 1.925865 2.082569 2.246619 2.469724 +0.324358 0.391989 0.706816 0.833614 1.015725 1.568995 1.735976 2.127068 2.558411 2.653871 +0.178059 0.258575 0.374125 0.536831 1.334827 1.798628 1.986978 2.189252 2.432266 2.626696 +0.198857 0.420955 0.817664 1.178363 1.466742 1.821295 2.207327 2.474411 2.738275 2.851185 +0.188344 0.324302 0.470468 0.790033 0.934101 1.188722 1.887171 2.052833 2.448325 2.630236 +0.201295 0.365646 0.526513 0.758388 1.140096 1.267331 1.650173 1.879342 2.102889 2.600286 +0.135058 0.169428 0.307348 0.503160 1.018083 1.447946 1.810984 2.134002 2.480277 2.759846 +0.178006 0.266610 0.390327 0.928681 1.501613 1.621327 1.871356 2.025864 2.580442 2.770801 +0.246182 0.424290 0.644023 0.801168 1.114876 1.277757 1.503317 2.074888 2.295695 2.501380 +0.322996 0.430355 0.631600 1.047698 1.221840 1.426726 1.903081 2.032223 2.516726 2.708452 +0.292994 0.430599 0.619178 0.794567 1.283029 1.652817 1.840836 2.069946 2.385375 2.528246 +0.525494 0.787797 1.121816 1.387482 1.674574 1.936221 2.224042 2.390624 2.634276 2.743234 +0.299504 0.409196 0.602235 0.892336 1.056426 1.253766 1.489136 1.639876 2.427480 2.650368 +0.423758 0.520480 0.758987 1.041257 1.173655 1.423676 1.818235 1.936407 2.363001 2.626644 +0.155042 0.247496 0.641445 0.954509 1.224970 1.465850 1.837841 2.090456 2.451501 2.716155 +0.251949 0.421094 0.706797 0.975659 1.259906 1.520067 1.816310 2.122017 2.474913 2.716671 +0.215220 0.302248 0.730598 0.896343 1.145567 1.370192 1.700685 2.022563 2.283265 2.489220 +0.285230 0.453559 0.663670 0.861526 1.011602 1.247419 1.655985 1.861291 2.578936 2.731333 +0.162067 0.219409 0.373433 0.544669 1.103298 1.597178 1.921040 2.143402 2.406499 2.660484 +0.342367 0.511499 0.931350 1.163219 1.393645 1.611146 1.972769 2.194416 2.470766 2.649264 +0.251010 0.364125 0.560956 0.746545 1.019837 1.170725 1.532945 2.288671 2.577088 2.723074 +0.315001 0.489412 0.720682 0.877607 1.090466 1.253848 1.448221 1.922954 2.255887 2.408634 +0.174666 0.235793 0.387644 0.554402 1.231089 1.456137 1.688034 2.127450 2.367035 2.597270 +0.215113 0.341915 1.043717 1.322751 1.495414 1.741895 1.961164 2.239824 2.544905 2.703945 +0.219852 0.301770 0.513912 0.705474 0.877540 1.295896 1.699002 1.987057 2.287968 2.496966 +0.290638 0.366442 0.655155 1.044990 1.172154 1.532536 1.800791 1.948931 2.509679 2.660055 +0.232252 0.313770 0.658552 0.941977 1.463174 1.665488 1.862461 2.027843 2.534016 2.701236 +0.326539 0.552681 1.121731 1.331381 1.520072 1.867084 2.082861 2.332474 2.606039 2.737092 +0.190254 0.340428 0.492777 0.739738 0.895461 1.079371 1.643156 1.795290 2.491822 2.729382 +0.283586 0.418440 0.587306 0.870866 1.418553 1.577030 1.799498 2.069398 2.274484 2.438103 +0.235752 0.357650 0.502891 1.012434 1.258853 1.407789 1.820057 1.955830 2.505903 2.734330 +0.278412 0.343137 0.849977 1.232895 1.350504 1.590626 1.787519 2.091578 2.541360 2.663856 +0.162966 0.243159 0.439238 0.684821 0.887783 1.462899 1.881739 2.044253 2.289393 2.705002 +0.235063 0.371799 0.578210 0.752199 1.008546 1.476284 1.804912 2.271399 2.655042 2.789653 +0.154939 0.223696 0.344718 0.667555 1.495659 1.669436 2.069883 2.307215 2.627692 2.811343 +0.239702 0.335917 0.716616 1.131805 1.452514 1.639133 2.105515 2.279822 2.502030 2.669220 +0.226818 0.331261 0.472705 0.651974 0.781639 1.219798 1.822904 2.082732 2.439327 2.610900 +0.223413 0.359594 0.534704 0.741518 1.225894 1.389874 1.618191 2.009911 2.207000 2.459844 +0.171308 0.268378 0.383799 0.858926 1.376293 1.519165 1.780601 1.922915 2.623094 2.802402 +0.140134 0.212320 0.443224 0.967457 1.264241 1.562153 1.929148 2.217388 2.668341 2.830751 +0.221323 0.322124 0.485563 0.818589 1.011837 1.198984 1.423616 1.669403 2.157523 2.363190 +0.369687 0.525655 0.719213 0.939654 1.137631 1.312217 1.599935 1.826813 2.355221 2.580680 +0.211975 0.314411 0.489148 0.739213 1.377801 1.554504 1.824373 2.158875 2.352992 2.722621 +0.170698 0.296368 0.934285 1.243133 1.555900 1.866544 2.159940 2.363436 2.585032 2.738530 +0.189263 0.305887 0.439912 0.784610 1.227264 1.342508 1.587650 1.754907 2.439893 2.721315 +0.296339 0.385169 0.612012 1.081322 1.276361 1.437178 1.871470 2.001718 2.339094 2.640217 +0.229588 0.320544 0.517278 0.969137 1.142560 1.626089 1.877916 2.115461 2.546741 2.708025 +0.248869 0.420193 0.732388 1.049015 1.303410 1.601458 1.949210 2.239464 2.648223 2.822614 +0.207600 0.292320 0.496539 0.857149 1.182294 1.399849 1.714165 1.868238 2.027936 2.200737 +0.225558 0.396897 0.541783 0.873366 1.178972 1.299579 1.677191 1.849602 2.330475 2.752717 +0.176821 0.231377 0.372767 0.508565 1.152819 1.808050 2.112679 2.250073 2.571342 2.748550 +0.352149 0.515765 1.023238 1.260221 1.443565 1.622067 1.872804 2.100177 2.489280 2.671043 +0.166138 0.263444 0.370151 0.590066 0.754819 0.940533 1.761870 1.946611 2.445015 2.758191 +0.342082 0.476411 0.656223 0.851774 1.003992 1.153372 1.694401 2.065625 2.255642 2.440148 +0.227237 0.376514 0.514329 0.894887 1.141673 1.283052 1.831377 1.985902 2.334470 2.784878 +0.215891 0.269548 0.684111 1.405658 1.674813 1.800925 2.172085 2.339395 2.591569 2.730100 +0.236240 0.400377 0.533684 0.750343 0.910405 1.089112 1.737729 1.912807 2.192519 2.688733 +0.169242 0.284879 0.916252 1.169769 1.433683 1.644376 1.919124 2.161625 2.482664 2.682591 +0.270731 0.336506 0.477594 1.042714 1.605840 1.796859 1.945909 2.160039 2.354913 2.520950 +0.420586 0.652563 1.117162 1.406006 1.747537 1.947424 2.203094 2.359970 2.547902 2.682168 +0.281552 0.395037 0.640181 0.944531 1.193959 1.330492 1.718657 2.188389 2.444591 2.578673 +0.311824 0.476892 0.633431 0.845825 1.332518 1.491656 1.693614 2.041082 2.289317 2.439399 +0.133945 0.200790 0.647237 0.927687 1.188883 1.369658 1.699557 1.972777 2.295259 2.678185 +0.204796 0.278215 0.443465 1.270484 1.405209 1.640920 1.824252 2.327085 2.599637 2.772533 +0.183970 0.244116 0.410594 0.639103 1.221589 1.404867 1.628358 1.902439 2.168632 2.306804 +0.343622 0.434735 0.666599 0.868069 1.048942 1.532778 1.819835 1.971884 2.288701 2.448745 +0.238017 0.320361 0.657255 0.917611 1.303306 1.727361 1.988909 2.181455 2.442965 2.613322 +0.323613 0.545056 0.930173 1.226059 1.440181 1.772300 2.056890 2.347811 2.689382 2.820616 +0.288930 0.401387 0.617124 0.836453 0.990306 1.261227 1.913283 2.110049 2.324584 2.557162 +0.332670 0.480804 0.656147 0.880536 1.029566 1.230493 1.769063 1.932296 2.200370 2.585210 +0.185551 0.265352 0.409432 0.608847 1.034698 1.222821 1.876965 2.171647 2.403502 2.666441 +0.155026 0.223348 0.401684 1.079141 1.415789 1.620021 2.045515 2.258512 2.631625 2.802291 +0.183461 0.263081 0.425694 0.635685 1.188664 1.357556 1.574991 2.085982 2.288725 2.511108 +0.314738 0.463011 0.648733 0.877651 1.002890 1.265811 2.005414 2.198095 2.481535 2.714178 +0.244411 0.318444 0.546578 0.793615 1.326150 1.735479 1.945598 2.114662 2.315350 2.478535 +0.326237 0.543540 0.987361 1.304413 1.684932 1.902147 2.207172 2.374273 2.557527 2.716216 +0.157795 0.283302 0.430398 0.660379 0.811060 1.142539 1.479298 1.718714 2.670264 2.847556 +0.220856 0.283872 0.779935 1.074940 1.312211 1.626329 1.837609 1.968885 2.155988 2.602381 +0.140763 0.205719 0.406561 0.762459 1.041266 1.486993 1.838306 2.114606 2.552810 2.772285 +0.140451 0.395920 0.792110 1.108001 1.402642 1.623079 1.943151 2.227952 2.546163 2.773998 +0.229862 0.336462 0.546590 0.810150 1.201906 1.346787 1.825323 2.092925 2.285730 2.473359 +0.224913 0.328246 0.517269 0.874793 1.012587 1.452178 1.695778 2.014930 2.511447 2.672574 +0.247745 0.335741 0.546558 0.710177 1.170556 1.727789 1.970678 2.158532 2.482819 2.628913 +0.398252 0.555087 0.890367 1.121205 1.381533 1.601228 1.866647 2.066612 2.405164 2.588016 +0.198563 0.288867 0.478054 0.658477 0.851841 1.027105 1.539739 2.021106 2.579462 2.784184 +0.304271 0.371642 0.661590 1.068976 1.224249 1.411927 1.680524 1.869770 2.100073 2.308554 +0.188223 0.257939 0.432402 0.735050 1.318038 1.485528 1.828110 2.046435 2.307018 2.457237 +0.246723 0.297276 0.604475 1.310901 1.570442 1.688851 1.913658 2.051334 2.556011 2.714965 +0.158309 0.234509 0.435792 0.667900 0.957567 1.235918 1.592945 1.818158 2.307389 2.768973 +0.419843 0.501412 0.766892 1.073173 1.189374 1.480225 1.766597 1.922151 2.537937 2.694771 +0.275140 0.335563 0.678421 1.081521 1.592379 1.772635 1.931245 2.140699 2.333804 2.490857 +0.372056 0.856814 1.239538 1.409989 1.690297 1.863018 2.072702 2.273547 2.532657 2.690517 +0.321254 0.422981 0.604856 0.793437 0.912112 1.128454 1.795979 2.173232 2.360146 2.536137 +0.395214 0.598779 0.771997 0.946713 1.213777 1.330433 1.660335 1.977154 2.165056 2.344018 +0.225286 0.317828 0.464801 1.112329 1.369512 1.511999 1.921954 2.053407 2.593519 2.777285 +0.330612 0.407807 0.730129 1.259731 1.459811 1.605671 1.981307 2.137009 2.465971 2.679722 +0.213145 0.305305 0.507016 0.662299 1.056848 1.479862 1.671904 2.102707 2.369871 2.581994 +0.219658 0.296096 0.443507 0.610973 0.799691 1.676579 1.965487 2.153235 2.502228 2.692999 +0.174947 0.257739 0.373547 0.552567 1.405316 1.614249 1.848917 2.117795 2.317884 2.711904 +0.209667 0.297529 0.756195 1.095304 1.564196 1.844775 2.103697 2.292657 2.520051 2.679489 +0.170138 0.240310 0.452247 0.684414 0.880102 1.366921 1.741648 2.131295 2.505730 2.732611 +0.278164 0.468635 0.707518 0.853693 1.054780 1.210458 1.540941 2.174562 2.410662 2.612138 +0.155738 0.238890 0.352836 0.621012 1.441438 1.619698 1.825165 1.975331 2.525373 2.748574 +0.223776 0.274424 0.479048 0.797871 1.694190 1.878135 2.135285 2.373726 2.595422 2.729787 +0.151088 0.198286 0.326558 0.536276 0.845893 1.141653 1.460565 1.762868 2.025851 2.177303 +0.434445 0.614208 0.887657 1.028446 1.191359 1.392204 1.786886 2.062481 2.423405 2.619356 +0.180755 0.275311 0.397787 0.859366 1.409762 1.523325 1.908846 2.082319 2.389720 2.743887 +0.275975 0.508416 0.889894 1.318925 1.633314 1.904728 2.169012 2.374655 2.726973 2.847666 +0.156239 0.262624 0.406657 0.739074 1.044495 1.201234 1.810887 2.005600 2.581700 2.804889 +0.195391 0.258771 0.654924 0.824371 1.315259 1.500728 1.765938 2.063992 2.341176 2.513659 +0.178034 0.301047 0.463020 0.716172 1.198868 1.340454 1.834558 2.022132 2.400750 2.776294 +0.340368 0.404236 0.843747 1.039238 1.202107 1.708051 1.914952 2.169509 2.521521 2.623348 +0.218465 0.289694 0.528045 0.817051 1.132337 1.580464 1.838891 1.983392 2.147493 2.348131 +0.322509 0.458058 0.654679 0.958976 1.118211 1.321565 1.901390 2.046409 2.360931 2.664215 +0.191821 0.252321 0.389176 0.581111 1.529667 1.931689 2.083614 2.270465 2.566855 2.713879 +0.493961 0.710827 0.982260 1.196274 1.419327 1.620910 1.928015 2.145652 2.429769 2.601973 +0.213148 0.311589 0.424636 0.602664 0.736895 1.022165 1.992278 2.218533 2.611628 2.850324 +0.288129 0.434441 0.629313 0.856153 1.289667 1.424520 1.875795 2.150240 2.351814 2.536843 +0.160031 0.230716 0.406654 0.870424 1.156517 1.392317 1.804098 1.951437 2.210479 2.735164 +0.229340 0.293962 0.503222 1.242097 1.475824 1.624647 1.998680 2.144499 2.578549 2.753270 +0.158770 0.220035 0.363386 0.577761 0.963090 1.174939 1.738169 1.979202 2.162436 2.661916 +0.346062 0.444816 0.716985 1.180717 1.370580 1.522996 1.892173 2.066682 2.395796 2.627659 +0.307495 0.389330 0.612607 0.969283 1.557708 1.839939 1.996737 2.172382 2.420627 2.539195 +0.437804 0.726957 1.291168 1.503297 1.765428 1.962121 2.163647 2.336227 2.579616 2.708524 +0.232184 0.333678 0.528368 0.706749 1.203280 1.379018 1.611161 2.154678 2.592903 2.750319 +0.272652 0.461710 0.625777 0.839609 1.342021 1.496726 1.715376 2.137572 2.370040 2.597390 +0.184908 0.302324 0.454883 0.880307 1.104383 1.292526 1.777203 1.943364 2.444174 2.622726 +0.265644 0.341261 0.553228 1.139475 1.427148 1.560441 1.933941 2.084129 2.393307 2.654135 +0.167920 0.207301 0.370331 0.525538 1.030891 1.368163 1.782474 2.062404 2.332762 2.526299 +0.343172 0.433912 0.717501 0.889734 1.052060 1.695278 2.053156 2.208456 2.608869 2.718320 +0.216527 0.305247 0.445890 0.729271 1.639736 1.903284 2.053351 2.221254 2.432253 2.568018 +0.110545 0.209955 0.844788 1.174205 1.492201 1.810243 2.177274 2.440496 2.697294 2.835232 +0.217384 0.337412 0.488999 0.761842 0.879715 1.209528 1.970747 2.120795 2.611654 2.791762 +0.190459 0.296484 0.469967 0.800649 1.105561 1.278527 1.516938 1.693066 2.114420 2.716739 +0.134814 0.175978 0.300425 0.496817 1.244295 1.485308 1.861721 2.131233 2.485046 2.773884 +0.210174 0.278266 0.435508 0.927538 1.606908 1.753898 1.957554 2.166283 2.398518 2.749609 +0.213766 0.315300 0.509924 0.709930 0.964724 1.106776 1.382615 2.001070 2.323214 2.565314 +0.400615 0.524954 0.798552 1.012852 1.135488 1.474850 1.989029 2.130909 2.507971 2.679460 +0.249400 0.377023 0.519635 0.754227 1.459559 1.642762 1.828961 2.077882 2.298228 2.467534 +0.473365 0.683973 1.052341 1.375830 1.548106 1.747589 2.139299 2.318768 2.609977 2.739255 +0.203877 0.341791 0.485180 0.884069 1.097592 1.269532 1.479924 1.757879 2.648399 2.822387 +0.273046 0.404254 0.555403 0.954547 1.291233 1.399022 1.722890 1.903441 2.171984 2.645312 +0.040369 0.117266 0.617136 0.892043 1.260331 1.541653 1.859383 2.153096 2.498232 2.761886 +0.132414 0.211358 0.742445 1.066857 1.331084 1.570793 1.867458 2.132535 2.479624 2.731076 +0.237329 0.326529 0.612538 0.790663 0.990133 1.413736 1.738235 1.936914 2.167728 2.451626 +0.273960 0.405794 0.572530 0.933672 1.057816 1.397952 1.856531 1.997548 2.599486 2.760042 +0.199334 0.298380 0.442931 0.628638 1.303213 1.640138 1.804023 2.113020 2.375455 2.548946 +0.350188 0.502010 0.821298 1.038639 1.369294 1.592404 1.910815 2.156486 2.460508 2.653260 +0.281558 0.399892 0.573105 0.753299 0.900613 1.054574 1.581987 2.178437 2.430354 2.616044 +0.344653 0.543532 0.703715 0.862285 1.198215 1.338208 1.579080 2.060769 2.306749 2.485749 +0.220701 0.326795 0.520618 0.755133 1.295552 1.451886 1.690502 2.200045 2.414271 2.615909 +0.279478 0.332193 0.801527 1.345966 1.487477 1.678499 1.922202 2.100025 2.585571 2.713387 +0.163502 0.212169 0.365096 0.525464 0.869846 1.208807 1.793988 2.040314 2.297180 2.469797 +0.285531 0.341488 0.754059 1.170016 1.300835 1.513696 1.699861 1.889918 2.581459 2.706874 +0.249595 0.366997 0.626427 0.945219 1.407043 1.560558 1.831657 2.231149 2.466354 2.654518 +0.271671 0.443136 1.156412 1.406456 1.676521 1.856481 2.063218 2.230498 2.475840 2.639575 +0.286620 0.427806 0.637320 0.803409 0.996161 1.266383 1.681751 2.003968 2.394651 2.588547 +0.314906 0.440519 0.612129 0.896126 1.472415 1.717693 1.881351 2.099437 2.369166 2.495466 +0.170277 0.251270 0.405477 0.915641 1.126887 1.436630 1.714771 1.893198 2.552995 2.738519 +0.279410 0.337137 0.734563 1.281046 1.480602 1.611880 1.853215 1.994883 2.416054 2.654827 +0.165776 0.226083 0.417544 0.744574 1.044468 1.534891 1.808494 1.944946 2.138491 2.601790 +0.264579 0.336652 0.542033 0.710190 0.913338 1.655751 1.817762 2.231956 2.524436 2.658519 +0.158194 0.235588 0.338347 0.541657 1.583377 1.766293 2.009135 2.243336 2.503941 2.775158 +0.332612 0.509620 0.822935 1.075876 1.454286 1.650788 1.974450 2.251279 2.537342 2.745115 +0.262817 0.359709 0.520893 0.707667 0.818364 1.438849 1.971249 2.087666 2.497014 2.646442 +0.233200 0.399599 0.612456 0.775547 1.199192 1.355765 1.646901 2.136245 2.342490 2.695742 +0.149687 0.238538 0.372248 0.634520 1.255813 1.433790 1.770041 1.928752 2.611905 2.824930 +0.137016 0.210297 0.591489 1.125451 1.375648 1.685296 2.089612 2.390888 2.704458 2.844434 +0.213490 0.341024 0.541716 0.750061 1.088199 1.244576 1.555338 1.965568 2.187900 2.383714 +0.300159 0.489291 0.825022 1.037100 1.194088 1.347375 1.684747 2.024936 2.465611 2.740973 +0.170029 0.255033 0.392758 0.727117 1.382065 1.579676 1.800912 1.959072 2.282335 2.728796 +0.175883 0.365509 1.112175 1.385866 1.720391 1.977810 2.245295 2.421614 2.629567 2.754004 +0.162590 0.248164 0.454630 0.763209 0.966031 1.282338 1.730743 1.938052 2.479376 2.667563 +0.258043 0.345866 0.556520 0.981312 1.361528 1.482377 1.872244 2.158226 2.362269 2.555030 +0.234139 0.348843 0.528234 0.987884 1.195217 1.422145 1.960028 2.127365 2.603321 2.793004 +0.179699 0.559209 0.867682 1.088835 1.316888 1.571498 1.922198 2.197391 2.501118 2.728679 +0.216784 0.310791 0.487492 0.932903 1.201954 1.366554 1.800398 1.977499 2.174265 2.537065 +0.186878 0.400655 0.580952 0.846287 1.103872 1.266778 1.842772 2.019592 2.488005 2.717222 +0.164641 0.248712 0.389358 0.772822 1.212561 1.369916 2.025869 2.277615 2.617524 2.809527 +0.351899 0.520326 0.926597 1.219651 1.509839 1.676837 1.921744 2.111253 2.356380 2.545934 +0.242182 0.365285 0.506156 0.716020 0.865221 1.011688 1.786917 2.122981 2.350877 2.767729 +0.413776 0.559566 0.735800 0.928997 1.079117 1.267179 1.880069 2.152492 2.324834 2.539856 +0.210597 0.329568 0.469735 0.788590 1.215495 1.319810 1.711456 2.058991 2.245438 2.653727 +0.197937 0.254148 0.477985 1.227090 1.629920 1.767432 2.186975 2.385104 2.594869 2.725544 +0.205489 0.333855 0.523915 0.706275 1.102152 1.246608 1.648901 2.026835 2.281695 2.759313 +0.230328 0.322431 0.861834 1.145614 1.347211 1.576111 1.807275 2.004824 2.354365 2.572251 +0.224898 0.282022 0.506636 1.152298 1.626560 1.752095 2.028178 2.218821 2.488955 2.670460 +0.313732 0.625469 1.164472 1.499077 1.749612 2.018528 2.262230 2.429601 2.692165 2.822502 +0.375623 0.575307 0.791200 0.935770 1.096937 1.343393 1.807992 2.187306 2.519720 2.694803 +0.236981 0.332412 0.479270 0.844461 1.347641 1.490733 1.683942 2.039143 2.297619 2.458431 +0.129047 0.206250 0.636751 0.865101 1.136893 1.356610 1.704798 1.916685 2.518358 2.756320 +0.195171 0.266517 0.414793 1.239561 1.452906 1.608357 1.833045 2.047802 2.473522 2.621994 +0.165853 0.212720 0.372757 0.536136 1.013938 1.339627 1.555122 1.945745 2.236281 2.440949 +0.256981 0.368868 0.635878 0.802543 1.084757 1.439120 1.814729 2.120519 2.458154 2.621456 +0.214382 0.297135 0.445091 0.702050 1.365102 1.851262 2.067026 2.207298 2.470728 2.612432 +0.340710 0.532103 0.935278 1.171022 1.377886 1.638598 1.965274 2.246164 2.631266 2.806341 +0.310524 0.412051 0.582478 0.768755 0.871594 1.119854 1.926346 2.207508 2.407091 2.636633 +0.249349 0.443517 0.631532 0.810096 1.205129 1.357206 1.607396 1.984157 2.208016 2.645111 +0.143090 0.185312 0.325214 0.504000 1.134467 1.327913 1.673654 2.006903 2.389284 2.746094 +0.226575 0.298946 0.453938 0.998061 1.394600 1.597283 2.064183 2.223246 2.425469 2.569458 +0.183924 0.255181 0.415834 0.624247 1.042338 1.203077 1.555240 2.125309 2.400352 2.661916 +0.275610 0.365968 0.654909 0.990108 1.170799 1.455333 2.077561 2.252672 2.502315 2.685945 +0.204334 0.287844 0.394810 0.761295 1.501200 1.784709 1.935569 2.152830 2.349263 2.545639 +0.342976 0.527539 0.917466 1.160585 1.499531 1.761830 2.095272 2.301872 2.540570 2.694692 +0.202374 0.333367 0.480179 0.708677 0.819505 1.105285 1.806641 1.953348 2.610844 2.797497 +0.307033 0.368471 0.602486 1.108611 1.413347 1.528636 1.798519 1.986138 2.169052 2.437256 +0.144073 0.196932 0.386988 0.819061 1.289767 1.625073 1.901924 2.136105 2.483019 2.707970 +0.176760 0.268627 0.662082 1.056866 1.547973 1.711386 1.972939 2.249909 2.544471 2.761094 +0.191409 0.292985 0.492193 0.800526 1.041836 1.278546 1.836626 2.028677 2.249387 2.627785 +0.324102 0.399146 0.687435 0.868704 1.022957 1.582084 1.853847 1.981885 2.554914 2.677057 +0.229172 0.302836 0.481418 0.704363 0.967567 1.828269 2.097295 2.258467 2.549112 2.704652 +0.467124 0.696788 0.939500 1.094987 1.277543 1.488496 1.896279 2.158470 2.474182 2.659994 +0.175418 0.234039 0.367674 0.513586 0.747619 1.008405 1.583161 2.053114 2.363292 2.681153 +0.410273 0.561949 0.736215 0.956685 1.135688 1.288424 1.750612 1.937714 2.151318 2.489336 +0.204541 0.277613 0.529607 0.722971 1.199975 1.447336 1.715634 1.921054 2.357781 2.507488 +0.253116 0.311907 0.696982 1.320082 1.575418 1.705324 2.005068 2.168666 2.461879 2.665053 +0.163657 0.237902 0.393374 0.609490 0.854272 1.089980 1.526387 1.842337 2.126252 2.679051 +0.448627 0.530664 0.812719 1.095201 1.207641 1.575411 1.884209 2.034297 2.553007 2.688355 +0.262717 0.338748 0.512685 1.003543 1.480178 1.622083 1.828518 2.142415 2.356457 2.511530 +0.417111 0.636688 1.036571 1.319877 1.679924 1.873389 2.073722 2.249396 2.507732 2.651054 +0.263698 0.461151 0.618737 0.830471 1.004041 1.158874 1.801566 2.020222 2.306558 2.743041 +0.387779 0.575108 0.729791 0.932981 1.361163 1.505161 1.751183 2.068466 2.338260 2.487637 +0.181510 0.265666 0.454631 1.082382 1.287303 1.579202 1.851178 2.096963 2.467237 2.646930 +0.277668 0.345119 0.602341 1.179200 1.378990 1.545625 1.813861 1.962590 2.491799 2.664453 +0.179320 0.248080 0.456925 0.722589 1.126932 1.579450 1.799397 1.950668 2.484125 2.707238 +0.314322 0.381145 0.608651 0.727613 0.890472 1.610280 2.136172 2.258358 2.596376 2.709780 +0.189539 0.266068 0.419729 0.651693 1.410161 1.643106 1.854810 2.275582 2.492054 2.722009 +0.254466 0.313038 0.594149 1.012536 1.688813 1.935465 2.119184 2.287869 2.535543 2.667926 +0.134691 0.171906 0.302740 0.492936 0.899551 1.229188 1.733940 2.012878 2.446339 2.742762 +0.231556 0.365068 0.680761 0.889142 1.111338 1.295904 1.542636 1.971784 2.427562 2.631912 +0.222525 0.305606 0.527193 0.687519 1.181381 1.671764 1.863683 2.072023 2.634517 2.779272 +0.178770 0.237415 0.375160 0.856692 1.673680 1.813743 2.016791 2.272421 2.522601 2.735959 +0.193532 0.268731 0.451328 0.753471 0.984854 1.285349 1.685647 1.884123 2.091677 2.243418 +0.476037 0.651610 0.801054 1.010162 1.241374 1.355840 1.775976 2.086152 2.272907 2.454351 +0.211657 0.308331 0.421366 0.865966 1.418774 1.556743 1.786149 2.020332 2.198585 2.631981 +0.203789 0.490794 1.010137 1.275006 1.472213 1.810140 2.170639 2.437660 2.662122 2.788061 +0.174355 0.252095 0.674715 0.842194 1.055087 1.278000 1.698680 2.070561 2.399385 2.657430 +0.245109 0.324049 0.628822 0.927910 1.123601 1.580066 1.878640 2.054601 2.358721 2.546838 +0.182644 0.253804 0.386248 0.614056 1.364821 1.545877 2.040174 2.218827 2.419010 2.624609 +0.295605 0.367794 0.690701 1.055162 1.186600 1.644453 1.944154 2.101444 2.562120 2.691268 +0.220878 0.289573 0.640307 0.822072 1.144055 1.567797 1.766410 1.908109 2.103459 2.560489 +0.403453 0.526298 0.732204 0.901150 1.035869 1.339383 1.783990 1.941961 2.371032 2.626653 +0.212825 0.258570 0.471588 0.685549 1.263740 1.821051 2.163822 2.288398 2.628063 2.788155 +0.401181 0.642053 1.032473 1.236110 1.444450 1.686678 2.006722 2.228515 2.572112 2.723964 +0.239433 0.341091 0.492629 0.707630 0.881426 1.030816 1.719255 2.344056 2.579063 2.756942 +0.294093 0.382770 0.577412 1.009281 1.313036 1.419303 1.744673 2.094230 2.289039 2.475843 +0.169805 0.236922 0.403314 0.638995 1.176446 1.352145 1.665573 1.909756 2.150120 2.716243 +0.210447 0.277913 0.452474 1.402686 1.513430 1.720944 1.903938 2.278499 2.583756 2.743179 +0.159574 0.225382 0.374008 0.714137 1.011253 1.371713 1.699162 1.871587 2.027056 2.491194 +0.258602 0.557253 0.819720 1.038856 1.301470 1.445358 1.830613 2.098171 2.320809 2.541075 +0.232756 0.282242 0.631974 0.898694 1.537444 1.869217 2.063967 2.234463 2.498226 2.633517 +0.580133 0.997946 1.320956 1.481874 1.731605 1.898579 2.120712 2.290128 2.530088 2.651657 +0.211840 0.307093 0.453360 0.945579 1.250815 1.490290 1.724135 2.281097 2.562699 2.752602 +0.314276 0.493555 0.667782 0.896500 1.323006 1.482618 1.667487 1.974415 2.427345 2.555679 +0.182455 0.261592 0.418011 1.050927 1.261387 1.443370 1.665467 1.939030 2.444695 2.638451 +0.241570 0.306934 0.491293 1.105950 1.554827 1.666520 1.923917 2.087652 2.367600 2.654889 +0.190084 0.254850 0.454062 0.724519 1.083362 1.393887 1.892335 2.088856 2.321764 2.484299 +0.306497 0.389831 0.721793 0.839714 1.124754 1.652401 1.822919 2.273310 2.569195 2.669599 +0.186200 0.273460 0.383201 0.564758 1.511073 1.845018 1.998284 2.194096 2.388693 2.587923 +0.300722 0.478218 0.823364 1.127490 1.591141 1.871349 2.174720 2.403181 2.624785 2.782405 +0.228884 0.358342 0.504622 0.795874 1.005622 1.152613 1.908053 2.124794 2.372473 2.797584 +0.171885 0.248234 0.432842 0.833143 1.040892 1.269289 1.661635 1.918629 2.158962 2.653403 +0.140943 0.193684 0.343025 0.562303 1.069552 1.543330 1.824473 1.961637 2.463513 2.770537 +0.173053 0.245656 0.360656 0.960618 1.589535 1.689906 1.984141 2.142998 2.588389 2.759403 +0.240180 0.429951 0.637440 0.786596 1.069147 1.226573 1.470883 1.952052 2.195064 2.615973 +0.367862 0.471897 0.730834 1.082320 1.226293 1.462927 1.928169 2.052466 2.406737 2.662458 +0.247175 0.358209 0.535946 0.781876 1.363697 1.635239 1.807233 1.993776 2.452769 2.601039 +0.445578 0.687898 1.114108 1.301027 1.577397 1.886042 2.224903 2.436534 2.659695 2.761031 +0.214389 0.336025 0.487794 0.759534 0.970518 1.141100 1.457335 1.624644 2.306922 2.715265 +0.377300 0.466775 0.716121 1.083781 1.256543 1.411238 1.789433 1.936372 2.205572 2.562355 +0.148362 0.214593 0.545023 0.840437 1.193325 1.480659 1.791868 2.083419 2.410537 2.676129 +0.150403 0.278398 0.792676 0.976680 1.218845 1.405245 1.775056 2.162458 2.547861 2.746383 +0.236301 0.328633 0.630867 0.839915 1.042349 1.298870 1.627752 1.839491 2.298928 2.493962 +0.337889 0.497920 0.711277 0.850420 0.992027 1.246884 1.710746 2.086682 2.527158 2.707162 +0.172215 0.236540 0.372897 0.525146 1.182577 1.735727 1.927035 2.114619 2.319170 2.542782 +0.415304 0.624807 0.906616 1.117841 1.446155 1.669417 1.948413 2.172815 2.504530 2.670754 +0.265417 0.407241 0.613894 0.816534 0.980063 1.156061 1.756747 2.274851 2.497193 2.712242 +0.276440 0.468209 0.649518 0.816686 1.195171 1.355517 1.549226 1.935272 2.217871 2.426979 +0.188925 0.277012 0.412665 0.672627 1.354807 1.514523 1.699988 2.144554 2.382186 2.586077 +0.242630 0.352485 0.912974 1.343781 1.604428 1.801867 2.014791 2.193072 2.460809 2.631999 +0.190903 0.285841 0.449070 0.760328 0.954285 1.182936 1.692638 1.878163 2.276840 2.465963 +0.220659 0.300374 0.721694 0.947306 1.298330 1.562980 1.760618 1.888247 2.506445 2.689675 +0.213168 0.290928 0.695227 0.918179 1.378186 1.631987 1.847886 2.003072 2.358358 2.619347 +0.328586 0.517244 0.937320 1.376238 1.574840 1.764347 2.058630 2.224334 2.584444 2.756653 +0.248486 0.367007 0.562147 0.750632 0.902785 1.147563 1.637415 1.912062 2.413993 2.605696 +0.310691 0.477895 0.670796 0.940507 1.418293 1.563497 1.805141 2.114076 2.376358 2.535155 +0.256555 0.414210 0.559427 0.981289 1.191646 1.378307 1.678398 1.849306 2.576704 2.756630 +0.291424 0.335003 0.750149 1.289655 1.437209 1.599989 1.803177 1.967415 2.601748 2.733761 +0.195254 0.279513 0.451755 0.649111 0.828694 1.609509 1.914906 2.091219 2.319589 2.534899 +0.222304 0.332624 0.475678 0.685205 1.030332 1.737223 1.920979 2.378290 2.706719 2.817726 +0.164833 0.240093 0.359862 0.801929 1.513677 1.641713 2.040524 2.248843 2.488659 2.714025 +0.214777 0.287322 0.572644 1.145070 1.367112 1.752687 2.042424 2.222067 2.543047 2.697885 +0.226099 0.330382 0.474439 0.687757 0.799187 1.319837 1.944566 2.078099 2.367800 2.508460 +0.244540 0.392163 0.553692 0.729765 1.247865 1.448376 1.617590 2.074636 2.340052 2.518064 +0.175381 0.314231 0.446023 0.797404 1.328458 1.439727 1.793346 1.939571 2.468800 2.721651 +0.205808 0.293670 0.452447 1.074268 1.288235 1.655635 1.857504 2.364687 2.639812 2.798144 +0.253926 0.392653 0.587584 0.800134 0.976310 1.185587 1.570687 1.821414 2.090893 2.349021 +0.322461 0.410912 0.723569 1.060644 1.201524 1.400360 1.579189 1.788759 2.460242 2.616602 +0.211266 0.304981 0.436011 0.771978 1.490623 1.677748 1.886227 2.113497 2.326353 2.727265 +0.235012 0.406911 0.864785 1.291485 1.708295 1.938554 2.179896 2.352404 2.563792 2.711446 +0.176814 0.268620 0.445837 0.823113 1.029776 1.271571 1.623388 1.811215 2.402140 2.614165 +0.241865 0.339268 0.507509 1.003677 1.204347 1.372561 1.940795 2.101371 2.385606 2.669975 +0.230878 0.334743 0.500370 0.879929 1.021894 1.533770 1.970789 2.128971 2.567262 2.717288 +0.297505 0.451574 0.748848 0.988527 1.366237 1.606668 1.894660 2.174481 2.521427 2.759168 +0.199265 0.271145 0.498160 0.854679 1.172103 1.364148 1.762079 1.969095 2.173538 2.311630 +0.222173 0.424864 0.564942 0.829809 1.038172 1.194055 1.720601 1.858086 2.431760 2.741461 +0.181961 0.226819 0.390513 0.556339 1.056596 1.553065 2.128349 2.258018 2.602497 2.802121 +0.357600 0.565047 1.153012 1.350312 1.533576 1.718542 1.957892 2.175347 2.505650 2.678495 +0.162257 0.236808 0.374039 0.570569 0.748034 1.172262 1.823392 2.053032 2.513769 2.772072 +0.305794 0.465870 0.645121 0.882650 1.141294 1.266856 1.701581 2.002881 2.184124 2.411254 +0.231652 0.380738 0.549642 0.837410 1.225266 1.332971 1.851582 2.119371 2.315077 2.732108 +0.235449 0.286771 0.684809 1.346663 1.526630 1.703476 2.101486 2.254546 2.577181 2.718994 +0.233870 0.446515 0.605080 0.814654 1.054963 1.178801 1.633158 1.849743 2.139379 2.732772 +0.271706 0.335152 0.857227 1.253741 1.387189 1.702170 1.896767 2.191114 2.479999 2.601359 +0.237386 0.314549 0.438339 0.912164 1.577764 1.877791 2.032790 2.197037 2.412322 2.536484 +0.361168 0.574093 1.023843 1.468517 1.690562 1.917374 2.187368 2.334035 2.669095 2.806291 +0.278480 0.398742 0.573342 0.839212 1.073888 1.222093 1.691681 2.165258 2.377410 2.536882 +0.286018 0.447947 0.615060 0.849446 1.319465 1.463583 1.769948 2.001035 2.189431 2.450384 +0.219440 0.301601 0.668534 0.861094 1.210001 1.498673 1.745120 1.877765 2.314377 2.619597 +0.223591 0.352153 0.598841 1.217893 1.359082 1.591744 1.771089 2.213856 2.561538 2.735416 +0.176857 0.236601 0.395107 0.634632 1.133495 1.335116 1.770374 1.981313 2.206556 2.339716 +0.334735 0.402265 0.659168 0.781639 0.975228 1.664999 1.872069 2.047533 2.476961 2.573979 +0.215968 0.284755 0.524241 0.781460 1.334811 1.772379 1.953878 2.194209 2.578250 2.741939 +0.298193 0.489879 0.812985 1.183691 1.496418 1.679975 2.108792 2.316557 2.673779 2.851610 +0.312989 0.415446 0.618011 0.899096 1.083683 1.263384 1.887396 2.243064 2.419448 2.570481 +0.244471 0.431115 0.601512 0.813139 1.102163 1.221061 1.692440 2.033163 2.221795 2.619838 +0.150949 0.219060 0.349217 0.611327 1.077112 1.250547 1.915518 2.083980 2.449999 2.792543 +0.161611 0.218964 0.445377 0.927863 1.451151 1.768464 2.130012 2.366724 2.666003 2.814049 +0.196000 0.297256 0.497266 0.691900 1.089877 1.273685 1.513723 2.006472 2.273782 2.572221 +0.335268 0.460795 0.685187 0.867664 1.013807 1.479554 2.011994 2.168476 2.572643 2.717564 +0.257604 0.340872 0.499757 0.843052 1.396548 1.831688 2.034226 2.170332 2.422618 2.540496 +0.417663 0.631718 0.955424 1.197319 1.659797 1.879883 2.168797 2.359053 2.578087 2.698249 +0.162052 0.251583 0.439900 0.660911 0.903902 1.320296 1.624758 1.778577 2.530531 2.799705 +0.256861 0.322803 0.685370 1.086437 1.263276 1.569879 1.851654 2.014946 2.264711 2.447006 +0.125192 0.176171 0.336135 0.781600 1.200220 1.439966 1.805419 2.077525 2.462470 2.738186 +0.102286 0.191322 0.774556 1.076151 1.369456 1.627146 1.973015 2.236001 2.609367 2.812985 +0.173442 0.232622 0.491622 0.844157 1.095241 1.370797 1.696966 2.051411 2.316061 2.502053 +0.257531 0.343598 0.654071 0.838985 1.048102 1.487473 1.725385 1.897417 2.430505 2.585998 +0.197900 0.276312 0.440283 0.705103 1.267341 1.740297 1.934483 2.154007 2.400200 2.624136 +0.409590 0.596785 0.983751 1.181770 1.371153 1.502380 1.758280 2.018571 2.380053 2.592151 +0.231819 0.332890 0.483514 0.644585 0.816808 0.926308 1.403298 2.233007 2.467857 2.678461 +0.258610 0.340064 0.670485 0.908467 1.107611 1.456243 1.759580 1.932179 2.113118 2.310135 +0.184377 0.249203 0.410806 0.587907 1.302501 1.510319 1.724432 1.981890 2.282904 2.422125 +0.254110 0.313328 0.659859 1.265819 1.412949 1.665930 1.927154 2.101984 2.551446 2.673030 +0.161592 0.237480 0.376535 0.637094 0.823028 1.137613 1.696425 1.875770 2.403632 2.639617 +0.384501 0.466812 0.740791 0.938093 1.062352 1.509284 1.749143 1.917797 2.548157 2.671506 +0.333872 0.419367 0.638994 1.092624 1.520550 1.649447 1.866619 2.148941 2.346723 2.506140 +0.426216 0.686997 1.235881 1.428854 1.611591 1.792860 2.017593 2.233715 2.547773 2.696609 +0.262949 0.367509 0.530429 0.741867 0.872474 1.069602 1.745566 2.061187 2.283843 2.494178 +0.335782 0.547236 0.716211 0.919077 1.275686 1.408437 1.685118 1.967394 2.217639 2.446679 +0.227629 0.330991 0.486068 1.117571 1.304983 1.510130 1.757258 1.946972 2.625557 2.782597 +0.359850 0.436633 0.750634 1.201513 1.337571 1.594835 1.970273 2.113840 2.573808 2.729963 +0.211871 0.304028 0.512758 0.663762 1.086354 1.633335 1.818017 2.129577 2.391080 2.600766 +0.196092 0.279726 0.434488 0.624802 0.772358 1.404377 1.948777 2.160918 2.629996 2.775175 +0.176304 0.262521 0.373719 0.581101 1.520108 1.736172 1.933230 2.140172 2.358130 2.753524 +0.254932 0.381411 0.806187 1.102292 1.534523 1.750280 1.970904 2.159871 2.455922 2.658405 +0.190385 0.288656 0.449066 0.678174 0.812376 1.449326 1.728657 1.966320 2.638812 2.789546 +0.251178 0.386509 0.609363 0.797102 1.024159 1.181726 1.454661 2.012630 2.493092 2.698933 +0.166654 0.266226 0.385171 0.711990 1.397897 1.532347 1.915974 2.088003 2.565270 2.789532 +0.238453 0.306036 0.449309 0.876277 1.521437 1.933982 2.134420 2.267986 2.537601 2.658253 +0.161634 0.219919 0.353206 0.524346 0.961806 1.207713 1.687918 1.916939 2.161870 2.320657 +0.413612 0.597095 0.793763 0.986290 1.281786 1.412660 1.652465 2.016091 2.384164 2.528578 +0.228655 0.341562 0.480989 0.988605 1.371003 1.477423 1.861026 2.015852 2.339752 2.773153 +0.259092 0.597012 0.985224 1.321740 1.643354 1.957367 2.288682 2.497474 2.716492 2.844467 +0.185652 0.304664 0.446232 0.864434 1.091795 1.273770 1.942575 2.095543 2.524648 2.768245 +0.176687 0.256678 0.745652 0.934909 1.283760 1.440062 1.765242 2.122092 2.388099 2.590551 +0.189805 0.275637 0.440995 0.821356 1.256020 1.410985 1.929781 2.120144 2.396030 2.604643 +0.266823 0.337688 0.819408 1.134754 1.289204 1.777028 1.982886 2.221748 2.590286 2.698098 +0.205348 0.276512 0.527305 0.727412 1.024647 1.653979 1.904178 2.046613 2.217922 2.455661 +0.293498 0.424494 0.613795 0.956130 1.133981 1.324804 1.809031 1.953922 2.293854 2.575884 +0.183120 0.249650 0.376204 0.543914 1.350827 1.907220 2.092551 2.255705 2.514391 2.687901 +0.541205 0.789796 1.058955 1.269415 1.503899 1.702191 1.970176 2.175444 2.496810 2.652238 +0.229326 0.339475 0.451881 0.661210 0.795832 1.073796 2.027104 2.206371 2.478903 2.726784 +0.330006 0.506868 0.673076 0.887406 1.228765 1.349226 1.781290 2.086583 2.277762 2.480029 +0.138389 0.200001 0.396259 0.811975 1.090712 1.460413 1.745493 1.904269 2.348250 2.699886 +0.176584 0.242161 0.378270 1.177848 1.564718 1.678166 1.951618 2.121413 2.580109 2.737132 +0.145852 0.198423 0.335644 0.550505 1.019727 1.371188 1.797635 1.943825 2.207490 2.746470 +0.385078 0.503696 0.703239 1.069987 1.365736 1.472054 1.825827 2.159636 2.371283 2.520972 +0.284950 0.388050 0.507352 0.879125 1.523530 1.776238 1.929597 2.157558 2.447986 2.586398 +0.491116 0.756155 1.255200 1.522460 1.776579 2.028121 2.286059 2.429774 2.679106 2.776164 +0.252477 0.396081 0.713022 0.861502 1.152223 1.370802 1.614010 2.144798 2.574072 2.712530 +0.282756 0.438437 0.613566 0.847746 1.260772 1.379059 1.642202 2.137540 2.368369 2.522163 +0.203971 0.322195 0.479842 0.953133 1.211278 1.397635 1.800812 1.954516 2.403478 2.573713 +0.264533 0.358424 0.628768 1.111242 1.340246 1.506485 1.999590 2.194109 2.461411 2.667361 +0.177730 0.223680 0.394553 0.556177 0.947415 1.500640 1.733528 1.926046 2.261466 2.436054 +0.314223 0.363636 0.727886 0.851880 1.053844 1.798132 1.974354 2.182595 2.537995 2.629683 +0.201778 0.275500 0.404891 0.747466 1.500050 1.841184 1.998843 2.226807 2.481989 2.669506 +0.132164 0.314955 0.821473 1.196038 1.426590 1.699934 2.036856 2.323497 2.685471 2.828965 +0.223374 0.347335 0.507730 0.773547 0.967916 1.134129 1.991403 2.306567 2.521364 2.788746 +0.312742 0.449784 0.583287 0.934234 1.268567 1.365063 1.569295 1.687046 2.077299 2.595022 +0.124286 0.162126 0.290730 0.654031 1.231658 1.538458 1.893070 2.184784 2.562637 2.798224 +0.177049 0.251654 0.367891 0.912504 1.557576 1.693045 1.898991 2.072136 2.350163 2.646045 +0.240517 0.378333 0.547809 0.754272 0.973321 1.103670 1.574418 2.028049 2.211127 2.562709 +0.427795 0.519003 0.771284 0.937240 1.086617 1.609879 1.878750 2.052791 2.534118 2.657149 +0.224370 0.317969 0.439666 0.812931 1.398497 1.626632 1.794178 2.114000 2.309157 2.496836 diff --git a/gr-vocoder/lib/codec2/codebook/lspjvm2.txt b/gr-vocoder/lib/codec2/codebook/lspjvm2.txt new file mode 100644 index 0000000000..2b7cabf940 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspjvm2.txt @@ -0,0 +1,513 @@ +5 512 +0.005167 -0.037310 -0.002159 0.016849 0.130396 +0.039445 0.031680 -0.074412 -0.031499 0.060536 +0.019479 -0.030564 -0.048137 -0.056279 -0.027829 +0.020585 -0.011270 0.023913 -0.005706 0.011407 +-0.023217 0.107455 -0.037777 0.004070 -0.017279 +-0.090444 0.007641 0.099001 -0.047913 -0.017199 +0.022700 -0.063865 0.047213 0.043843 -0.036225 +0.001312 -0.123861 -0.038988 0.058666 0.074541 +0.039508 0.110300 0.013954 -0.119228 -0.035807 +-0.047392 0.027035 -0.004412 -0.032650 -0.037150 +0.002491 -0.045447 0.158260 0.022828 -0.030124 +-0.047856 0.088744 -0.009678 0.106688 0.087690 +-0.027941 0.044084 -0.028500 0.018736 -0.069969 +-0.035358 -0.051568 -0.030459 -0.017899 0.027632 +-0.018607 -0.123557 0.019228 0.057485 -0.028907 +0.019057 0.038151 -0.080220 0.034222 0.023081 +0.021312 0.041905 0.112903 0.024092 0.093974 +-0.116679 0.015344 -0.066059 -0.096437 0.004041 +-0.022464 -0.116260 0.047819 -0.003921 -0.073504 +0.001975 -0.025869 0.028200 0.122690 0.010627 +-0.035672 0.078963 -0.009686 0.000743 -0.147582 +0.016932 -0.020291 -0.096896 -0.237875 -0.029121 +0.017376 -0.040130 -0.053865 0.154060 -0.013215 +0.015215 -0.019023 -0.070604 0.032265 0.040340 +0.102365 -0.022746 0.019895 0.050570 0.008845 +-0.034134 0.044441 -0.049387 -0.140481 0.072570 +0.013023 -0.006079 0.037574 0.004937 -0.081501 +0.003696 0.049908 0.007355 0.000403 0.026006 +-0.008466 0.080680 0.061382 -0.108985 -0.088060 +-0.012275 -0.081061 0.020333 -0.079001 0.068724 +-0.014081 -0.042609 0.093365 0.044120 0.000303 +0.063391 0.096574 -0.105424 0.039041 0.010412 +-0.054031 -0.084948 0.080406 -0.035883 0.137428 +0.063037 0.050562 0.024690 -0.031394 0.130320 +-0.015501 -0.078884 -0.076886 -0.013864 -0.073587 +0.048778 0.003814 -0.031125 0.046897 0.028304 +0.048692 0.132795 0.065450 0.059487 -0.042396 +-0.176999 0.056943 -0.004135 -0.049378 -0.041083 +-0.039445 -0.016292 -0.004550 0.062010 -0.079613 +-0.054566 -0.008476 -0.016710 0.049202 0.025758 +-0.078723 0.092091 0.096536 -0.065079 0.021161 +0.076657 0.009203 -0.036866 -0.016559 0.012823 +0.008225 -0.003006 0.108033 0.043120 -0.060870 +-0.019346 0.022790 -0.001728 0.062304 -0.016965 +-0.001302 -0.014490 -0.041803 -0.034058 -0.197066 +-0.033655 -0.127217 -0.108681 -0.010571 -0.004705 +-0.015553 -0.086069 0.034109 -0.101379 0.002068 +-0.004003 -0.044637 -0.068617 0.052228 -0.047812 +-0.043307 0.035681 0.042207 -0.055946 0.055944 +-0.026792 -0.012601 -0.056710 -0.021094 0.105842 +-0.025598 -0.078858 -0.013487 0.030728 -0.031956 +0.031444 0.022763 0.025364 0.121366 0.070736 +-0.084556 0.098118 -0.024301 -0.058655 -0.043194 +-0.011752 -0.043781 0.091051 -0.071201 -0.020980 +0.082904 -0.031657 -0.088247 0.066709 -0.079182 +-0.012151 0.011796 -0.010589 0.100656 0.094539 +0.035967 0.025338 0.071826 0.009741 -0.040209 +0.006866 -0.015095 -0.168469 -0.056133 0.060145 +0.045830 -0.068969 0.034551 0.015842 -0.092809 +0.054699 0.138744 0.001726 0.006927 0.005167 +0.016978 0.046384 -0.060183 -0.040742 -0.072692 +-0.022489 -0.029728 -0.065018 -0.124741 0.044927 +-0.029057 -0.037154 0.031068 0.060086 0.009984 +0.009311 -0.006957 -0.105508 0.059637 -0.019564 +-0.068154 -0.066443 0.000799 0.028579 0.097063 +0.096936 0.030230 -0.034623 -0.088918 0.040334 +0.019439 -0.050707 -0.003294 -0.028505 -0.053599 +0.062460 -0.070688 -0.016465 -0.035680 0.017378 +0.009363 0.048761 0.043374 0.039587 -0.023232 +-0.067033 0.042663 0.054070 -0.042797 -0.089391 +-0.030497 -0.050249 0.059528 0.089089 -0.029633 +0.064125 -0.086614 -0.002005 0.080620 0.000502 +-0.003490 0.097336 0.099565 0.015648 0.006691 +0.077668 0.016572 0.035404 -0.046026 0.017237 +-0.048631 0.009314 0.141479 0.017079 0.043796 +-0.106474 0.145951 0.057740 0.011250 -0.059443 +0.027572 0.026650 0.008527 0.002949 -0.037680 +-0.077991 -0.090617 0.003420 -0.046010 0.007354 +0.019056 -0.128651 0.016464 0.004584 -0.030883 +-0.092069 0.038976 -0.081840 0.066695 -0.047340 +0.003513 0.040613 0.046815 -0.023406 0.062389 +0.021759 0.024928 -0.018922 -0.048006 0.063800 +-0.014416 -0.050333 0.042628 -0.114934 -0.101450 +0.062139 0.029295 -0.065908 0.111463 0.050781 +-0.022707 0.135414 0.003548 0.134535 -0.048259 +-0.092344 -0.027727 0.016343 -0.060786 -0.081502 +-0.005412 -0.026229 -0.143331 0.052404 -0.077298 +-0.035919 -0.041968 -0.106108 -0.004369 0.065028 +0.096370 -0.053299 0.043317 -0.049735 0.049815 +0.032324 0.051309 -0.009607 -0.205917 0.005023 +-0.054316 -0.022895 0.099327 -0.006927 -0.076574 +-0.111024 0.111026 0.038381 -0.060368 0.064238 +-0.034316 0.026846 0.025740 -0.076162 -0.163904 +0.055955 -0.056885 0.014831 -0.120715 0.090938 +0.035289 -0.036439 0.060012 0.080302 0.036215 +0.065250 0.083030 -0.058784 0.104826 -0.051805 +-0.011099 -0.006420 0.053042 0.024127 0.092534 +0.058569 -0.033442 0.025186 -0.018222 0.117744 +0.044345 -0.042456 -0.043767 -0.021378 -0.121965 +0.027371 0.052731 -0.020316 0.036912 0.115357 +0.031150 0.041547 0.059267 -0.039672 -0.086918 +-0.162369 0.024801 0.031725 0.083400 -0.034463 +0.000272 -0.008147 -0.002016 0.131953 -0.092911 +-0.091944 -0.062864 -0.005221 0.063647 -0.012658 +0.042685 0.067952 0.038644 -0.153221 0.096841 +0.108299 0.089446 -0.047164 0.004196 -0.043268 +-0.035456 0.050838 0.070444 0.084465 -0.079980 +-0.048916 0.057726 0.023894 0.027653 0.017775 +0.015461 -0.030287 -0.022245 0.052081 -0.150947 +-0.002682 -0.056774 -0.123366 -0.091754 0.006536 +0.006473 -0.143025 0.054690 -0.043189 0.032970 +0.027446 0.033127 -0.132722 -0.010417 -0.080097 +-0.018187 0.001858 0.111290 -0.090749 0.059434 +-0.068738 0.090679 -0.145070 -0.065277 0.063514 +-0.003982 -0.056382 -0.003673 0.015845 -0.073396 +0.043688 0.002836 0.069211 0.124852 -0.053313 +-0.040946 0.070440 -0.107024 -0.019199 -0.033672 +-0.001440 0.021680 0.110595 -0.053452 -0.052426 +0.035461 -0.028179 -0.049041 0.022580 -0.010989 +-0.002913 -0.051691 -0.075881 0.037241 0.076377 +0.034735 -0.031556 0.073516 -0.001427 0.016296 +-0.017537 0.003346 -0.099774 -0.067624 -0.044257 +-0.018202 0.030622 0.012773 0.046475 -0.121785 +-0.057265 0.116179 -0.079916 0.066396 0.050104 +-0.013177 0.057766 -0.047879 -0.109526 -0.146491 +0.032675 -0.049318 -0.057045 -0.080068 0.089621 +-0.046564 -0.029992 0.040828 0.029281 -0.037369 +-0.009731 -0.082145 -0.117622 0.117077 0.037369 +0.000820 -0.106634 -0.007967 0.000812 0.140637 +0.036530 0.062121 -0.065504 -0.094930 0.121336 +0.017530 -0.017330 -0.040402 -0.018255 0.010992 +0.019746 -0.027564 0.033588 0.042466 -0.003143 +0.013767 0.084179 0.033753 -0.017279 -0.009676 +-0.006452 0.032645 0.031852 -0.030975 -0.043384 +-0.005433 -0.015258 0.053273 0.054748 -0.064736 +0.008959 -0.141223 -0.032957 -0.015079 0.018198 +-0.001681 0.143079 0.076000 0.001037 -0.048744 +0.022062 0.026030 -0.008263 -0.050353 -0.023037 +-0.036477 -0.051733 0.137823 -0.034438 -0.007573 +-0.004256 0.064218 0.075183 0.095106 0.026497 +0.026360 0.009791 -0.058039 0.053315 -0.077817 +-0.033283 -0.081151 -0.055220 0.004268 0.017539 +-0.007329 -0.117200 0.093220 0.037359 0.002718 +0.010749 0.018281 -0.075800 -0.024889 0.005720 +0.022129 0.035613 0.036187 0.032246 0.105439 +-0.073766 0.016887 -0.059934 -0.049471 0.073520 +-0.024041 -0.104642 0.023557 -0.059746 -0.043871 +0.022311 -0.000250 -0.074027 0.198593 0.102732 +0.024478 0.077658 -0.060042 -0.018229 -0.149648 +-0.009871 -0.105822 0.007585 -0.161459 -0.041121 +-0.021460 0.009020 -0.065018 0.111801 -0.024953 +0.074594 -0.026041 -0.062859 0.009199 0.069609 +0.078672 -0.033414 0.054128 0.005408 -0.016273 +0.052076 0.107610 -0.067518 -0.096400 0.033703 +-0.014350 -0.024676 0.056254 -0.043770 -0.060847 +-0.004185 0.073550 -0.057830 -0.016644 0.029096 +0.005755 0.026472 0.040449 -0.091950 -0.048538 +-0.034439 -0.107938 0.090712 -0.117001 0.043170 +-0.006505 -0.035277 0.117316 0.127002 0.047906 +-0.001441 0.118379 -0.132165 0.007380 0.023823 +-0.020120 -0.083725 0.047284 0.023795 0.074123 +-0.013439 0.024994 0.060254 -0.069120 0.166373 +-0.024228 -0.063150 -0.046506 -0.077202 -0.054592 +-0.006571 0.010335 -0.006568 0.003982 0.075837 +0.008643 0.136339 -0.005502 0.033910 -0.066379 +-0.127371 -0.006954 0.039770 -0.070123 0.060925 +-0.046386 -0.026420 -0.005280 0.103509 -0.022310 +-0.003740 -0.014999 -0.037770 0.080005 0.025231 +-0.054995 0.071017 0.009442 -0.075737 0.013441 +0.051947 0.027097 -0.070351 -0.055705 -0.021115 +0.021387 0.029232 0.163331 -0.032380 0.010008 +-0.011987 -0.028631 0.002665 0.014770 -0.009558 +-0.034325 0.015830 -0.091253 -0.012677 -0.107378 +-0.034624 -0.047725 -0.102330 0.042525 -0.006869 +0.014048 -0.043127 0.052384 -0.047473 0.055102 +0.009744 -0.033646 -0.081755 -0.001464 -0.016223 +-0.036697 -0.002279 0.023279 -0.036221 0.101478 +-0.058454 0.065074 0.003524 0.005010 0.097182 +-0.038171 -0.037943 -0.009994 -0.033355 -0.044552 +0.041318 0.065041 0.000092 0.100816 0.029007 +-0.031803 0.183537 -0.009617 -0.010544 -0.028465 +0.006900 -0.014988 0.090490 -0.174817 0.027464 +0.063314 -0.049281 -0.001567 0.091421 -0.078603 +-0.004869 -0.063266 -0.001922 0.069338 0.081771 +0.058737 0.073195 0.081676 -0.047808 -0.025797 +-0.004185 0.033203 -0.125472 -0.108148 0.031258 +0.035192 0.029957 0.046675 0.047238 -0.088197 +0.033315 0.114919 -0.049180 0.025707 0.053843 +0.035182 0.140206 -0.058660 -0.025978 -0.019658 +-0.014847 -0.021051 -0.034385 -0.121789 0.173406 +-0.112251 -0.022333 0.071206 0.028998 0.046468 +0.067704 -0.026159 -0.158316 0.014936 0.040216 +-0.010137 -0.053492 0.004935 -0.011277 0.073852 +0.091261 0.114794 -0.014060 -0.051545 0.077316 +0.101258 -0.046137 0.022994 -0.066767 -0.065537 +0.049952 -0.043582 0.012823 0.009313 0.036343 +0.054885 0.037796 0.021940 0.013211 0.006019 +-0.099578 0.058596 -0.045463 -0.015632 -0.087141 +-0.019273 -0.033140 0.043796 0.119057 -0.081813 +-0.021538 -0.070453 -0.052551 0.077213 0.000094 +0.050268 0.092271 0.051688 -0.025224 0.075437 +0.027983 0.069205 0.031787 -0.099975 0.004387 +-0.002747 -0.056567 0.161394 0.000164 0.084189 +-0.124844 0.050329 0.009844 0.055877 0.055701 +0.030479 0.028843 -0.001076 -0.017173 -0.102770 +-0.038426 -0.133841 -0.035840 -0.072046 0.020206 +0.016438 -0.097885 0.041857 0.034601 0.030422 +-0.089192 -0.014112 -0.052276 0.012005 -0.029335 +-0.011331 0.101833 0.063827 0.044288 0.101597 +-0.034689 -0.027434 -0.017801 -0.079224 0.067103 +-0.027456 -0.098034 0.009448 -0.038986 -0.156729 +0.085023 0.033136 -0.021343 0.110701 -0.011901 +-0.006484 0.082023 -0.027094 0.091208 -0.013163 +-0.012223 0.005933 0.010653 -0.098119 -0.005304 +-0.021061 -0.058077 -0.073035 0.097856 -0.102847 +-0.035329 -0.092754 -0.101463 -0.048671 0.055015 +0.102145 0.062017 0.016002 0.036489 0.059000 +0.042861 0.025447 -0.019735 -0.107841 -0.033752 +-0.043982 -0.067059 0.051092 0.025235 -0.147107 +-0.016269 0.123009 0.035894 -0.020453 0.040013 +0.015557 0.015825 0.080712 -0.069630 -0.149739 +0.022006 -0.008848 0.040169 -0.095688 0.059575 +-0.030641 -0.061353 0.046302 0.104489 0.043372 +-0.001579 0.059737 -0.104073 0.042342 -0.048611 +-0.013811 -0.056255 0.107179 0.057433 0.084815 +0.030217 0.022360 -0.040342 -0.028775 0.120588 +0.041270 -0.045775 -0.030195 -0.106859 -0.104349 +0.072418 -0.003603 -0.013072 0.040728 0.086869 +0.091943 0.066517 0.024442 -0.030929 -0.032920 +-0.160336 -0.010347 -0.068458 0.017458 0.044823 +0.050694 0.067625 0.040303 0.113164 -0.038747 +-0.065558 -0.106357 -0.028352 0.121488 0.026548 +-0.007820 0.054872 0.094674 -0.099533 0.005231 +0.118132 0.042780 -0.065079 0.031440 0.043229 +-0.050024 0.015943 0.073917 0.034049 0.010548 +-0.024979 0.022639 0.027795 0.049491 0.048762 +-0.002738 -0.010783 -0.027637 -0.006986 -0.104141 +-0.066719 -0.061742 -0.067028 -0.053057 -0.003478 +-0.050948 -0.122196 0.022082 0.002595 0.015094 +0.006014 0.005784 -0.184537 -0.034872 -0.036104 +0.055412 0.006886 0.103488 -0.063001 0.096665 +-0.035533 0.009847 -0.095114 0.008588 0.023736 +-0.034278 -0.111970 -0.041172 0.039730 -0.102952 +0.063775 0.039273 0.109863 0.091800 0.030306 +-0.082206 0.089449 -0.058478 -0.029341 0.038389 +0.061057 -0.024711 0.111044 -0.035079 -0.027985 +0.014570 0.002046 -0.031545 0.058848 -0.019500 +-0.002475 -0.025589 -0.144358 0.063478 0.124927 +-0.014094 -0.010970 0.031621 -0.040043 0.004389 +0.025003 0.052397 -0.054526 -0.073469 0.026795 +-0.024697 0.024739 0.118299 0.014948 -0.132109 +0.020192 0.037815 -0.090270 0.049313 0.082764 +-0.022642 -0.006053 -0.038073 -0.057363 -0.107347 +0.033166 -0.027556 -0.019765 -0.111958 0.027773 +-0.063001 -0.052998 0.019353 -0.009646 -0.011270 +0.011872 -0.006508 -0.122226 0.059824 0.041779 +0.016445 -0.031890 -0.036310 0.013085 0.091631 +0.062866 0.054501 -0.117523 -0.010907 0.087026 +-0.014974 -0.035920 -0.048565 -0.019246 -0.043405 +-0.006959 0.006211 0.042370 0.014603 -0.006435 +0.019149 0.078038 -0.020556 0.018114 -0.036521 +-0.054036 0.007325 0.056349 -0.033497 -0.025960 +0.050184 -0.066536 0.091501 0.071356 -0.049044 +-0.032263 -0.095268 -0.008784 0.049033 0.036929 +0.020357 0.152151 0.040814 -0.063159 -0.024324 +-0.017084 0.011876 -0.015442 -0.019811 -0.000366 +-0.002700 -0.072981 0.109288 0.007473 -0.049442 +-0.054040 0.051947 0.019359 0.129160 0.021981 +0.002248 0.035262 -0.023141 0.064666 -0.078273 +-0.031663 -0.031343 -0.006058 -0.045421 0.017466 +-0.067122 -0.130784 0.067057 0.052460 -0.041165 +-0.004411 0.046453 -0.055461 0.048162 -0.009687 +0.021530 0.007211 0.104764 0.079849 0.086248 +-0.072791 0.001112 -0.027964 -0.071233 -0.013339 +0.007979 -0.118231 0.076826 -0.060762 -0.084358 +-0.011447 0.009765 0.014163 0.164784 -0.015892 +-0.020756 0.152509 -0.014014 -0.041853 -0.117008 +-0.011755 -0.005766 -0.086896 -0.139650 -0.032342 +0.025651 -0.007843 -0.039073 0.103397 -0.042591 +-0.005971 -0.001324 -0.053945 -0.000716 0.048977 +0.130185 0.028226 0.061179 0.024489 -0.021939 +-0.007019 0.054336 -0.010040 -0.095411 0.082406 +-0.032130 -0.015054 0.033059 0.002802 -0.080159 +-0.022452 0.077426 -0.015314 0.033583 0.028479 +0.023293 0.035078 0.006442 -0.110541 -0.106244 +-0.034737 -0.104140 -0.034570 -0.114316 0.079382 +0.006009 0.003901 0.080081 0.055082 0.012896 +0.064981 0.057219 -0.112986 0.003906 -0.028414 +-0.012383 -0.054541 0.077483 0.004267 0.123567 +0.007369 0.099856 0.023273 -0.028194 0.122030 +-0.036635 -0.126589 -0.034567 -0.028288 -0.065040 +0.014280 0.011435 -0.004867 0.043901 0.035395 +0.028599 0.075858 0.118460 0.070581 -0.051903 +-0.170905 0.050352 0.053514 -0.017139 0.021748 +-0.096610 0.008904 -0.001049 0.078787 -0.101201 +-0.026229 -0.019757 -0.035771 0.054142 0.068041 +-0.020328 0.099979 0.096623 -0.046957 -0.001733 +0.049586 0.052458 -0.031724 -0.028332 -0.005418 +0.046710 0.014238 0.133125 -0.005428 -0.080055 +-0.033226 0.034007 0.025272 0.033924 -0.044662 +-0.034690 -0.079173 -0.160689 -0.153893 -0.228771 +-0.002450 -0.083966 -0.168294 0.010694 -0.012167 +0.000004 -0.044377 0.023373 -0.077437 0.012178 +-0.015899 -0.010828 -0.062847 0.029927 -0.074557 +-0.053306 0.049688 0.057017 -0.022571 0.015337 +-0.046545 0.018895 -0.024848 -0.004424 0.165442 +-0.060201 -0.098629 -0.065190 0.036582 -0.038566 +0.051453 0.093478 0.039619 0.117535 0.090386 +-0.029366 0.108075 -0.016568 -0.093576 -0.048799 +-0.045599 -0.023619 0.070072 -0.109294 0.001548 +0.076285 -0.091274 -0.068829 0.000215 -0.046519 +-0.022512 -0.027067 0.014905 0.079017 0.140699 +0.061141 0.009178 0.097811 0.033468 -0.006666 +0.007163 -0.007578 -0.124238 -0.025271 0.017581 +0.042405 -0.034252 0.064890 0.002500 -0.139083 +0.009733 0.158179 0.014474 0.038913 0.056290 +-0.004998 0.075401 -0.030557 -0.038595 -0.049070 +-0.014680 -0.076306 -0.132365 -0.177693 0.091760 +-0.057238 -0.072379 0.050877 0.051489 0.028125 +0.004991 0.032621 -0.167359 0.041002 -0.007072 +-0.086405 -0.042263 -0.019757 -0.011524 0.066004 +0.085670 0.008071 -0.013614 -0.062142 0.083280 +0.000887 -0.075820 0.008295 -0.020136 -0.016886 +0.089657 -0.106260 -0.051491 -0.012687 0.054778 +0.011535 0.086613 0.053803 0.027164 -0.023825 +-0.040009 0.080987 0.026309 -0.000334 -0.085288 +-0.024208 -0.085040 0.096077 0.120527 -0.044181 +0.003034 -0.091142 0.006471 0.115971 -0.026358 +0.003489 0.083633 0.109975 -0.029425 0.061726 +0.056115 -0.006711 0.013158 -0.062917 -0.015029 +0.003354 0.031574 0.119045 0.022859 0.023777 +-0.068292 0.115604 0.031617 0.008953 0.006943 +0.014420 0.008569 -0.031547 -0.006857 -0.051690 +-0.086683 -0.108339 0.005093 -0.108646 -0.034720 +0.054273 -0.096753 0.050806 -0.021115 -0.025278 +-0.079997 0.027008 -0.034211 0.090949 0.005678 +0.019288 0.042083 0.062119 0.019301 0.040859 +-0.009113 0.022427 -0.004019 -0.060890 0.032884 +-0.012373 -0.037976 0.017625 -0.079369 -0.050788 +0.079720 -0.039347 -0.085324 0.091044 0.026653 +-0.063122 0.099371 -0.024736 0.084631 -0.100421 +-0.073313 0.014317 0.022555 -0.116051 -0.063966 +-0.009688 -0.063666 -0.131709 0.016744 -0.135028 +-0.003708 -0.043685 -0.121631 -0.036930 0.125776 +0.084333 0.010114 0.071231 -0.010395 0.059391 +0.017760 0.033034 -0.018996 -0.130540 0.025758 +-0.018261 -0.060044 0.127025 -0.032724 -0.107299 +-0.064538 0.090073 -0.010186 -0.066127 0.107025 +-0.010940 0.003083 0.019030 -0.023935 -0.140176 +0.003549 -0.042402 -0.010695 -0.185915 0.060835 +0.005405 -0.013822 0.029205 0.079338 0.068155 +0.071485 0.030282 -0.087207 0.073480 -0.027940 +0.004896 -0.033246 0.072637 0.018017 0.054712 +0.026184 -0.005287 0.034456 -0.036753 0.079232 +0.072707 0.004506 -0.039353 -0.015560 -0.071466 +0.010257 0.067446 -0.006598 0.047396 0.072218 +0.023405 0.082663 0.015319 -0.035436 -0.075461 +-0.124036 -0.032046 0.060837 0.010231 -0.053024 +0.022800 0.042891 -0.041549 0.132395 -0.095330 +-0.077091 -0.058554 -0.070632 0.047570 0.031856 +0.000127 0.114996 0.058660 -0.092472 0.064503 +0.096450 0.066200 -0.001059 0.039487 -0.032859 +-0.065721 0.001601 0.088037 0.059828 -0.047411 +-0.077714 0.010275 0.013629 0.003304 0.005407 +0.000665 0.012927 -0.077525 0.069202 -0.157417 +0.014547 -0.095965 -0.087546 -0.067375 -0.027867 +0.005458 -0.095839 0.105294 -0.044892 0.045151 +-0.001349 0.038356 -0.127152 -0.080503 -0.105423 +-0.018484 0.008439 0.104398 -0.027959 0.082086 +-0.020605 0.042785 -0.109139 -0.025958 0.079733 +0.036289 -0.083773 -0.033819 0.032566 -0.065556 +0.006659 0.002090 0.097027 0.115715 -0.013271 +-0.067514 0.128365 -0.089129 0.026160 -0.040584 +-0.002443 -0.017254 0.129204 -0.110078 -0.064943 +0.089215 -0.022299 -0.034959 0.022446 -0.019254 +-0.038900 -0.069862 -0.070540 0.069949 0.111993 +-0.006311 -0.009057 0.094278 -0.014932 0.003657 +-0.019323 0.026145 -0.062611 -0.073753 -0.007182 +0.014101 0.015776 0.052537 0.064728 -0.160187 +-0.005122 0.076356 -0.104763 0.091493 0.020225 +-0.000433 0.062698 -0.060457 -0.147540 -0.066168 +0.007195 -0.061498 -0.037801 -0.039763 0.059551 +-0.028410 -0.074510 0.057667 0.020584 -0.042510 +-0.025311 -0.037825 -0.188010 0.077423 0.030749 +-0.025465 -0.067541 0.003073 -0.049778 0.127789 +0.002786 0.120009 -0.067812 -0.026565 0.111272 +0.023219 -0.024403 -0.014507 -0.048624 0.022163 +0.014596 -0.052136 0.001580 0.064595 0.017963 +0.021330 0.098862 -0.009253 -0.041062 0.008903 +-0.013829 0.031967 0.076571 -0.005348 -0.044010 +0.031252 0.000369 0.036818 0.072854 -0.038569 +0.004161 -0.128017 -0.053152 0.050896 -0.015212 +-0.036159 0.097995 0.068397 -0.048472 -0.056131 +-0.011920 0.059188 0.010215 -0.061152 -0.011717 +-0.035949 -0.057039 0.090859 -0.029682 0.041466 +-0.025106 0.131191 0.059327 0.085383 0.021699 +0.049230 0.036630 -0.077086 0.017806 -0.088790 +0.004040 -0.069533 -0.026785 0.009666 0.014017 +-0.055897 -0.096299 0.120693 0.029995 0.032602 +-0.001365 0.034015 -0.053512 0.001573 -0.019170 +0.003956 0.006452 0.067313 0.028301 0.160615 +-0.053111 0.013990 -0.027060 -0.013638 0.039376 +-0.054462 -0.096553 0.079994 -0.043791 -0.025051 +-0.003222 0.019418 -0.049525 0.151136 0.034123 +0.055117 0.058918 -0.017393 0.026169 -0.126380 +-0.019008 -0.028939 -0.014027 -0.173373 -0.032841 +-0.003370 0.039680 -0.118311 0.114094 -0.041869 +0.041121 -0.038391 -0.096074 -0.032479 0.060222 +0.063968 -0.024528 0.018158 -0.009892 -0.043882 +-0.005004 0.129800 -0.025438 -0.121186 0.049860 +0.010448 -0.040388 0.061853 -0.017304 -0.035088 +-0.008678 0.061476 -0.039493 -0.005055 0.079169 +0.046134 0.009770 0.068294 -0.078965 -0.043792 +-0.030529 -0.053845 0.053853 -0.140682 0.111461 +0.003549 -0.014939 0.148955 0.072861 0.004332 +0.015386 0.062006 -0.122325 -0.032529 0.010241 +-0.047982 -0.126440 0.055840 0.067128 0.101189 +-0.002630 0.031969 0.046076 -0.080194 0.104740 +-0.033486 -0.077818 -0.058697 -0.095258 -0.111074 +0.037236 0.011711 0.001113 -0.005664 0.048588 +0.041131 0.098257 0.033126 0.029317 -0.095311 +-0.071555 -0.039999 0.026678 -0.072182 0.035031 +-0.007997 -0.048174 -0.006796 0.075959 -0.052060 +-0.007645 0.037076 -0.035574 0.085576 0.034126 +-0.050676 0.051430 0.031999 -0.134308 -0.001489 +0.084564 -0.018394 -0.097410 -0.042931 -0.025608 +-0.025489 0.041919 0.142482 0.004617 -0.041085 +-0.028816 -0.015527 -0.031005 0.028405 -0.022240 +-0.067737 -0.025241 -0.052578 0.012322 -0.120556 +0.016278 -0.081744 -0.099160 0.025144 0.025441 +0.003176 -0.073871 0.031718 -0.028622 0.029031 +0.017910 -0.030693 -0.104215 -0.015422 -0.065738 +-0.048346 -0.012847 0.046849 -0.008621 0.058771 +-0.054495 0.031597 -0.038844 0.043138 0.092588 +-0.071371 -0.059093 -0.001197 0.001766 -0.074762 +0.029470 0.089616 0.005009 0.052977 0.015899 +-0.045424 0.158466 -0.038717 -0.032506 0.028687 +0.011435 -0.006772 0.047605 -0.144659 -0.031229 +0.073577 0.011530 -0.008172 0.058883 -0.088412 +0.033615 -0.034120 -0.030701 0.101215 0.096645 +0.027368 0.041249 0.081502 -0.025440 0.007592 +0.059893 0.012106 -0.112009 -0.114692 0.016397 +0.087068 0.016199 0.051263 0.011915 -0.085364 +0.026046 0.145258 -0.047521 0.077134 -0.000345 +0.034532 0.099801 -0.087591 -0.059719 -0.058671 +0.022737 -0.001887 -0.107049 -0.116757 0.134115 +-0.055403 0.005157 0.067618 0.081074 0.071787 +0.063802 -0.003430 -0.106491 0.017543 0.002214 +-0.013785 -0.032962 0.010084 0.024325 0.045963 +0.059883 0.072282 -0.008608 -0.015127 0.048225 +0.041752 -0.068845 0.012227 -0.090748 -0.035309 +0.045353 -0.078624 -0.019489 0.035531 0.058571 +0.045414 0.039032 -0.011106 0.048787 -0.025336 +-0.084893 0.031896 0.010850 0.012526 -0.053205 +0.016952 -0.044041 0.068766 0.097328 -0.122229 +0.027016 -0.051759 -0.057246 0.074566 0.006201 +0.069904 0.100068 0.076124 0.004278 0.029466 +0.045229 0.055683 0.018790 -0.067806 0.039373 +0.029179 -0.036787 0.129921 -0.028993 0.037711 +-0.105011 0.138747 -0.004370 0.052080 0.050835 +0.025511 -0.002962 0.007852 -0.055234 -0.075055 +0.000460 -0.089231 -0.030467 -0.080347 0.007488 +0.067460 -0.076368 0.084991 0.039544 0.033391 +-0.044318 0.006390 -0.079387 -0.002909 -0.029708 +-0.047882 0.063040 0.065719 0.021811 0.070945 +-0.007571 -0.001302 -0.064119 -0.068005 0.051040 +-0.017747 -0.063938 0.018673 -0.038391 -0.099966 +0.057475 -0.007669 0.009384 0.109283 0.012248 +-0.048858 0.092498 0.011967 0.061525 -0.028819 +-0.015131 -0.024160 -0.033220 -0.101648 -0.017980 +-0.003342 -0.049829 -0.125096 0.128241 -0.047377 +-0.028943 -0.109072 -0.066133 -0.015454 0.098334 +0.053371 0.011324 0.042781 0.044313 0.062510 +0.098408 0.065410 -0.040693 -0.116351 -0.032327 +-0.013634 -0.058591 0.081507 0.042019 -0.099770 +-0.018275 0.084624 -0.007512 -0.041113 0.054203 +0.017879 -0.029747 0.059865 -0.048281 -0.111513 +-0.022478 0.002059 0.022383 -0.125360 0.058216 +0.002386 -0.081600 0.049288 0.157428 0.057724 +0.005046 0.102125 -0.083473 0.044059 -0.094864 +0.039120 -0.063306 0.057341 0.060519 0.107383 +0.007076 -0.009373 -0.012555 -0.066630 0.117121 +0.025254 -0.008796 -0.062102 -0.083164 -0.079007 +0.084839 0.042308 -0.055353 0.036386 0.132641 +0.084464 0.056288 -0.011636 -0.059554 -0.087748 +-0.147377 -0.052414 -0.010203 -0.009159 -0.018829 +0.009621 0.061633 0.015716 0.086332 -0.061465 +-0.011833 -0.062998 -0.021168 0.125194 0.045025 +0.052316 0.025720 0.095155 -0.093252 0.028720 +0.056113 0.063321 -0.045315 0.025199 0.023591 +-0.070481 0.072350 0.092458 0.047973 -0.025439 +-0.001281 0.021028 0.034576 0.084779 0.006867 +-0.010323 -0.046330 -0.009172 0.030485 -0.117679 +-0.021782 -0.034737 -0.086292 -0.045885 0.009655 +-0.037167 -0.123331 0.017291 -0.028319 0.071447 +-0.057180 -0.032912 -0.139418 -0.025966 -0.039305 +0.009411 -0.054017 0.076307 -0.060252 0.110087 +-0.061366 0.038897 -0.098107 0.046119 0.043021 +-0.029130 -0.096885 0.007623 0.090513 -0.097416 +0.053264 0.058296 0.054372 0.060769 0.015586 +-0.067956 0.059996 -0.037850 0.005986 0.000778 +0.045873 -0.065546 0.077900 -0.085638 0.000698 +0.027694 -0.021241 -0.002777 0.034509 -0.048173 +0.009988 0.001008 -0.077434 0.026002 0.139490 +0.008910 0.007791 0.059292 -0.057047 0.014127 +-0.022959 0.085710 -0.068087 -0.081561 0.005935 +0.007577 0.061544 0.076542 0.001660 -0.113279 +0.024973 0.086750 -0.061674 0.095059 0.089352 +-0.024436 0.024181 -0.016117 -0.073634 -0.067986 +0.074701 -0.046868 -0.054634 -0.092485 0.006662 +-0.033256 -0.053774 0.049001 -0.002339 0.013545 +-0.006432 -0.012089 -0.086842 0.104105 0.061991 diff --git a/gr-vocoder/lib/codec2/codebook/lspjvm3.txt b/gr-vocoder/lib/codec2/codebook/lspjvm3.txt new file mode 100644 index 0000000000..72767df8ea --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspjvm3.txt @@ -0,0 +1,513 @@ +5 512 +0.007066 0.075781 -0.070082 -0.092014 -0.066477 +0.090510 0.106622 0.025911 -0.016760 0.003724 +-0.024628 0.058332 0.012876 0.059557 -0.002092 +-0.065092 -0.096975 -0.041837 -0.002432 0.058918 +0.014358 0.080049 -0.008803 -0.002091 -0.097584 +0.085323 -0.026053 -0.086585 -0.009541 0.130555 +0.045391 0.037557 0.074726 -0.050453 0.033517 +-0.035576 -0.084211 -0.086430 0.008910 -0.072674 +-0.098699 -0.024540 -0.048972 -0.066975 -0.048791 +0.032184 0.070992 -0.014416 0.141892 -0.044249 +-0.108921 -0.020450 0.115988 0.011287 -0.026273 +0.024341 0.138519 -0.036467 0.020684 0.074258 +-0.053563 0.077463 0.072166 0.032112 -0.079303 +-0.025039 0.079675 0.094211 -0.115754 0.038892 +0.050897 -0.024639 0.057826 -0.110429 0.071184 +0.015309 -0.034027 -0.055726 0.043179 -0.063089 +0.043359 -0.011698 0.006637 0.002751 0.030110 +-0.001261 0.111470 0.043277 -0.004205 -0.021599 +-0.005698 0.058842 0.168422 0.059313 -0.007971 +-0.087599 0.073891 -0.083238 0.099279 -0.017364 +-0.018429 0.014040 -0.014864 -0.111512 0.089450 +-0.028498 -0.087983 -0.077320 -0.062602 0.000328 +-0.027152 -0.093796 0.111381 -0.018603 0.092394 +-0.007256 0.025391 0.011454 0.012802 -0.041680 +0.008078 0.020905 -0.105401 -0.083265 0.027756 +-0.049630 -0.044085 -0.051424 0.104125 -0.000779 +-0.063079 -0.130699 0.070500 0.033468 -0.019802 +-0.061011 0.094839 -0.040122 0.118409 0.056950 +0.086391 -0.006615 0.045337 -0.044190 -0.106474 +-0.081912 0.067557 -0.031649 -0.014437 0.057585 +-0.121755 -0.049113 0.057109 -0.049872 0.044104 +0.064705 -0.091589 0.037286 -0.048606 -0.045398 +0.003456 0.057230 0.006262 -0.055206 -0.063871 +-0.005249 0.081783 0.134969 -0.002331 0.052643 +-0.093346 0.072093 0.116025 -0.031453 -0.006012 +-0.038574 -0.030841 0.010288 0.024420 0.051657 +-0.086584 0.046381 0.005410 0.052622 -0.072741 +0.079023 0.078099 -0.093912 0.005477 -0.006721 +0.100232 -0.017587 0.044819 0.036655 0.021580 +-0.006829 -0.050076 -0.003020 0.088246 0.013560 +-0.015690 0.012477 -0.052595 -0.048861 -0.033688 +0.055615 0.092298 -0.066194 0.016416 -0.066059 +0.046976 0.003023 0.104646 0.109136 0.018293 +-0.016507 -0.006859 0.004326 0.070843 0.140750 +0.025774 0.034730 -0.079590 0.050054 -0.107950 +0.002378 0.097498 0.027111 -0.122953 -0.002423 +-0.020539 -0.063263 -0.095493 -0.157361 -0.039183 +0.025721 0.026897 -0.001200 0.033997 -0.001749 +0.061593 -0.013053 -0.106317 -0.068190 0.046352 +-0.056060 0.157084 -0.049365 0.053959 -0.051065 +-0.047672 0.081570 0.064342 -0.030705 -0.070806 +-0.076503 -0.059471 0.012419 0.073968 -0.026179 +-0.038473 0.059013 -0.035783 -0.030057 -0.036346 +-0.052692 -0.015346 -0.022687 -0.035279 0.013314 +0.068397 -0.046609 -0.009593 -0.040796 0.157438 +-0.075360 -0.110464 0.031839 -0.029035 -0.015222 +0.041013 -0.099212 -0.108920 -0.008627 0.012095 +0.020855 0.009935 -0.086917 0.058827 -0.006536 +0.022104 -0.005013 0.003496 0.046663 -0.051061 +-0.036803 -0.067317 -0.007075 0.180870 -0.027434 +-0.025056 -0.039341 -0.073918 -0.003180 -0.110930 +-0.042711 0.005519 -0.035005 -0.088419 0.170942 +0.001503 -0.121485 0.066383 -0.067346 0.005643 +0.080088 -0.042562 -0.006668 -0.036538 0.020683 +0.042848 0.027852 -0.029088 -0.156468 0.006503 +0.037716 0.032082 0.038416 0.021835 -0.106963 +-0.043017 0.018166 0.070409 -0.005426 -0.035585 +-0.111071 -0.039986 0.050430 0.035157 0.066902 +-0.040684 0.060527 0.036225 0.002527 -0.015087 +0.059243 0.021268 -0.010682 -0.018434 0.059128 +0.111314 -0.054070 0.105744 -0.051476 -0.012970 +-0.000358 -0.099249 -0.077385 0.069924 -0.039101 +-0.072139 -0.049069 -0.088018 0.006144 0.000712 +0.081030 0.021987 -0.046031 0.058087 -0.001320 +-0.046851 -0.011062 0.108321 -0.001146 -0.071193 +0.044973 -0.002915 -0.003323 0.041735 0.094566 +0.053530 0.035927 0.100282 0.059082 -0.054059 +-0.012158 -0.035417 0.020412 -0.073193 0.059296 +-0.040489 -0.095250 -0.003821 -0.084904 0.053925 +0.109183 -0.005862 -0.036538 0.080962 -0.040647 +0.020070 0.057778 -0.020197 -0.079626 -0.003186 +-0.050855 0.128185 0.034731 0.057460 -0.035236 +-0.057096 -0.001238 0.122018 -0.071204 -0.047253 +-0.051767 0.048301 -0.052678 0.025990 -0.017481 +-0.029379 0.030738 0.047207 -0.047864 -0.033561 +0.029884 -0.091175 -0.085446 -0.026140 0.092628 +0.067706 -0.085617 0.081433 0.047305 0.031945 +-0.048728 -0.040387 0.046206 0.010578 -0.037639 +0.011328 -0.042458 -0.149597 0.033882 -0.061869 +0.008800 0.057754 -0.095876 0.038230 0.096876 +-0.033487 -0.141669 -0.014172 0.028439 -0.092764 +-0.053714 0.086926 0.034786 0.136053 -0.005569 +0.028753 0.009630 0.044114 -0.050365 -0.066224 +0.006017 0.014348 0.024471 0.000489 0.067234 +-0.021678 -0.118760 0.036349 -0.040295 0.076358 +-0.008444 -0.086082 -0.044018 -0.025804 0.028971 +-0.009233 0.053026 -0.035341 -0.182193 -0.102515 +0.089210 0.066812 0.032417 0.046882 -0.034815 +-0.052293 0.022814 0.129622 0.128232 -0.012105 +-0.087084 0.004762 0.086538 0.046566 0.098359 +-0.018713 0.039204 -0.021707 -0.060110 -0.117527 +-0.005459 0.060994 -0.057718 -0.021783 0.035154 +0.100557 -0.015470 -0.025818 0.008450 0.051535 +-0.001388 -0.114610 -0.057903 0.041862 0.061778 +0.045701 -0.078563 -0.070166 -0.048450 -0.088530 +0.021375 -0.004598 -0.090710 -0.009399 -0.073952 +-0.035575 -0.050280 0.114780 0.137866 0.065234 +0.003594 -0.066802 -0.144989 0.166201 0.039564 +-0.022457 -0.030090 0.016187 0.115443 -0.097331 +-0.019139 0.099440 0.002198 -0.030953 0.021099 +-0.045399 -0.046871 0.022533 -0.064657 0.005776 +0.049063 -0.028478 0.019268 0.054265 0.028042 +0.045559 -0.005541 -0.014410 -0.024165 -0.054976 +-0.073258 0.084205 0.036077 -0.068683 0.004708 +-0.085228 0.001234 0.046261 -0.050496 -0.028227 +-0.086828 -0.001218 0.021865 0.003791 -0.000568 +-0.088733 -0.040041 -0.035891 -0.054915 0.073463 +-0.132031 -0.012844 -0.068544 0.013052 0.087335 +0.038603 -0.115382 -0.010433 -0.007113 0.095126 +-0.047378 -0.081353 0.018021 -0.021156 -0.120774 +0.040038 0.007633 -0.088728 -0.009928 0.020142 +0.052024 -0.021063 -0.118121 0.102739 -0.055837 +0.005253 -0.061924 0.063680 -0.014512 -0.020259 +0.029493 -0.013435 -0.020638 0.089342 0.001092 +-0.046491 -0.145634 -0.083159 -0.158142 -0.279281 +0.003611 0.055863 -0.064655 -0.088773 0.089283 +-0.029619 -0.089949 0.017197 -0.066633 -0.052347 +0.090828 -0.087551 0.000338 0.085238 -0.005313 +0.096211 0.071381 -0.076546 -0.077927 -0.040864 +0.062936 0.041559 0.016235 -0.017513 0.014773 +-0.025734 0.028586 0.070292 0.055794 -0.026131 +-0.076954 -0.082228 0.043947 -0.035921 0.152668 +-0.049510 0.023159 0.008506 -0.044773 -0.160358 +0.024984 -0.025587 -0.071627 -0.038376 0.088478 +0.120568 0.046723 0.086731 0.000695 -0.015751 +-0.027837 -0.160937 -0.095031 0.036271 -0.009061 +-0.015078 -0.036281 -0.103665 -0.058258 -0.049573 +0.022021 0.108296 -0.002586 0.065655 -0.018584 +-0.046441 -0.031018 0.067350 0.014328 0.008860 +-0.000245 0.063400 -0.001810 0.043515 0.090344 +-0.063845 0.020485 0.079401 0.070558 -0.116428 +0.032628 0.068949 0.052238 -0.044530 0.096813 +0.029911 -0.008814 0.044352 -0.168172 0.009604 +0.055828 -0.100739 -0.026013 0.021193 -0.051425 +0.035891 -0.004085 0.030216 -0.060801 0.037202 +0.007262 0.120686 0.026846 0.058464 -0.100792 +-0.009176 0.027589 0.123957 -0.011283 -0.025744 +-0.105081 0.118244 -0.042122 -0.025404 0.000873 +-0.012703 0.084159 -0.067539 -0.140536 0.041637 +-0.014485 -0.043382 -0.048004 -0.075416 0.054401 +-0.018651 -0.032908 0.164231 -0.053236 0.033946 +-0.021681 -0.012655 -0.037049 -0.001613 -0.053393 +-0.014635 0.017954 -0.116115 -0.027232 0.034005 +-0.035376 0.026492 -0.037250 0.070733 0.074835 +-0.021378 -0.142980 0.123195 0.003699 0.025398 +0.015629 0.077370 0.032623 0.121580 0.097100 +0.000946 -0.056355 0.042065 0.008184 -0.081824 +-0.101937 0.065473 0.003360 0.069241 0.073002 +-0.053844 -0.044301 0.080351 -0.091833 0.044288 +0.007447 -0.120723 -0.013806 -0.023636 -0.064616 +0.030556 0.072630 0.074428 -0.087759 -0.026440 +0.064840 0.049162 0.091053 0.023891 0.033811 +-0.027746 0.116392 0.106126 -0.056644 -0.014781 +0.036137 -0.002632 0.055512 0.070077 0.067819 +-0.030625 0.053772 -0.078457 -0.021351 -0.113011 +0.052797 0.044875 -0.077269 -0.009867 0.101493 +0.073477 -0.024103 0.049145 -0.004706 -0.025211 +-0.053731 -0.049009 -0.035786 0.054430 0.046515 +0.025154 -0.043569 -0.034789 -0.058610 0.006931 +0.012049 0.046809 -0.129441 0.025541 -0.030933 +0.000297 -0.054058 0.179837 0.081515 0.004932 +-0.028445 -0.073753 0.010629 0.080042 0.098710 +-0.014017 0.057597 0.001010 0.071658 -0.067570 +0.074384 0.110366 -0.018121 -0.108754 0.037793 +0.028041 -0.047508 -0.031359 -0.098913 -0.036486 +-0.017311 -0.001279 -0.013694 0.051968 0.036512 +0.088201 0.031155 -0.043442 -0.065045 0.023486 +0.027000 0.104768 -0.015176 -0.038754 -0.004178 +0.003732 0.062166 0.085438 -0.077368 -0.101645 +-0.118347 0.007589 -0.056489 0.082268 0.020253 +-0.035623 0.034235 -0.099354 -0.061237 -0.024285 +0.005441 -0.039694 -0.025957 -0.004411 0.049903 +0.003040 0.036243 0.023552 -0.007334 0.128963 +-0.077727 -0.059175 -0.019437 -0.024872 0.004339 +0.084006 -0.076605 -0.102261 0.036714 -0.035205 +-0.007642 -0.005125 -0.030525 0.096390 -0.053138 +-0.002192 -0.024851 0.050645 0.041490 -0.043183 +0.046796 -0.050894 0.055023 0.133834 -0.024013 +0.000872 -0.057072 -0.000630 0.042070 -0.129339 +-0.064283 0.037836 -0.066393 0.004438 0.125379 +-0.062213 -0.067468 0.090177 -0.046094 -0.025725 +0.079101 -0.074909 -0.043730 -0.073483 0.069672 +-0.020413 -0.000079 -0.049725 -0.120751 -0.046980 +0.039894 0.072305 0.009798 0.005613 -0.045217 +0.006862 0.036285 0.074819 -0.006747 0.015144 +-0.071562 0.012324 -0.001082 0.014835 0.079960 +-0.027804 0.103358 -0.017203 0.014914 -0.056687 +0.030827 0.028076 0.003395 -0.073255 0.110310 +0.056498 -0.044893 0.110122 -0.109058 -0.052302 +-0.001604 -0.089977 -0.060548 0.107808 0.025463 +-0.070203 -0.000513 -0.123913 0.046247 -0.085392 +0.096343 0.095890 -0.064950 0.070363 0.034272 +0.037773 -0.076950 0.124858 -0.009008 -0.010115 +0.083868 0.051242 0.039149 0.015185 0.083375 +0.029773 -0.045961 0.100395 0.003743 -0.138294 +-0.041755 0.010806 0.057797 -0.147374 0.095858 +-0.009929 -0.103347 -0.032310 -0.110560 0.121377 +0.145244 0.017079 -0.080587 0.020516 -0.044939 +-0.010477 0.038347 -0.003466 -0.001618 0.019600 +-0.021762 0.125482 0.011074 0.065815 0.040298 +0.009202 -0.051686 0.129684 -0.131135 0.044536 +0.009313 0.102518 -0.075351 0.054338 0.020273 +-0.045753 0.031345 0.000407 -0.097294 -0.000416 +-0.007466 -0.044972 -0.078744 0.042414 0.066624 +0.030318 -0.067852 0.061416 -0.028992 0.056606 +0.004038 -0.036253 -0.014279 0.023123 -0.007832 +-0.000137 -0.027684 -0.127648 -0.007713 -0.008746 +-0.026500 0.049032 -0.183319 0.059107 0.066500 +0.016902 -0.093331 0.090129 0.016648 -0.083492 +-0.023669 -0.010473 0.027614 0.145068 0.000681 +0.044133 -0.035809 0.005668 -0.090461 -0.090732 +-0.033927 0.042997 0.021700 -0.046955 0.044487 +-0.026444 -0.061011 0.010110 -0.023804 0.030427 +-0.015195 -0.155603 -0.016584 0.021461 -0.003528 +-0.059784 0.032214 0.000847 -0.098859 -0.078980 +0.043188 0.066433 0.062309 0.144507 0.006865 +-0.068953 0.046698 0.099369 0.043354 -0.014309 +-0.033202 -0.002950 0.040734 0.083454 0.039319 +0.051358 0.006074 -0.073465 -0.090554 -0.120787 +-0.040676 0.092412 -0.085151 -0.021699 0.005813 +0.103135 0.024964 0.025832 -0.075982 0.035699 +-0.027310 -0.153007 0.036420 0.057600 0.081630 +0.001605 -0.054191 -0.033043 -0.014390 -0.071383 +0.036180 0.035860 -0.046980 0.038541 -0.044757 +-0.078032 -0.029878 0.078183 0.082251 0.010549 +0.053317 -0.038231 -0.065610 0.055798 0.037504 +0.076317 -0.027605 0.010349 0.095361 -0.088636 +0.049089 0.113316 0.051084 0.038589 0.034330 +-0.055948 -0.037217 -0.015418 -0.139976 0.036306 +0.039306 -0.009889 -0.044910 0.016559 -0.000050 +0.106073 0.015280 -0.002563 -0.109085 -0.048475 +-0.035319 0.163860 0.032981 -0.044932 0.003227 +-0.123233 -0.010638 0.055479 -0.003666 -0.072249 +-0.111158 0.065365 0.010691 0.039119 -0.001837 +-0.118729 0.061470 -0.002077 -0.033335 -0.060165 +-0.026081 -0.001806 -0.079616 -0.000075 0.080598 +0.032908 -0.035140 -0.003136 -0.029024 0.094622 +-0.075773 -0.022898 -0.014817 0.058393 -0.111505 +0.036794 -0.015760 -0.112602 0.030323 0.085897 +-0.020834 0.056079 -0.103762 0.117671 -0.041205 +0.041684 -0.084336 0.034186 0.011973 -0.006313 +0.040836 -0.035709 0.034170 0.122672 0.090973 +-0.053182 -0.059371 0.091017 -0.090998 -0.116986 +0.001405 0.138364 0.017107 -0.064076 0.103486 +-0.031142 -0.030068 0.046547 -0.133471 -0.042055 +0.140418 -0.125084 0.035218 -0.001162 -0.021130 +-0.012034 0.097413 -0.079006 -0.039030 -0.054011 +0.143887 0.078835 -0.000601 -0.021173 -0.039895 +-0.025050 0.075865 0.039221 0.032458 0.038206 +-0.038873 -0.085003 -0.032736 -0.026956 0.113525 +-0.023933 0.120794 -0.003862 -0.026459 -0.138724 +0.089559 0.029002 -0.052098 -0.085692 0.115174 +0.083497 0.024179 0.119021 -0.067541 0.019047 +-0.027720 -0.086083 -0.055329 0.020087 -0.027086 +-0.047858 -0.051975 -0.035205 -0.059342 -0.068582 +0.058936 0.044141 -0.080315 0.119744 -0.046518 +-0.064588 -0.027212 0.147823 0.032404 0.016690 +0.024302 0.085560 -0.001525 0.016469 0.038891 +-0.020146 0.019943 0.045067 0.038070 -0.086274 +-0.025769 0.044192 0.102141 -0.064765 0.055849 +0.048803 -0.030066 -0.009220 -0.116655 0.068295 +0.047580 -0.076138 -0.070307 0.047582 -0.111342 +0.004656 -0.004452 0.029703 -0.004259 0.011130 +0.014446 0.166086 0.059565 0.000985 -0.052607 +0.013251 0.094476 0.106216 0.016715 -0.025581 +-0.101244 0.072897 -0.114526 0.024681 0.010784 +-0.051759 0.032389 -0.050202 -0.083316 0.052334 +-0.035100 -0.116721 -0.110336 -0.053391 0.065541 +-0.029790 -0.020457 0.135285 -0.004142 0.111508 +-0.030936 0.018549 -0.016034 0.018572 -0.084336 +-0.048615 -0.018739 -0.096815 -0.090162 0.019410 +-0.040821 -0.009925 -0.097427 0.091891 0.031793 +-0.024598 -0.132848 0.078353 0.089339 -0.068562 +-0.020779 0.040974 -0.055675 0.169131 0.029649 +0.078165 -0.050679 -0.005881 -0.004983 -0.104324 +-0.069096 0.127960 0.011392 -0.000769 0.062168 +-0.079842 0.001606 0.089284 -0.035465 0.031075 +0.029519 -0.102956 -0.010902 -0.064030 -0.019669 +0.057492 0.075802 -0.008904 -0.060743 -0.053144 +0.005126 0.062980 0.085674 0.019895 0.104448 +-0.086473 0.056906 0.056795 -0.012940 0.036606 +-0.008604 -0.040450 0.042062 0.041810 0.027680 +-0.092256 0.091237 -0.039500 0.024761 -0.088978 +0.068585 0.088295 -0.048033 -0.017808 0.045370 +0.124600 -0.035320 0.056751 0.092751 0.054025 +-0.015725 -0.061938 0.036806 0.078768 -0.016065 +0.002444 -0.023887 -0.072177 -0.029790 -0.005860 +0.015478 0.129142 -0.091024 0.071482 -0.065445 +0.005867 -0.006051 0.098646 0.054089 0.018713 +0.033837 -0.008355 -0.051959 0.057440 0.160305 +-0.001863 0.016738 -0.033705 0.062233 -0.140759 +0.027342 0.060074 0.030362 -0.117875 0.061020 +-0.028026 -0.088238 -0.003782 -0.146288 -0.080395 +0.050048 0.036136 0.019500 0.066902 0.020355 +0.024817 -0.056254 -0.140918 -0.085803 0.020540 +-0.003730 0.161411 -0.049408 0.000219 -0.002348 +-0.055021 0.067820 0.126483 -0.031063 -0.119299 +-0.102834 0.001133 0.010172 0.107707 -0.029106 +-0.059813 0.036698 -0.021720 -0.043189 -0.002270 +-0.031694 0.009605 -0.022459 -0.036417 0.053675 +0.061561 -0.012723 0.050040 -0.029450 0.131044 +-0.124516 -0.107579 -0.012171 0.011761 0.002599 +0.016327 -0.060854 -0.080910 0.030875 -0.002997 +-0.020970 -0.011880 -0.086096 0.037912 0.012421 +0.055253 -0.007250 0.041740 0.055596 -0.024420 +-0.017564 -0.079202 0.008897 0.180091 0.054490 +0.001772 -0.022151 -0.082048 -0.010559 -0.163377 +-0.020660 -0.017827 -0.030800 -0.045856 0.122405 +-0.052946 -0.130490 0.097383 -0.116737 0.039855 +0.056504 -0.059549 -0.059931 -0.018658 0.034898 +0.054889 0.005373 -0.066796 -0.127360 0.047960 +0.071746 0.027410 -0.006212 0.024132 -0.094062 +0.005369 -0.008926 0.073085 -0.014265 -0.029204 +-0.100025 -0.072076 0.014651 0.069368 0.048275 +-0.066823 0.086074 0.014921 -0.015395 -0.045138 +0.026224 0.000902 -0.038208 -0.035221 0.057397 +0.097606 -0.073195 0.051626 -0.033488 0.027813 +0.002070 -0.097510 -0.057877 0.126680 -0.082194 +-0.072597 0.006014 -0.093185 -0.016853 -0.022790 +0.138461 0.005394 -0.056485 0.102778 0.028918 +-0.045604 -0.060041 0.121251 0.029260 -0.101404 +0.061194 0.033039 -0.016798 0.064263 0.065144 +0.010925 0.023151 0.107623 0.027977 -0.090356 +-0.024863 -0.006440 0.047870 -0.047486 0.088211 +-0.012139 -0.116121 -0.000525 -0.140961 0.016604 +0.063490 -0.022732 -0.046944 0.066970 -0.068838 +0.016143 0.026202 -0.043344 -0.064881 0.024877 +-0.072845 0.120531 0.077901 0.047272 0.011713 +-0.044646 0.040932 0.076164 -0.101233 -0.029615 +-0.065118 0.050966 -0.023273 0.053517 0.023710 +-0.007489 0.035822 0.023439 -0.055528 -0.004033 +-0.007662 -0.096546 -0.081662 0.037141 0.137562 +0.075526 -0.097496 0.123990 0.013996 0.087005 +-0.019788 -0.082043 0.020524 0.007027 -0.021537 +-0.036264 -0.090952 -0.177722 -0.009306 -0.031473 +-0.009287 0.047557 -0.090241 0.089347 0.056375 +-0.005506 -0.112128 0.004356 0.064421 -0.038478 +-0.035674 0.040616 0.007731 0.160236 -0.054199 +-0.007537 0.012434 0.022001 -0.021567 -0.075163 +-0.026053 0.015909 0.041015 0.021832 0.034152 +-0.048539 -0.086655 0.047465 0.000682 0.042640 +0.023697 -0.095971 -0.022874 -0.000369 0.003413 +0.046005 0.064807 0.010131 -0.129517 -0.092254 +0.116469 0.053796 0.038110 0.094470 0.018435 +-0.034803 0.073591 0.108348 0.104096 0.049884 +-0.021274 0.022097 0.065347 0.065555 0.089319 +0.000474 -0.004186 -0.040493 -0.065543 -0.083167 +-0.017425 0.049177 -0.044248 0.008399 0.068180 +0.154778 0.027549 -0.008012 0.014950 0.043254 +0.039599 -0.136415 -0.018716 0.061900 0.031263 +0.058118 -0.037200 -0.114692 -0.080876 -0.053238 +0.077436 0.015015 -0.092517 0.005804 -0.065541 +-0.005653 -0.073184 0.095594 0.082470 0.060989 +-0.000262 -0.035766 -0.083441 0.122634 0.088429 +-0.014397 -0.055434 -0.005659 0.069697 -0.064892 +0.008824 0.082498 0.051866 -0.036070 0.033403 +-0.082855 -0.087376 0.002714 -0.097121 -0.019170 +0.027179 -0.069870 -0.009316 0.047450 0.040657 +0.060527 0.004620 -0.040264 -0.051228 -0.029023 +-0.071384 0.101421 0.009538 -0.099185 0.060100 +-0.048395 -0.024677 0.025125 -0.056043 -0.058045 +-0.054059 0.008107 0.021078 0.045290 -0.018459 +-0.113359 0.014009 -0.006826 -0.052747 0.046922 +-0.075976 0.008538 -0.084411 -0.004369 0.045801 +0.075392 -0.067340 0.014454 0.032407 0.092478 +-0.061859 -0.083458 0.051442 0.031695 -0.080233 +0.054028 0.027000 -0.073549 0.032300 0.036501 +-0.011384 -0.020780 -0.124142 0.093905 -0.028332 +0.039139 -0.030944 0.079952 -0.001717 0.013976 +0.038005 -0.001751 -0.044097 0.129827 0.014385 +-0.001682 -0.063458 -0.002511 -0.078150 -0.141236 +0.021955 0.104851 -0.093246 -0.060019 0.069998 +0.004399 -0.096408 0.059327 -0.062268 -0.074327 +0.108063 -0.090534 -0.045654 0.048119 0.049187 +0.042105 0.043964 -0.091516 -0.047999 -0.028881 +0.070471 0.055401 -0.025605 0.011176 0.008475 +0.022254 0.038266 0.048106 0.047176 -0.017967 +-0.010978 -0.088762 0.034806 0.019311 0.126815 +-0.010571 0.053073 0.032162 -0.000780 -0.152200 +-0.014253 -0.021954 -0.131040 -0.061376 0.113838 +0.060725 0.020201 0.102533 -0.011392 -0.052046 +-0.069625 -0.091011 -0.097954 0.067847 0.017856 +-0.053461 -0.040679 -0.121664 -0.077208 -0.106919 +0.057996 0.069756 -0.012433 0.069569 -0.055159 +-0.024801 -0.060448 0.101700 0.014619 0.036580 +-0.004526 0.093977 -0.028211 0.045261 0.149736 +-0.014691 -0.007959 0.097708 0.107128 -0.079723 +0.029157 0.020116 0.104828 -0.064208 0.119172 +0.039583 -0.029446 0.006628 -0.110398 0.004062 +0.048132 -0.060601 0.009448 0.051777 -0.053127 +0.050551 -0.001924 0.028079 -0.050618 -0.013698 +0.001920 0.088162 0.073078 0.085795 -0.066788 +0.014025 0.042699 0.176241 -0.046674 -0.034822 +-0.051433 0.121729 -0.057076 0.023901 0.045075 +-0.057182 0.054780 -0.017280 -0.146674 0.002090 +-0.016223 -0.044841 -0.084524 -0.152479 0.072688 +-0.006962 0.008711 0.127455 -0.003876 0.053162 +-0.013682 -0.025386 -0.000427 -0.024811 -0.024474 +-0.056267 0.062116 -0.121311 -0.053011 0.065651 +-0.075385 -0.008680 -0.063033 0.083039 0.110577 +-0.000152 -0.127017 0.055904 0.013659 0.005664 +-0.002852 0.047248 0.001128 0.100773 0.037274 +0.026368 -0.042205 0.021887 -0.020247 -0.056678 +-0.077475 0.089799 0.058003 0.039741 0.106663 +-0.016853 -0.015972 0.075741 -0.048829 0.015374 +-0.032657 -0.125677 -0.062060 -0.057409 -0.061287 +0.073151 0.050357 0.053547 -0.059886 -0.051298 +0.057954 -0.003817 0.076028 0.006757 0.061109 +-0.038030 0.143209 0.092207 -0.018493 0.062291 +0.005751 -0.036449 0.067582 0.031449 0.101894 +-0.080754 0.011515 -0.049485 -0.016137 -0.087818 +0.108851 0.038222 -0.099315 -0.003117 0.052278 +0.107517 -0.036233 0.065370 0.040409 -0.057029 +-0.033167 -0.081758 -0.019502 0.033438 0.013365 +-0.017760 -0.025906 -0.020244 -0.078722 -0.011697 +-0.028246 0.068647 -0.106417 0.026956 -0.064914 +0.062711 -0.017857 0.151539 0.044613 -0.017820 +0.009085 -0.032785 -0.025795 0.075790 0.075667 +-0.040398 0.058556 -0.042634 0.093973 -0.099529 +0.057103 0.073562 0.012640 -0.066141 0.029558 +0.060219 -0.083699 -0.054799 -0.120442 -0.000374 +0.006521 0.034512 -0.039558 0.042191 0.033865 +0.103992 -0.014977 -0.077384 -0.051340 0.001873 +0.047451 0.140612 -0.024885 -0.021420 -0.046604 +0.030606 0.100660 0.076356 -0.019288 -0.098570 +-0.114463 -0.010855 -0.034657 0.025618 -0.003356 +-0.087913 0.064346 -0.075540 -0.091569 -0.024965 +-0.021232 -0.017255 -0.056931 -0.003104 0.030219 +-0.020112 -0.012334 0.035298 0.001405 0.161753 +-0.064618 -0.064401 -0.007218 -0.000120 -0.047208 +0.116105 -0.056464 -0.069645 -0.007032 -0.012090 +-0.023237 0.016000 -0.039802 0.074319 -0.012604 +0.014863 -0.058081 0.093219 0.062253 -0.040302 +0.027405 -0.128683 0.039923 0.116808 -0.011706 +0.012483 -0.017698 0.003645 -0.007588 -0.120662 +-0.032868 0.066217 -0.031343 -0.034166 0.146334 +-0.031228 -0.125921 0.117756 -0.042686 -0.062094 +0.049375 -0.112262 0.010166 -0.073599 0.048690 +0.028292 0.020076 -0.062865 -0.106114 -0.025300 +0.066916 0.029279 0.028191 -0.003599 -0.040614 +0.020491 0.060238 0.052747 -0.010390 -0.022389 +-0.063358 -0.028707 0.035907 -0.011898 0.079703 +-0.003758 0.078051 -0.017869 0.009045 -0.018982 +0.034974 0.069405 -0.018909 -0.038613 0.083909 +0.033935 -0.036607 0.088891 -0.052599 -0.059839 +0.052758 -0.068308 -0.063615 0.126093 -0.009460 +-0.042175 -0.011113 -0.073071 0.052086 -0.052619 +0.049226 0.066898 -0.045666 0.117923 0.053656 +-0.010739 -0.043962 0.141903 0.001792 -0.035469 +0.090671 0.043993 -0.013655 0.018989 0.127223 +0.001030 -0.001154 0.081839 -0.024979 -0.103704 +-0.077920 0.036083 0.068220 -0.062210 0.113730 +-0.010501 -0.065801 0.050885 -0.104304 0.121937 +0.111850 0.009680 -0.011791 0.001677 -0.035029 +0.010677 0.024572 -0.012860 -0.030323 -0.010466 +0.011279 0.167752 0.003136 0.109709 0.007292 +0.000987 0.004572 0.108706 -0.113192 -0.012431 +-0.015225 0.073653 -0.051275 0.077928 -0.012752 +-0.011708 0.014172 0.025162 -0.095378 0.026382 +-0.028889 -0.058569 -0.129329 0.011087 0.061452 +0.056893 -0.058004 0.103586 -0.060752 0.081824 +-0.042805 -0.015991 -0.024444 0.028952 -0.013528 +0.042851 0.019988 -0.165741 -0.031012 -0.014713 +-0.026059 0.031698 -0.134343 0.032090 0.020828 +0.051674 -0.128006 0.050856 0.022220 -0.073513 +-0.009340 0.013756 0.036163 0.098407 -0.023495 +0.023858 0.008121 0.022220 -0.103489 -0.046663 +-0.033000 0.063565 0.029224 -0.012693 0.084202 +0.012187 -0.051000 0.026126 -0.043293 0.008675 +-0.019812 -0.165070 -0.014555 -0.047431 0.017990 +-0.040073 0.107192 0.022228 -0.089023 -0.066885 +0.014630 0.073186 0.069902 0.072634 0.019593 +-0.041539 0.031788 0.092310 0.027223 0.034027 +-0.051855 0.000391 0.007869 0.131910 0.069384 +0.046276 0.040440 -0.037093 -0.031393 -0.112828 +0.015709 0.096749 -0.103205 -0.021284 0.011405 +0.158287 -0.021028 0.042219 -0.050759 0.069715 +-0.042907 -0.116980 0.014224 0.094648 0.028395 +0.041535 -0.057033 -0.047607 -0.024419 -0.034905 +0.010125 0.036728 -0.052503 -0.001839 -0.033477 +-0.053414 -0.070394 0.092895 0.100600 -0.026352 +0.080574 -0.028763 -0.059548 0.094571 0.091787 +0.041437 0.014312 0.045792 0.108269 -0.081586 +0.056288 0.137447 0.054718 -0.032474 0.054502 +-0.100144 -0.006460 0.024739 -0.117043 -0.008919 +0.070299 -0.036862 -0.014543 0.024500 -0.015222 +0.114975 -0.043705 0.000421 -0.061872 -0.035148 +-0.022797 0.128575 -0.031798 -0.086718 -0.007172 +-0.071706 -0.006833 0.028645 -0.007011 -0.096745 +-0.142269 0.027996 0.065210 0.061381 0.000741 +-0.140531 0.017480 -0.014986 -0.040893 -0.012718 +-0.012494 -0.021869 -0.032923 0.016456 0.104475 +0.010792 -0.066178 0.019097 -0.001893 0.067513 +-0.092673 -0.059851 -0.045936 0.052642 -0.062500 +0.065013 -0.025659 -0.149301 0.051705 0.035692 +-0.045790 -0.007482 -0.069141 0.149365 -0.042039 +0.018492 -0.081315 0.055880 0.058158 0.019669 +0.063836 -0.012391 0.007057 0.155454 0.033854 +-0.016532 -0.007661 0.043113 -0.080283 -0.108670 +-0.029344 0.093781 -0.015840 -0.068134 0.091804 +0.004148 -0.058507 0.059633 -0.095883 -0.004939 +0.086151 -0.113571 -0.019466 -0.009167 0.003662 diff --git a/gr-vocoder/lib/codec2/codebook/lspvqanssi1.txt b/gr-vocoder/lib/codec2/codebook/lspvqanssi1.txt new file mode 100644 index 0000000000..0b9dd90205 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspvqanssi1.txt @@ -0,0 +1,257 @@ +10 256 +0.5862 0.7213 0.9146 1.0909 1.2910 1.4954 1.8370 2.0840 2.3771 2.5518 +0.0871 0.2049 0.5849 0.8552 1.2096 1.4686 1.8210 2.0926 2.4508 2.7389 +0.2274 0.3126 0.6088 0.8338 1.1824 1.5948 1.8228 1.9856 2.1832 2.4793 +0.1827 0.2706 0.5842 0.7761 1.0301 1.2462 1.6313 1.9786 2.3479 2.6790 +0.3055 0.3863 0.7194 1.1609 1.3303 1.5017 1.7265 1.9412 2.4659 2.6315 +0.1794 0.2522 0.5477 0.7892 1.3887 1.7101 1.9471 2.1667 2.4361 2.6310 +0.1825 0.2729 0.4185 0.6024 1.2531 1.7291 1.9937 2.1849 2.5865 2.7748 +0.3219 0.4045 0.7357 1.2708 1.4626 1.6439 1.9388 2.1212 2.5005 2.6749 +0.2234 0.3496 0.5054 0.6981 0.8672 1.0431 1.7091 2.0690 2.3290 2.6195 +0.3009 0.3957 0.7576 0.9751 1.1955 1.7727 2.0383 2.2474 2.5612 2.7188 +0.3841 0.5544 0.9209 1.1811 1.5441 1.8126 2.1175 2.3192 2.5486 2.6935 +0.2153 0.3105 0.5597 0.8313 1.2168 1.4512 1.7012 1.8962 2.3893 2.5852 +0.3196 0.4814 0.7629 1.0869 1.5517 1.7780 2.0462 2.2547 2.5023 2.6706 +0.1964 0.3055 0.4307 0.7178 1.4260 1.6240 1.8392 2.0576 2.2976 2.5492 +0.4260 0.6888 1.2019 1.4194 1.6437 1.8221 2.0469 2.2508 2.5142 2.6795 +0.3004 0.3944 0.5847 1.0050 1.1812 1.3559 1.5479 1.7847 2.4924 2.6703 +0.1595 0.2398 0.4336 0.9228 1.2602 1.5064 1.7915 1.9840 2.2320 2.5692 +0.1832 0.2985 0.4205 0.5980 0.7620 0.9894 1.7499 2.1151 2.4814 2.7214 +0.2234 0.3207 0.5457 0.9799 1.2074 1.7079 1.9734 2.1742 2.4575 2.6366 +0.3598 0.4819 0.6385 0.8878 1.3226 1.4910 1.7257 1.9456 2.2061 2.4579 +0.4671 0.5911 0.8513 1.0923 1.5104 1.7043 1.9727 2.1839 2.4484 2.6111 +0.2418 0.3937 0.5420 0.8971 1.1152 1.3054 1.7928 1.9796 2.5441 2.7572 +0.3541 0.4730 0.6546 0.9063 1.0792 1.2743 1.8545 2.0555 2.3083 2.5404 +0.3121 0.4016 0.7137 0.8835 1.0736 1.5907 1.8624 2.0857 2.5075 2.6668 +0.2232 0.3631 0.5273 0.7438 1.0492 1.2235 1.5449 2.2198 2.5160 2.6852 +0.2557 0.3528 0.5051 0.6528 0.8351 1.5688 1.8838 2.1056 2.4401 2.6111 +0.4342 0.5318 0.9234 1.1146 1.3015 1.5198 1.8211 2.0340 2.3694 2.5506 +0.4310 0.5269 0.7431 0.9018 1.0734 1.5196 1.8267 2.0244 2.4508 2.6177 +0.2150 0.3249 0.4966 0.9434 1.1627 1.3497 1.8003 2.0045 2.3567 2.5909 +0.2798 0.4111 0.5786 0.7971 1.0414 1.2142 1.6947 2.0866 2.3351 2.5545 +0.1688 0.2693 0.4004 0.6337 1.3058 1.5064 1.7535 1.9689 2.5542 2.7424 +0.4419 0.6209 1.0127 1.2135 1.4104 1.6111 1.8820 2.1005 2.4238 2.5966 +0.3645 0.5120 0.8977 1.2209 1.5286 1.7204 1.9787 2.1779 2.4390 2.6114 +0.2897 0.4136 0.5504 0.8515 1.2641 1.4334 1.8079 2.0656 2.3509 2.7593 +0.1611 0.4723 0.7420 1.0071 1.2571 1.5891 1.9224 2.2345 2.5647 2.7991 +0.2528 0.4178 0.8909 1.3117 1.6622 1.8641 2.1017 2.2974 2.5299 2.6982 +0.1749 0.2700 0.4116 0.6036 1.1430 1.7776 2.0394 2.2220 2.4667 2.6598 +0.3451 0.4325 0.6194 0.7406 0.9176 1.5540 1.8426 2.0479 2.4401 2.5965 +0.3672 0.5164 0.6558 0.8441 1.2332 1.4114 1.6955 2.0875 2.3674 2.5471 +0.2194 0.3467 0.7384 1.1079 1.5398 1.8437 2.1212 2.3296 2.5800 2.7403 +0.1525 0.2343 0.3915 0.6843 1.0517 1.5020 1.7905 1.9667 2.2027 2.6725 +0.3531 0.5908 0.7462 0.9441 1.2774 1.4743 1.8268 2.1059 2.4478 2.6484 +0.3611 0.4981 0.7598 0.9676 1.4024 1.6330 1.9094 2.1433 2.4408 2.6130 +0.2153 0.3366 0.4974 0.6693 1.1944 1.6791 1.9002 2.1105 2.4100 2.5922 +0.2421 0.3392 0.5123 0.9818 1.5411 1.7092 1.9989 2.1981 2.5659 2.7656 +0.2116 0.3250 0.4845 0.8021 1.0088 1.2158 1.8038 2.0223 2.2975 2.5810 +0.1902 0.2942 0.8003 1.1086 1.3606 1.6008 1.8956 2.1328 2.4481 2.6405 +0.2772 0.3914 0.5826 0.7654 0.9495 1.1240 1.3949 2.0411 2.3891 2.5959 +0.2678 0.5220 0.7630 1.1000 1.3747 1.6432 1.9391 2.2237 2.5511 2.7893 +0.3200 0.4245 0.6174 0.9904 1.1662 1.3882 1.7601 1.9524 2.3998 2.5819 +0.1702 0.4871 0.8370 1.0989 1.3593 1.5830 1.8750 2.1277 2.4666 2.6885 +0.2280 0.3748 0.6554 0.9113 1.2081 1.4619 1.8181 2.0541 2.3791 2.5701 +0.1752 0.4363 0.6454 0.8798 1.1079 1.5367 1.8667 2.1716 2.4804 2.7249 +0.3804 0.4700 0.8224 1.0099 1.1892 1.5906 1.8879 2.0907 2.4544 2.6238 +0.1808 0.2910 0.4683 0.7059 0.8980 1.4031 1.7063 1.9444 2.4658 2.6776 +0.2418 0.3803 0.5443 0.7589 1.1496 1.3185 1.5451 1.7433 2.1310 2.6523 +0.2698 0.3690 0.5362 1.0732 1.2921 1.4696 1.7440 1.9470 2.5051 2.6841 +0.4099 0.5102 0.6983 1.0468 1.2459 1.4185 1.8851 2.0815 2.3464 2.5605 +0.0669 0.1354 0.3764 0.8433 1.1719 1.4834 1.8181 2.1312 2.4626 2.8044 +0.1614 0.2372 0.3878 0.5708 1.2759 1.4950 1.8052 2.0807 2.3485 2.6293 +0.1688 0.2875 0.4301 0.9059 1.2361 1.4054 1.8057 1.9924 2.5589 2.7495 +0.2864 0.3783 0.7032 1.0817 1.2382 1.5741 1.8619 2.0656 2.5139 2.6848 +0.3829 0.4781 0.6766 0.8340 1.0056 1.4147 1.6650 1.8840 2.3922 2.5619 +0.3259 0.4187 0.6139 0.7338 1.1831 1.6497 1.9000 2.1278 2.4322 2.5930 +0.2569 0.3790 0.5426 0.8390 0.9871 1.4850 1.8652 2.0732 2.4314 2.6005 +0.1408 0.2283 0.4024 0.8784 1.1485 1.4003 1.7004 1.9205 2.3723 2.6522 +0.2971 0.5039 0.8005 1.1212 1.4232 1.7801 2.1255 2.3907 2.6795 2.8487 +0.1515 0.2344 0.4684 0.8040 1.0401 1.3774 1.8329 2.1235 2.5555 2.7770 +0.5778 0.7157 0.8910 1.0966 1.4235 1.6482 1.9551 2.1831 2.4572 2.6234 +0.3017 0.4161 0.8088 0.9971 1.2000 1.4419 1.7867 2.0224 2.3473 2.5400 +0.1208 0.2814 0.6564 0.9448 1.2377 1.5663 1.9084 2.2112 2.5583 2.8155 +0.2127 0.3127 0.4635 0.6416 0.8449 1.6652 2.0577 2.2656 2.5811 2.7434 +0.1942 0.3011 0.4212 0.6901 1.5369 1.7639 1.9608 2.1766 2.4435 2.6663 +0.3510 0.4345 0.7146 0.9086 1.0678 1.2579 1.4425 2.0265 2.4574 2.6252 +0.3225 0.4323 0.6168 0.8580 1.5388 1.7910 1.9927 2.2013 2.4494 2.6160 +0.2271 0.4488 0.6287 0.7857 1.2086 1.3830 1.6194 2.1955 2.5236 2.6945 +0.2568 0.3510 0.5613 1.0500 1.2521 1.4359 1.6995 1.9187 2.2148 2.4275 +0.2933 0.3941 0.6128 0.8899 1.0720 1.2862 1.5331 1.8301 2.1553 2.3865 +0.3480 0.4626 0.6009 0.7630 0.9044 1.1225 1.8539 2.1845 2.5035 2.7091 +0.1337 0.4722 0.8099 1.1273 1.4252 1.6990 2.0188 2.2922 2.6018 2.8168 +0.1138 0.3263 0.8059 1.0473 1.3262 1.6202 1.9439 2.2007 2.5347 2.7702 +0.1979 0.3130 0.4635 0.8504 1.1143 1.3221 2.0371 2.2421 2.5406 2.7491 +0.3321 0.4194 0.8239 1.0458 1.1981 1.3733 1.5661 1.9985 2.3747 2.5416 +0.3729 0.5958 0.9551 1.2650 1.5484 1.9255 2.2256 2.4809 2.7276 2.8935 +0.1664 0.2516 0.5347 0.7545 1.1971 1.4089 1.7400 2.0871 2.4098 2.6795 +0.2370 0.3178 0.6123 1.3315 1.5470 1.7257 2.0063 2.1977 2.5449 2.7252 +0.2030 0.3328 0.4766 0.7357 1.2780 1.4439 1.7229 1.9405 2.2278 2.6816 +0.1702 0.2919 0.4598 0.7123 0.9077 1.1450 1.8632 2.0806 2.4990 2.7100 +0.2421 0.3578 0.5400 0.7217 0.8971 1.4898 1.8518 2.1205 2.6077 2.7894 +0.3030 0.3935 0.5812 0.7404 0.9425 1.8342 2.0887 2.2811 2.5596 2.7118 +0.1322 0.1997 0.3466 0.6981 1.1811 1.4849 1.8594 2.1114 2.4708 2.7804 +0.2317 0.3069 0.6860 1.4306 1.7121 1.8671 2.1249 2.2995 2.5705 2.7456 +0.3778 0.4863 0.6639 0.9163 1.1560 1.3186 1.5389 1.7169 2.1603 2.5797 +0.2118 0.3499 0.5259 0.7200 1.1348 1.3140 1.5657 2.0241 2.2873 2.5184 +0.2902 0.4368 0.6331 0.8971 1.3102 1.5219 1.8674 2.1512 2.4708 2.6809 +0.1418 0.3988 0.6251 0.8544 1.1268 1.3964 1.7585 2.0322 2.3964 2.6928 +0.2314 0.3462 0.7282 0.9211 1.1766 1.4941 1.7368 1.9546 2.5170 2.7066 +0.2076 0.3251 0.7423 0.9590 1.1936 1.5329 1.8887 2.1588 2.4667 2.6709 +0.2058 0.4139 0.5745 0.7832 0.9595 1.1688 1.7561 1.9562 2.4840 2.7001 +0.1834 0.2971 0.4643 0.6625 0.8802 1.1137 1.5183 1.8417 2.3842 2.7042 +0.1688 0.4218 0.7070 1.0465 1.4496 1.6953 1.9560 2.2174 2.5172 2.7404 +0.2323 0.3981 0.5489 0.7227 1.2886 1.5221 1.7158 2.1184 2.4066 2.5898 +0.3470 0.5265 0.8140 1.0152 1.3206 1.5411 1.8490 2.0588 2.3556 2.5393 +0.1707 0.2595 0.6762 0.9037 1.2781 1.4903 1.7946 2.0610 2.3741 2.5771 +0.1457 0.2318 0.6039 1.0078 1.3461 1.5908 1.8818 2.1248 2.4432 2.6714 +0.6574 0.8086 1.0243 1.2183 1.4837 1.7129 2.0197 2.2464 2.5059 2.6716 +0.2546 0.4983 0.8674 1.2536 1.6704 1.9529 2.2134 2.4319 2.6532 2.8109 +0.2455 0.3379 0.4632 0.8635 1.5286 1.8047 1.9909 2.1806 2.4031 2.5729 +0.4772 0.6742 1.0000 1.2474 1.5288 1.7415 2.0102 2.2168 2.4770 2.6449 +0.3357 0.4382 0.6033 1.1317 1.3681 1.5576 1.9251 2.1119 2.5548 2.7395 +0.2588 0.7015 0.8953 1.0830 1.2828 1.5160 1.8965 2.1921 2.5150 2.7258 +0.2466 0.3512 0.5047 0.6646 0.8161 1.2577 1.8046 2.0214 2.4447 2.6491 +0.1631 0.2283 0.4070 0.5955 1.1126 1.3894 1.8978 2.1849 2.5384 2.7382 +0.3424 0.4748 0.6222 0.8020 0.9706 1.1568 1.7044 1.9297 2.2127 2.5627 +0.2088 0.5143 0.7400 0.9277 1.1032 1.3561 1.8841 2.2004 2.5882 2.7993 +0.2016 0.3488 0.5894 0.7419 1.1488 1.3626 1.5566 1.9694 2.5488 2.7209 +0.2558 0.3914 0.5360 0.7521 1.4330 1.6955 1.8886 2.1428 2.4190 2.5966 +0.4021 0.5034 0.6653 0.8123 0.9586 1.2825 1.9184 2.1120 2.4090 2.5970 +0.2343 0.4800 0.6934 0.8523 1.2786 1.4763 1.7235 2.0400 2.3602 2.5562 +0.2460 0.3687 0.5325 0.7044 1.1488 1.3608 1.8112 2.0757 2.4183 2.6630 +0.1616 0.3644 0.5725 0.9166 1.2481 1.4938 1.8388 2.1175 2.4712 2.7464 +0.3760 0.4841 0.6350 1.0082 1.2110 1.4003 1.8127 2.0018 2.5199 2.7238 +0.1988 0.2824 0.6553 1.0337 1.5413 1.7369 1.9751 2.1751 2.4372 2.6265 +0.2728 0.4094 0.7498 1.0645 1.3516 1.5946 1.9910 2.2172 2.4830 2.6614 +0.1657 0.5327 0.7281 0.9966 1.2385 1.4629 1.8119 2.0973 2.4469 2.6979 +0.1413 0.2098 0.3540 0.5492 0.8486 1.1288 1.6320 1.9056 2.2805 2.5438 +0.2856 0.3666 0.6259 1.1424 1.6605 1.8197 2.0147 2.1986 2.4121 2.5919 +0.2725 0.4829 0.7650 1.0119 1.2977 1.5488 1.8755 2.1155 2.4383 2.6377 +0.2736 0.3804 0.5537 1.0258 1.2269 1.4186 1.9718 2.1468 2.5665 2.7689 +0.2341 0.5953 1.1030 1.4549 1.7361 1.9758 2.2126 2.4213 2.6405 2.8181 +0.2273 0.4638 0.6228 0.8500 1.1016 1.2823 1.7094 1.9523 2.2669 2.7029 +0.2438 0.3798 0.7299 0.9600 1.3765 1.6104 1.8644 2.1161 2.5073 2.7137 +0.1551 0.4869 0.8676 1.2274 1.5069 1.8857 2.1868 2.4411 2.7106 2.8767 +0.2746 0.5454 0.7589 0.9458 1.1597 1.3349 1.6653 2.1142 2.4356 2.6239 +0.1793 0.2646 0.4344 0.7482 1.1502 1.3733 1.8558 2.0817 2.3248 2.5171 +0.2698 0.4202 0.5765 0.8301 1.0073 1.2101 1.9714 2.2051 2.5138 2.7395 +0.1929 0.3091 0.4460 0.6266 1.1805 1.3672 1.5990 2.1514 2.4729 2.6468 +0.1901 0.3047 0.4607 1.1019 1.3168 1.5343 1.9234 2.1365 2.5924 2.7807 +0.3139 0.5009 0.6700 0.8268 1.0117 1.1810 1.6539 2.1984 2.4828 2.6576 +0.1403 0.2173 0.4117 0.7302 1.0038 1.2732 1.7392 2.0337 2.3809 2.7386 +0.4166 0.5101 0.7449 1.1663 1.3492 1.5543 1.9000 2.0941 2.4588 2.6365 +0.3342 0.4335 0.6160 0.8559 1.0112 1.2097 1.4029 1.6361 2.4129 2.6324 +0.4543 0.6159 0.7932 0.9843 1.2562 1.4308 1.7116 1.9919 2.2671 2.4631 +0.2153 0.3609 0.5302 0.7089 0.8756 1.0376 1.6496 2.2826 2.5680 2.7441 +0.4380 0.6439 0.8282 1.0651 1.3650 1.5829 1.8838 2.1005 2.4006 2.5771 +0.2523 0.3636 0.5879 1.1628 1.3542 1.6756 2.0488 2.2543 2.6093 2.7953 +0.4179 0.5426 0.7065 0.8996 1.0684 1.3146 1.9705 2.2021 2.5051 2.7061 +0.1659 0.2860 0.6693 0.9229 1.3959 1.6544 1.9709 2.2257 2.5236 2.7460 +0.2540 0.4356 0.5946 0.7627 1.2274 1.4222 1.6573 1.9601 2.2514 2.4711 +0.1633 0.2337 0.3698 0.5421 1.1757 1.5916 2.1561 2.3371 2.5534 2.7737 +0.1953 0.2730 0.4521 1.2005 1.7062 1.8627 2.1313 2.3266 2.5906 2.7667 +0.3053 0.4054 0.5651 0.7470 0.8910 1.1720 1.8864 2.1074 2.3705 2.5744 +0.1761 0.3033 0.6501 0.8268 1.0369 1.2687 1.8534 2.1889 2.5074 2.7339 +0.2265 0.3990 1.1359 1.4137 1.6839 1.8912 2.0948 2.3042 2.5489 2.7234 +0.3326 0.5400 0.8711 1.0948 1.3752 1.6155 1.9360 2.1537 2.4451 2.6133 +0.2162 0.3522 0.5309 0.7470 0.9677 1.1747 1.5056 1.7942 2.1615 2.4800 +0.1872 0.2761 0.4053 0.7469 1.5858 1.8945 2.1198 2.3197 2.5819 2.7758 +0.5381 0.8651 1.2695 1.4918 1.7774 1.9696 2.1865 2.3687 2.5739 2.7158 +0.2663 0.3422 0.6098 1.2120 1.4516 1.6092 1.8506 2.0376 2.2929 2.5088 +0.1904 0.3051 0.5663 0.7391 1.1589 1.5705 1.8756 2.1653 2.5518 2.7693 +0.1543 0.3519 0.6976 1.0664 1.3696 1.7817 2.1308 2.4259 2.7070 2.8753 +0.3304 0.4283 0.5942 0.7425 0.8906 1.4067 2.0676 2.2460 2.5394 2.7006 +0.2080 0.3215 0.6278 0.7882 1.3123 1.5592 1.8048 2.0831 2.4303 2.6266 +0.1188 0.2481 0.8270 1.2420 1.5824 1.8976 2.1816 2.4248 2.6645 2.8459 +0.0635 0.1528 0.5973 0.9377 1.2653 1.5465 1.8818 2.1681 2.5089 2.7924 +0.3249 0.5179 0.9143 1.2973 1.4966 1.7550 2.0715 2.3166 2.6500 2.8305 +0.1918 0.3107 0.4506 0.6994 1.3463 1.5348 1.8447 2.1903 2.4480 2.6877 +0.3405 0.4644 0.7232 0.9199 1.2611 1.5175 1.8446 2.0652 2.3915 2.5781 +0.3289 0.5152 0.6602 1.0213 1.1886 1.5496 1.9553 2.1883 2.5394 2.7362 +0.3000 0.4097 0.8372 1.0793 1.3095 1.5684 1.8746 2.0783 2.3643 2.5490 +0.2421 0.3280 0.5288 0.9261 1.6911 1.8959 2.1013 2.2823 2.5238 2.6960 +0.1070 0.3131 0.6226 0.8881 1.1808 1.4867 1.8146 2.1088 2.4594 2.7186 +0.4400 0.5533 0.7025 0.9206 1.4089 1.5820 1.8080 2.0832 2.3577 2.5300 +0.2250 0.3434 0.4808 0.6721 0.8198 1.1446 2.0201 2.2625 2.5520 2.7604 +0.1671 0.2551 0.4603 0.6777 0.9661 1.5579 1.8659 2.1196 2.4425 2.6551 +0.3910 0.5877 1.0287 1.3547 1.6899 1.9166 2.1451 2.3337 2.5519 2.7071 +0.1435 0.2165 0.3968 0.8376 1.2572 1.5298 1.8791 2.1352 2.4636 2.7011 +0.1756 0.2799 0.4120 0.5808 0.7573 1.3340 1.8235 2.1200 2.4993 2.7365 +0.1332 0.2174 0.4716 0.9483 1.2723 1.6028 1.9272 2.2190 2.5588 2.7990 +0.2122 0.3143 0.7042 0.8849 1.1312 1.3711 1.6832 1.9633 2.2685 2.5156 +0.2089 0.3339 0.4817 0.8526 1.0657 1.2741 1.5747 1.8000 2.4860 2.6843 +0.1636 0.2617 0.4400 0.7357 1.0355 1.2638 1.5672 1.8504 2.1904 2.6588 +0.1945 0.2934 0.4869 0.8567 1.1262 1.3604 1.6898 1.9143 2.1475 2.3503 +0.1606 0.2442 0.3931 0.9237 1.5811 1.7529 2.0133 2.2272 2.5250 2.7265 +0.4866 0.7045 1.0593 1.2795 1.5326 1.8221 2.1461 2.3665 2.6041 2.7599 +0.4012 0.4911 0.7103 0.8585 1.0495 1.7244 2.0116 2.2041 2.5189 2.6643 +0.4365 0.6694 0.8644 1.1330 1.4510 1.7627 2.1032 2.3690 2.6280 2.8306 +0.2072 0.4018 0.6227 0.8913 1.3038 1.6056 1.9704 2.2816 2.6135 2.8182 +0.3302 0.4968 0.8713 1.0761 1.2576 1.4654 1.8152 2.1400 2.5404 2.7493 +0.1385 0.2292 0.3530 0.6006 1.4699 1.6571 1.9438 2.1663 2.5027 2.7308 +0.1894 0.2915 0.4345 0.6341 1.0024 1.1896 1.6896 2.0966 2.4086 2.6768 +0.3841 0.5197 0.8889 1.1480 1.4383 1.6285 1.8642 2.0669 2.3466 2.5325 +0.2008 0.3097 0.4664 0.6638 1.2798 1.4940 1.7270 2.0264 2.2915 2.4750 +0.1864 0.2857 0.4481 1.1025 1.3096 1.5035 1.7614 1.9891 2.4255 2.6031 +0.4081 0.6134 0.9514 1.1818 1.3943 1.6361 1.9891 2.2395 2.5547 2.7287 +0.2964 0.3876 0.9450 1.2247 1.3906 1.5882 1.8241 2.0589 2.4188 2.5871 +0.3127 0.4038 0.6168 1.0810 1.3067 1.4759 1.8817 2.0781 2.3394 2.5539 +0.2066 0.3059 0.4989 0.7132 0.9066 1.4460 1.7584 1.9755 2.2210 2.4741 +0.2634 0.3956 0.5667 0.8777 1.0517 1.6029 2.0590 2.2607 2.6064 2.7647 +0.4331 0.5315 0.7764 1.0444 1.2269 1.4311 1.7093 1.9187 2.4337 2.6149 +0.2161 0.4429 0.6851 0.8336 1.1037 1.2966 1.5283 2.0299 2.3407 2.5384 +0.2814 0.3637 0.5416 0.9475 1.5137 1.6945 1.8892 2.1017 2.3190 2.5007 +0.4454 0.6883 1.1402 1.4098 1.7435 2.0014 2.2521 2.4457 2.6495 2.7985 +0.1641 0.4083 0.6426 1.0592 1.3258 1.5754 1.8666 2.1381 2.4572 2.7177 +0.3391 0.4607 0.6072 0.8463 1.4207 1.6062 1.8303 2.0887 2.3615 2.5348 +0.2414 0.3396 0.5100 0.7470 1.3329 1.8618 2.0751 2.2564 2.5147 2.6874 +0.1694 0.2535 0.4156 0.8302 1.2853 1.5838 2.0907 2.3085 2.5929 2.7951 +0.2047 0.3652 0.6500 0.8068 1.0178 1.1865 1.4889 2.0671 2.5966 2.7634 +0.2425 0.3247 0.6020 1.2226 1.4272 1.5996 1.8377 2.0413 2.5333 2.7021 +0.3842 0.5030 0.6541 0.8771 1.0576 1.2612 1.6744 1.8735 2.4781 2.6803 +0.2042 0.3280 0.7283 0.8985 1.1444 1.3299 1.6032 2.1539 2.4739 2.6547 +0.1268 0.1924 0.3208 0.5153 1.1304 1.4443 1.8047 2.0552 2.4385 2.7572 +0.2713 0.3659 0.5395 1.0705 1.4228 1.5836 1.9763 2.1641 2.4459 2.6301 +0.3047 0.4043 0.5727 0.7368 0.8997 1.3242 1.6473 1.8879 2.4330 2.6295 +0.1224 0.3948 0.6903 0.9199 1.2852 1.5516 1.8645 2.1231 2.4657 2.7044 +0.2157 0.3281 0.5036 0.9272 1.0975 1.5285 1.8080 2.0569 2.5448 2.7221 +0.1670 0.2490 0.3696 0.5921 1.3019 1.8398 2.2165 2.3725 2.6142 2.8338 +0.3899 0.5573 0.8100 1.0732 1.3966 1.6598 2.0001 2.2517 2.5548 2.7403 +0.4905 0.6064 0.8222 0.9966 1.1912 1.5714 1.9628 2.1727 2.5300 2.7055 +0.1309 0.2342 0.6232 0.8795 1.1283 1.3655 1.7371 2.0251 2.3992 2.6885 +0.1805 0.2672 0.4297 1.2440 1.4967 1.6796 1.9592 2.1784 2.5439 2.7289 +0.2280 0.5429 0.6967 0.8732 1.4074 1.6074 1.9516 2.2124 2.5486 2.7722 +0.2339 0.3379 0.4924 0.9061 1.3074 1.4719 1.8884 2.1110 2.3618 2.5545 +0.1384 0.2291 0.5127 1.0450 1.4017 1.7884 2.1134 2.3664 2.6588 2.8435 +0.2196 0.6359 0.9100 1.2007 1.4589 1.7053 2.0128 2.2722 2.5520 2.7643 +0.1698 0.2615 0.3810 0.5706 1.4297 1.8686 2.0728 2.2559 2.4860 2.6701 +0.1445 0.2158 0.3658 0.5451 0.9389 1.3669 1.7900 2.0846 2.3924 2.7161 +0.2789 0.3816 0.5277 0.8487 1.3751 1.5461 1.7832 2.0264 2.2695 2.4665 +0.1733 0.3023 0.9216 1.2368 1.4776 1.7229 1.9952 2.2471 2.5390 2.7265 +0.3374 0.5033 1.0951 1.3262 1.5284 1.7336 1.9733 2.2009 2.4992 2.6751 +0.1293 0.2743 0.7533 1.0166 1.2416 1.4444 1.7962 2.0851 2.4770 2.7204 +0.3106 0.4176 0.6358 0.9434 1.1419 1.3458 1.9638 2.1678 2.4390 2.6235 +0.4533 0.5760 0.7392 0.9136 1.0829 1.2759 1.7903 2.0360 2.3124 2.5325 +0.3702 0.5218 0.6977 0.8776 1.1096 1.2855 1.5612 1.9480 2.2170 2.4361 +0.1637 0.2647 0.4185 0.6666 1.1584 1.3270 1.7829 1.9821 2.4361 2.7094 +0.1769 0.2767 0.3942 0.5746 1.3595 1.7110 1.9176 2.1405 2.3722 2.5705 +0.2712 0.3820 0.6524 0.8317 1.0341 1.3972 1.7312 1.9918 2.3854 2.5886 +0.1003 0.2046 0.7261 1.1004 1.4057 1.6697 1.9903 2.2603 2.5813 2.8009 +0.2534 0.3752 0.7192 0.9323 1.3698 1.5955 1.8653 2.0656 2.3368 2.5340 +0.3589 0.4508 0.6631 1.0521 1.5065 1.6697 1.8929 2.1074 2.3466 2.5242 +0.1955 0.2862 0.6111 0.8053 1.0501 1.5218 1.7996 2.0303 2.3788 2.5973 +0.2982 0.4033 0.5660 0.8924 1.1933 1.3465 1.7895 2.0173 2.2606 2.5069 +0.3356 0.4711 0.6310 0.8491 1.0049 1.4364 1.8176 2.0292 2.5710 2.7525 +0.2016 0.2912 0.4363 0.9800 1.4897 1.6494 1.8862 2.0819 2.3636 2.6091 +0.4549 0.6491 0.8450 1.0209 1.1747 1.3745 1.8824 2.1130 2.3760 2.5768 +0.2510 0.3524 0.5171 0.8931 1.4094 1.5710 1.8536 2.0478 2.4766 2.7320 +0.1576 0.2547 0.3891 0.8551 1.4282 1.5880 1.8583 2.0521 2.5359 2.7340 +0.3481 0.4382 0.7720 1.1289 1.3203 1.5019 1.7665 1.9570 2.2231 2.4465 +0.3116 0.4068 0.6991 0.8894 1.0912 1.5356 1.8084 2.0006 2.2323 2.4367 +0.2706 0.4033 0.8272 1.0851 1.4820 1.6927 1.9292 2.1267 2.4049 2.5857 +0.2745 0.3550 0.8663 1.3742 1.5545 1.7324 1.9664 2.1538 2.4581 2.6245 +0.1736 0.2553 0.5357 0.9009 1.1888 1.5132 1.8579 2.1181 2.4273 2.6847 +0.3026 0.4148 0.9044 1.1695 1.3657 1.7036 1.9891 2.2226 2.5441 2.7085 +0.3998 0.5108 0.7205 0.9848 1.1828 1.3716 1.7154 1.9191 2.1875 2.4257 +0.2141 0.3095 0.7428 1.0426 1.2851 1.5571 1.7901 1.9804 2.2462 2.5265 +0.1574 0.2290 0.3869 0.5735 1.0925 1.3383 1.6598 1.9364 2.2095 2.4195 diff --git a/gr-vocoder/lib/codec2/codebook/lspvqanssi2.txt b/gr-vocoder/lib/codec2/codebook/lspvqanssi2.txt new file mode 100644 index 0000000000..607cb47a9f --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspvqanssi2.txt @@ -0,0 +1,129 @@ +10 128 +0.0120 0.0022 0.0068 -0.0112 -0.0508 -0.0490 0.2249 0.1476 0.0133 -0.0379 +0.0598 0.0477 0.0380 0.0660 0.0517 0.0150 0.0617 0.0081 -0.0768 -0.1007 +-0.0087 -0.0440 0.0873 0.0882 0.0391 -0.0060 0.1100 0.0569 -0.0241 -0.0468 +0.0146 -0.0005 0.0322 -0.0650 -0.0778 -0.0780 -0.0255 -0.0527 -0.0301 -0.0401 +-0.0240 -0.0560 -0.0374 0.0274 0.0484 -0.0227 0.0328 0.1135 0.0117 -0.0300 +-0.0324 -0.0574 0.0302 0.0137 -0.0603 -0.1194 -0.0105 -0.0513 0.0698 0.0538 +0.0635 0.0382 0.0531 0.0897 0.0495 0.0039 -0.0421 -0.0919 0.0407 0.0167 +0.0954 0.0854 0.0360 -0.0025 -0.0252 -0.0528 -0.0435 -0.0561 -0.0405 -0.0432 +0.0110 -0.0010 -0.0433 -0.0167 0.1402 0.0738 0.0423 -0.0024 -0.0920 -0.1099 +0.0179 0.0184 -0.0041 -0.0640 0.1004 0.0608 -0.0023 -0.0357 0.1509 0.1262 +-0.0145 -0.0240 -0.0595 -0.1063 0.0597 -0.0040 -0.0886 0.1184 0.0380 0.0126 +-0.0072 0.0172 0.0076 0.0288 0.0810 0.0278 0.0709 0.0051 0.0214 -0.0301 +0.0127 -0.0126 -0.0434 0.1610 0.1178 0.0704 0.0257 -0.0073 -0.0425 -0.0610 +-0.0165 -0.0369 -0.0785 0.1007 0.0309 -0.0651 0.0142 -0.0614 0.0426 0.0289 +-0.0374 -0.0712 0.0049 -0.0382 0.0472 0.0095 -0.0268 -0.0747 -0.0457 -0.0758 +-0.0211 -0.0432 -0.0547 -0.0446 -0.1078 0.0090 -0.0565 -0.1298 0.0721 0.0351 +-0.0014 -0.0072 -0.0283 -0.0324 -0.0208 -0.0703 0.0979 0.0865 -0.0007 0.1881 +-0.0077 -0.0302 0.1231 0.0905 0.0786 0.0432 -0.0286 -0.0661 -0.0055 -0.0275 +0.0010 0.0043 0.0044 0.0380 -0.1201 -0.0098 -0.0166 0.0105 0.0153 0.0134 +0.0843 0.0636 0.0416 -0.0004 -0.0570 -0.0592 0.1158 0.0590 0.0126 0.0034 +0.0346 0.0290 -0.0037 -0.0026 -0.0457 0.1824 0.1469 0.0870 0.0291 -0.0074 +0.0066 0.0682 -0.0148 0.0287 0.0095 -0.0563 0.1296 0.0426 0.1215 0.0886 +-0.0132 -0.0399 0.0960 0.0474 0.0140 0.0306 -0.0192 -0.0703 -0.1559 -0.1556 +-0.0600 0.0482 0.1257 0.0521 0.0229 -0.0031 0.0817 0.0571 -0.0138 -0.0277 +0.0013 -0.0103 -0.0470 -0.0687 -0.1444 0.0181 0.1350 0.0559 -0.0177 -0.0598 +-0.0215 -0.0318 -0.0689 -0.0268 0.0917 0.0307 0.0135 -0.0184 -0.0857 0.1231 +0.0137 -0.0152 0.0199 -0.0291 -0.0685 0.0438 -0.1137 0.0231 -0.0632 -0.0802 +-0.0011 0.0314 0.0535 -0.0135 -0.0291 -0.0579 -0.1049 0.0288 -0.0628 0.1355 +-0.0901 0.0041 -0.0170 0.0351 0.0144 -0.0505 0.0396 0.0638 -0.0145 0.0141 +-0.0400 -0.0603 -0.0714 0.0329 -0.0049 -0.0529 -0.1251 0.0022 -0.0449 -0.0778 +0.0247 0.0296 0.0239 0.0122 -0.0348 -0.1224 -0.0033 0.1237 -0.0016 -0.0436 +0.0246 0.0050 0.0322 0.0818 0.0203 0.0846 0.0022 0.0876 0.0149 -0.0184 +-0.0204 -0.0228 0.0365 -0.0164 0.1087 0.0374 -0.0550 0.0330 -0.0582 -0.0736 +-0.0305 -0.0485 -0.0572 0.0275 -0.0271 -0.0436 0.1217 0.0700 0.1253 0.0990 +-0.0079 -0.0204 -0.0325 0.0491 0.0158 -0.0365 -0.1309 -0.1812 0.1428 0.1148 +0.0680 0.0547 0.0309 0.0079 -0.0332 0.0391 -0.0287 0.1258 0.1123 0.1016 +-0.0264 -0.0409 -0.0538 -0.0192 -0.0393 -0.0713 -0.0618 -0.1078 -0.1850 0.0532 +0.0081 -0.0115 -0.0090 0.1201 -0.0413 -0.0995 0.0445 -0.0032 -0.0286 -0.0497 +-0.0023 -0.0184 -0.0358 0.1279 0.0847 0.0530 0.0230 -0.0212 0.1245 0.0965 +0.0111 0.1038 0.0597 0.0413 0.0533 0.0011 0.0031 0.0705 0.0242 0.0198 +0.0020 -0.0071 -0.0262 -0.0496 -0.0750 -0.1273 -0.1785 0.0606 -0.0223 -0.0583 +-0.0202 0.0669 0.0081 0.0335 -0.0218 -0.1073 -0.0146 -0.0673 0.0490 0.0210 +-0.0108 -0.0230 -0.0614 -0.0986 0.0629 0.0006 0.1496 0.1099 0.0316 0.0098 +-0.0368 -0.0685 0.0138 -0.0213 -0.0009 0.0344 -0.0249 0.0311 0.0803 0.0759 +0.0038 -0.0158 0.0142 0.0254 0.0970 0.0021 -0.1029 0.0006 0.0576 0.0261 +-0.0083 0.0698 0.0406 -0.0348 0.0200 0.0833 0.0186 -0.0145 -0.0725 -0.0872 +-0.0506 -0.0673 0.0776 -0.0172 -0.0444 -0.0531 -0.0799 0.0005 -0.0359 -0.0446 +0.0368 0.0376 -0.0407 -0.0190 0.0987 0.0212 -0.0349 -0.0951 -0.0084 -0.0342 +-0.0309 -0.0561 0.0950 -0.0125 -0.1028 -0.0133 0.0920 0.0965 0.0668 0.0409 +-0.0898 0.0036 -0.0353 -0.0024 -0.0365 -0.0259 -0.0485 -0.0843 -0.0063 -0.0167 +-0.0255 -0.0407 -0.0456 -0.0931 -0.0892 -0.0293 -0.0510 0.0183 -0.0104 0.0472 +-0.0172 -0.0399 -0.0731 0.0546 0.0320 -0.0283 0.0415 -0.0107 -0.1237 -0.1102 +0.0210 0.0294 -0.0038 -0.0090 -0.0551 -0.0922 0.0261 -0.0334 -0.1181 -0.1536 +0.0092 0.0032 -0.0162 0.0398 0.0205 0.1266 -0.0107 -0.0858 0.0392 0.0032 +-0.0038 -0.0269 -0.0737 0.1138 0.0263 -0.0031 -0.1188 0.1621 0.0831 0.0526 +0.0023 -0.0149 -0.0497 0.0898 0.0456 -0.0145 -0.0928 -0.1507 -0.0611 -0.0938 +0.0120 0.0124 -0.0286 -0.1319 0.0219 0.0311 -0.0398 -0.0465 -0.0008 -0.0375 +0.0138 0.0023 0.0024 0.1072 0.0531 0.0006 0.0292 -0.0115 -0.0620 0.1650 +0.0070 -0.0251 0.0715 0.0380 -0.0404 0.1230 0.0629 0.0096 0.0973 0.0641 +-0.0586 0.0772 0.0128 0.1060 0.0715 0.0374 -0.0074 -0.0365 -0.0543 -0.0489 +-0.0392 0.0871 -0.0069 -0.1084 0.0264 -0.0495 0.0396 0.0005 -0.0293 -0.0240 +-0.0327 0.0605 0.0662 0.0100 -0.0007 -0.0525 -0.0812 -0.0686 -0.0873 -0.0830 +0.0119 0.0058 0.0030 -0.0307 0.0650 0.0175 -0.0741 -0.1500 -0.1947 0.0881 +0.0572 0.0411 0.0152 -0.0127 -0.0589 -0.0510 -0.0212 -0.0834 0.1434 0.1318 +0.0518 0.0417 -0.0430 0.0963 -0.0014 0.0173 0.0234 -0.0273 0.0359 -0.0118 +0.0652 0.0587 0.0013 -0.0700 0.1262 0.0975 0.0680 0.0598 0.0048 -0.0305 +-0.0185 -0.0440 0.1178 0.0656 0.0052 -0.0534 -0.1151 0.1116 0.0659 0.0344 +0.0788 0.0577 0.0452 0.0283 -0.0278 0.0911 0.0280 -0.0254 0.0029 -0.0361 +-0.0165 -0.0322 -0.0526 -0.1057 0.0927 0.0293 -0.1026 -0.1671 0.0470 0.0355 +0.0100 0.0001 -0.0221 -0.0775 -0.1109 -0.1416 0.0884 0.0441 0.0632 0.0409 +0.0204 0.0432 0.0141 -0.0296 0.1073 0.0580 0.0383 0.0270 -0.0857 0.1246 +0.0488 0.0231 0.0648 -0.0179 0.0747 0.0156 -0.0384 -0.0733 -0.0732 -0.0970 +0.0005 -0.0199 -0.0260 -0.0511 -0.1110 0.0670 -0.0413 0.1571 0.0498 0.0191 +0.0037 -0.0085 -0.0796 0.0086 -0.0852 0.0850 0.0115 -0.0065 0.1161 0.0727 +0.0023 0.0483 0.0285 -0.0642 -0.0477 0.0175 0.0346 0.0452 0.0655 0.0284 +-0.0986 0.0463 0.0326 -0.0055 0.0702 0.0194 -0.0423 -0.0107 0.0338 0.0619 +0.0126 -0.0138 -0.1115 0.0159 -0.0331 0.0217 -0.0376 -0.0407 -0.0222 -0.0503 +0.0222 0.0071 -0.0490 0.1017 0.0551 -0.0164 0.1578 0.1059 0.0025 -0.0107 +0.0124 -0.0090 0.0322 0.0930 0.0281 -0.0403 -0.0781 0.0125 -0.0670 -0.1058 +0.0363 0.0077 0.1052 0.0039 0.0676 0.0891 0.0433 0.0252 0.0224 -0.0043 +-0.0045 -0.0194 -0.0193 -0.0480 -0.0640 -0.0695 -0.1597 -0.0030 0.1728 0.1231 +0.0297 0.0025 0.0619 -0.0347 -0.1171 0.1043 0.0868 0.0191 -0.0739 -0.1075 +0.0073 0.0914 0.0367 -0.0236 0.0232 0.0304 -0.0787 -0.1099 0.0460 0.0082 +0.0296 0.0297 -0.0444 0.0184 0.0602 -0.0295 -0.0934 0.0636 -0.0347 -0.0722 +-0.0290 -0.0629 0.0598 0.0013 0.0064 0.1431 0.0920 0.0468 -0.0311 -0.0614 +-0.0152 -0.0311 -0.0500 -0.0672 -0.1257 -0.0134 -0.0220 -0.0612 -0.1131 -0.1417 +0.0371 0.0153 -0.0817 -0.0007 0.0837 0.0481 0.0460 0.0678 0.0524 0.0432 +0.0126 -0.0069 -0.0092 -0.0693 -0.0250 0.1510 0.0098 -0.0683 -0.0566 -0.0769 +-0.0199 -0.0423 0.0806 0.0562 0.0009 -0.0563 -0.1358 -0.1578 -0.0456 0.0032 +0.0091 0.0101 -0.0090 -0.0279 -0.0489 -0.1038 -0.0815 0.2184 0.1172 0.0902 +-0.0024 -0.0135 0.0392 0.0028 0.0792 0.0404 0.0867 0.1610 0.0954 0.0846 +-0.0004 -0.0220 -0.0282 -0.1022 -0.0799 0.1278 0.0765 0.0402 0.0850 0.0611 +0.0443 0.0320 -0.0384 -0.0964 0.0030 -0.0398 -0.0730 -0.0052 -0.0267 0.1209 +-0.0706 0.1151 0.0722 -0.0175 -0.0927 -0.0559 0.0316 0.0186 0.0105 0.0314 +-0.0145 -0.0263 -0.0564 0.0248 -0.0181 -0.0817 -0.0938 0.0366 -0.0315 0.1253 +0.0307 0.0039 0.1290 0.0402 -0.0439 -0.0384 0.0044 -0.0177 -0.0172 -0.0310 +0.0447 0.0298 0.0287 0.0273 -0.0350 -0.0708 -0.1829 -0.0317 0.0643 0.0057 +-0.0820 -0.0326 0.0209 -0.0711 0.0084 0.0111 0.0426 0.0262 -0.0061 0.0005 +0.0545 0.0377 -0.0417 -0.0625 0.0114 -0.0405 0.0573 0.0191 -0.0263 -0.0472 +-0.0053 -0.0049 -0.0255 -0.0578 -0.0237 -0.0721 -0.1487 -0.1636 0.0046 -0.0355 +0.0309 0.0107 0.0163 0.0132 -0.0536 -0.0009 -0.0706 -0.1350 -0.0514 -0.0960 +0.0306 0.0003 0.0494 0.0701 0.0027 -0.0458 0.0780 0.0327 0.0937 0.0605 +-0.0017 -0.0275 0.0797 -0.0268 -0.1014 0.0593 -0.0528 -0.1103 0.0682 0.0322 +-0.0507 -0.0806 -0.0646 -0.0052 -0.0576 0.0451 0.0489 0.0150 0.0029 -0.0189 +0.0270 0.0143 -0.0375 -0.0071 -0.0607 -0.1157 -0.0345 -0.1115 0.0201 -0.0104 +-0.0807 -0.1088 0.0845 0.0720 0.0441 0.0301 0.0043 0.0052 0.0016 0.0201 +-0.0290 -0.0532 0.0036 -0.0201 -0.0723 -0.1321 0.0867 0.0479 -0.0556 -0.0850 +-0.0271 0.0126 0.1283 0.0533 -0.0030 -0.0352 -0.0326 -0.0553 0.1402 0.1121 +-0.0358 -0.0518 -0.1080 0.0134 0.0950 0.0384 -0.0040 -0.0254 0.0026 -0.0217 +-0.0152 -0.0375 -0.0827 0.0916 0.0188 0.1306 0.0983 0.0606 0.0381 0.0080 +-0.0107 -0.0269 -0.0573 -0.1189 0.0258 0.1009 0.0565 0.0270 -0.0557 -0.0778 +-0.0193 -0.0242 -0.0784 -0.0816 0.0287 -0.0484 0.0292 -0.0414 0.1124 0.0767 +0.0177 -0.0148 0.0472 -0.0808 0.0623 -0.0636 0.0750 -0.0107 0.0673 0.0425 +-0.0220 0.0577 -0.0769 -0.0247 -0.0321 0.0341 -0.0108 0.0109 -0.0142 0.0122 +0.0194 0.0248 -0.0096 -0.0205 -0.0460 -0.1160 0.0492 -0.0188 -0.1535 0.0816 +0.0301 -0.0286 -0.0077 -0.0117 -0.0036 -0.0026 0.0133 -0.0032 0.0007 -0.0160 +0.0115 -0.0111 0.0246 -0.0639 0.0325 -0.0313 0.0808 0.0435 -0.0777 -0.1108 +-0.0079 -0.0334 -0.0144 -0.0539 0.1564 0.1175 0.0549 0.0340 0.0319 0.0027 +-0.0155 -0.0275 -0.0739 -0.0932 0.0108 -0.0698 0.0036 -0.0213 -0.0486 -0.0670 +-0.0234 -0.0567 0.0020 0.0908 -0.0151 0.0460 -0.0175 -0.0523 0.0098 -0.0237 +0.0057 -0.0066 -0.0418 0.0418 -0.0449 0.1069 0.0629 -0.0016 -0.1068 -0.1492 +-0.0791 0.0403 -0.0009 0.0285 -0.0065 0.0963 0.0550 0.0634 0.0693 0.0694 +-0.0068 -0.0197 -0.0919 0.0071 -0.0551 -0.1173 0.0926 0.0413 0.0127 -0.0158 +0.0540 0.0389 -0.0195 -0.0800 -0.1383 0.0440 -0.0139 -0.0405 0.0147 -0.0183 +0.0380 0.0248 0.0520 -0.0609 0.0339 -0.0070 -0.0974 0.1182 0.0221 -0.0310 +0.0043 0.0046 -0.0274 -0.0502 0.0326 -0.0143 -0.0586 -0.0866 -0.1673 -0.1624 +0.0428 0.0385 -0.0228 0.0704 0.0069 -0.0145 -0.0623 -0.0639 -0.1479 0.0212 +-0.0078 -0.0297 0.0025 -0.0239 -0.0793 0.0896 0.0315 -0.0546 -0.1309 0.1080 diff --git a/gr-vocoder/lib/codec2/codebook/lspvqanssi3.txt b/gr-vocoder/lib/codec2/codebook/lspvqanssi3.txt new file mode 100644 index 0000000000..a28c3e7fba --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspvqanssi3.txt @@ -0,0 +1,65 @@ +10 64 +-0.0291 0.0272 -0.0364 -0.0313 -0.0487 -0.0205 0.0501 0.0225 0.0178 0.0080 +-0.0406 -0.0383 0.0013 -0.0155 -0.0261 -0.0598 0.0003 -0.0242 0.0151 -0.0140 +-0.0445 0.0356 0.0180 -0.0272 -0.0018 -0.0177 -0.0703 0.0471 0.0128 -0.0068 +-0.0033 -0.0285 -0.0560 -0.0186 -0.0499 -0.0070 0.0068 -0.0126 0.0388 -0.0097 +-0.0071 -0.0114 -0.0308 -0.0094 -0.0541 -0.0272 -0.0756 0.0477 -0.0234 0.0678 +0.0048 0.0307 -0.0174 -0.0593 0.0097 -0.0134 0.0034 -0.0212 -0.0418 0.0869 +-0.0189 0.0165 -0.0269 0.0744 0.0344 -0.0177 -0.0603 0.0212 -0.0104 0.0345 +-0.0130 -0.0352 -0.0086 -0.0257 -0.0286 0.0409 0.0656 0.0106 -0.0598 0.0252 +0.0041 0.0097 -0.0032 -0.0154 -0.0405 0.0670 -0.0164 0.0451 0.0774 0.0504 +0.0010 -0.0091 -0.0345 0.0511 0.0016 0.0011 0.0684 0.0167 0.0601 0.0512 +0.0204 -0.0038 -0.0426 0.0185 -0.0191 -0.0630 0.0295 -0.0153 -0.0559 0.0560 +-0.0461 -0.0041 0.0515 0.0219 0.0322 0.0093 0.0044 0.0106 -0.0329 -0.0521 +0.0304 0.0017 0.0209 -0.0002 0.0689 0.0136 0.0216 -0.0268 -0.0682 0.0333 +-0.0175 -0.0425 0.0153 -0.0050 -0.0113 0.0297 -0.0659 -0.0344 0.0302 -0.0272 +-0.0217 -0.0362 0.0426 0.0233 -0.0393 0.0052 0.0138 0.0657 0.0427 0.0220 +-0.0039 -0.0011 -0.0002 -0.0453 -0.0835 0.0144 -0.0268 -0.0589 -0.0185 0.0133 +0.0081 -0.0032 0.0638 0.0032 0.0060 0.0002 -0.0303 -0.0823 0.0124 -0.0308 +0.0108 0.0011 0.0059 0.0396 0.0392 0.0351 -0.0045 -0.0323 -0.0512 -0.0975 +-0.0144 -0.0306 -0.0302 -0.0070 0.0123 -0.0042 -0.0083 -0.0514 0.0120 0.1116 +-0.0046 -0.0131 0.0472 0.0144 -0.0296 -0.0518 0.0337 -0.0145 -0.0733 0.0793 +-0.0064 -0.0162 -0.0327 -0.0711 0.0108 -0.0131 0.0025 -0.0254 -0.0277 -0.0680 +-0.0306 0.0055 0.0272 -0.0189 -0.0173 0.0221 0.0773 0.0043 0.0458 -0.0169 +-0.0006 0.0299 0.0259 0.0227 -0.0530 -0.0596 -0.0271 -0.0091 0.0181 -0.0233 +-0.0116 -0.0398 0.0089 0.0708 -0.0028 -0.0084 -0.0206 -0.0354 -0.0275 -0.0037 +0.0259 -0.0064 -0.0380 0.0572 0.0083 0.0286 -0.0565 0.0158 0.0396 -0.0123 +0.0552 0.0331 -0.0052 -0.0346 -0.0180 -0.0194 -0.0237 0.0184 0.0056 -0.0199 +0.0143 0.0131 -0.0166 0.0196 0.0154 0.0310 -0.0048 0.0901 -0.0333 0.0761 +0.0118 -0.0107 0.0099 0.0078 0.0002 -0.0716 -0.0233 0.0793 0.0516 0.0300 +0.0204 0.0243 0.0192 0.0181 0.0001 -0.0243 -0.0764 -0.0622 -0.0324 0.0640 +0.0132 0.0016 -0.0187 -0.0425 0.0627 0.0094 -0.0786 0.0304 0.0294 -0.0146 +-0.0221 -0.0154 0.0285 -0.0709 0.0406 0.0114 0.0073 -0.0199 0.0081 0.0268 +0.0227 0.0055 0.0163 -0.0447 0.0246 0.0795 0.0239 0.0211 -0.0145 -0.0576 +-0.0119 0.0637 0.0278 0.0202 -0.0086 0.0389 0.0320 -0.0049 -0.0272 -0.0274 +0.0040 -0.0211 0.0426 0.0480 0.0415 0.0659 0.0408 0.0198 0.0327 0.0029 +0.0430 0.0311 0.0083 0.0353 0.0250 0.0143 0.0106 -0.0305 0.0633 0.0227 +-0.0277 0.0302 0.0337 0.0176 0.0191 -0.0156 0.0231 0.0118 0.0465 0.0875 +0.0221 0.0146 0.0147 -0.0211 -0.0317 -0.0179 -0.0049 -0.0297 -0.1078 -0.0413 +-0.0531 0.0180 -0.0066 0.0365 -0.0033 0.0090 -0.0158 -0.0698 0.0315 -0.0048 +0.0289 0.0053 0.0082 0.0077 -0.0664 0.0474 0.0407 -0.0096 0.0028 -0.0526 +-0.0106 -0.0129 -0.0315 0.0335 -0.0217 -0.0427 0.0582 0.0193 -0.0288 -0.0777 +-0.0003 -0.0141 -0.0102 0.0007 -0.0077 -0.0517 -0.0909 0.0128 -0.0349 -0.0769 +-0.0227 -0.0159 -0.0327 0.0011 0.0312 0.0100 -0.0180 -0.0537 -0.0997 0.0122 +0.0190 -0.0139 0.0341 -0.0131 -0.0368 -0.0138 -0.0074 -0.0415 0.0791 0.0503 +0.0182 0.0027 0.0032 -0.0325 -0.0309 -0.0898 0.0509 -0.0170 0.0301 -0.0137 +0.0233 0.0100 0.0231 0.0730 0.0212 -0.0299 0.0440 0.0041 -0.0101 -0.0251 +0.0074 -0.0033 -0.0285 -0.0350 0.0101 0.0735 0.0036 -0.0659 0.0429 -0.0052 +0.0148 -0.0035 -0.0233 0.0079 -0.0142 -0.0402 -0.0358 -0.0985 -0.0080 -0.0549 +0.0203 0.0057 -0.0604 0.0098 0.0402 0.0151 0.0500 0.0058 -0.0086 -0.0401 +0.0056 -0.0381 0.0420 -0.0125 0.0157 -0.0268 0.0433 0.0123 -0.0176 -0.0685 +0.0030 0.0502 0.0067 -0.0222 0.0405 -0.0226 0.0020 -0.0401 -0.0026 -0.0521 +0.0317 0.0089 0.0620 0.0251 0.0066 0.0089 -0.0565 0.0414 0.0005 -0.0365 +-0.0058 0.0086 -0.0291 -0.0164 -0.0134 -0.0490 -0.0427 -0.0451 0.0869 0.0334 +0.0024 0.0328 -0.0415 0.0003 -0.0287 0.0193 -0.0547 -0.0222 -0.0196 -0.0571 +-0.0271 -0.0397 -0.0431 -0.0043 0.0332 0.0093 0.0082 0.0585 0.0282 0.0004 +-0.0251 -0.0167 -0.0289 0.0196 -0.0363 0.0850 0.0028 0.0319 -0.0202 -0.0512 +0.0389 0.0226 0.0401 -0.0091 -0.0152 0.0001 0.0738 0.0402 0.0097 0.0310 +-0.0126 0.0130 -0.0046 -0.0216 0.0298 -0.0344 0.0713 0.0547 -0.0470 -0.0294 +0.0125 0.0044 -0.0028 0.0209 -0.0200 0.0854 0.0018 -0.0386 -0.0703 0.0778 +-0.0036 -0.0347 0.0309 -0.0184 0.0290 -0.0025 -0.0644 0.0347 -0.0523 0.0644 +0.0064 0.0295 -0.0017 0.0282 0.0176 0.0027 0.0246 0.0967 0.0401 -0.0231 +0.0054 -0.0109 0.0055 -0.0479 -0.0490 -0.0136 -0.0245 0.0839 0.0026 -0.0493 +0.0128 -0.0050 -0.0219 -0.0621 0.0313 0.0019 0.0696 0.0459 0.0574 0.0299 +-0.0091 -0.0290 -0.0068 0.0276 0.0645 -0.0150 0.0015 -0.0374 0.0415 -0.0124 +-0.0171 0.0177 -0.0138 0.0034 0.0840 0.0584 0.0233 0.0100 0.0122 0.0047 diff --git a/gr-vocoder/lib/codec2/codebook/lspvqanssi4.txt b/gr-vocoder/lib/codec2/codebook/lspvqanssi4.txt new file mode 100644 index 0000000000..01867d40f6 --- /dev/null +++ b/gr-vocoder/lib/codec2/codebook/lspvqanssi4.txt @@ -0,0 +1,65 @@ +10 64 +0.0221 -0.0035 -0.0032 -0.0177 -0.0327 0.0518 -0.0110 -0.0150 -0.0136 -0.0327 +0.0099 -0.0059 0.0031 -0.0174 0.0464 -0.0240 0.0251 -0.0270 0.0454 -0.0082 +-0.0029 0.0025 -0.0267 -0.0318 -0.0157 0.0173 0.0253 0.0063 -0.0481 0.0419 +-0.0332 -0.0179 -0.0042 0.0241 0.0044 -0.0098 -0.0081 0.0024 -0.0414 0.0339 +-0.0060 0.0182 -0.0051 -0.0479 0.0016 -0.0179 0.0316 0.0222 -0.0029 -0.0351 +0.0074 0.0015 0.0337 -0.0082 -0.0008 0.0129 0.0001 0.0650 0.0175 0.0309 +-0.0212 -0.0261 0.0196 -0.0309 0.0093 -0.0272 0.0260 0.0169 0.0132 0.0116 +-0.0010 0.0202 0.0228 -0.0227 -0.0141 0.0192 -0.0423 -0.0097 -0.0342 0.0338 +-0.0149 -0.0110 -0.0156 0.0290 0.0028 0.0123 -0.0350 -0.0501 0.0272 -0.0245 +-0.0005 -0.0194 0.0460 -0.0001 -0.0280 0.0216 -0.0028 -0.0162 0.0177 -0.0254 +-0.0109 -0.0026 0.0038 -0.0150 -0.0421 -0.0422 0.0164 -0.0436 0.0054 -0.0098 +0.0061 -0.0106 0.0062 0.0207 -0.0329 0.0177 -0.0578 0.0408 0.0077 -0.0260 +0.0001 -0.0098 0.0106 -0.0003 -0.0292 0.0032 0.0560 0.0311 -0.0282 -0.0445 +0.0033 0.0345 -0.0022 -0.0029 -0.0228 0.0242 0.0197 -0.0286 0.0194 -0.0328 +0.0094 -0.0010 0.0121 0.0229 0.0161 0.0363 -0.0124 0.0179 -0.0626 0.0020 +-0.0070 -0.0272 -0.0171 -0.0249 -0.0039 0.0254 0.0317 -0.0324 0.0276 -0.0090 +-0.0002 0.0057 -0.0204 0.0512 -0.0170 0.0113 0.0157 0.0427 -0.0024 0.0162 +-0.0064 -0.0144 0.0216 0.0053 -0.0361 0.0287 0.0230 -0.0161 -0.0189 0.0589 +0.0091 -0.0059 -0.0308 0.0171 -0.0137 -0.0033 -0.0505 -0.0155 -0.0527 0.0133 +-0.0121 -0.0051 0.0219 0.0136 0.0476 -0.0090 -0.0460 0.0208 0.0072 -0.0076 +0.0098 -0.0328 -0.0211 0.0054 -0.0146 -0.0263 0.0248 0.0045 -0.0183 0.0301 +0.0101 0.0139 -0.0073 0.0234 0.0083 -0.0194 -0.0365 0.0307 0.0580 0.0153 +-0.0111 0.0019 0.0265 -0.0150 0.0311 0.0362 0.0244 -0.0213 -0.0224 -0.0299 +0.0061 0.0082 -0.0181 0.0081 -0.0344 0.0133 -0.0095 -0.0411 0.0462 0.0371 +0.0089 -0.0157 0.0179 -0.0256 -0.0118 -0.0302 -0.0329 0.0212 -0.0463 -0.0162 +-0.0313 0.0096 -0.0040 0.0186 0.0248 -0.0126 0.0472 -0.0079 0.0115 -0.0270 +0.0055 0.0044 0.0172 0.0079 -0.0089 -0.0202 -0.0233 -0.0397 -0.0305 -0.0620 +-0.0282 -0.0104 -0.0071 -0.0242 -0.0255 0.0204 -0.0187 -0.0103 -0.0227 -0.0424 +-0.0056 0.0065 0.0151 -0.0376 0.0039 0.0009 -0.0507 -0.0040 0.0393 -0.0201 +0.0128 -0.0228 0.0115 -0.0446 0.0316 0.0266 -0.0036 0.0117 -0.0009 0.0048 +-0.0088 0.0226 0.0125 0.0090 0.0008 -0.0341 0.0243 -0.0178 -0.0589 0.0278 +0.0151 0.0021 -0.0349 -0.0365 -0.0098 -0.0179 -0.0212 -0.0313 0.0109 -0.0164 +-0.0211 -0.0112 -0.0446 0.0014 -0.0034 -0.0179 0.0110 0.0176 0.0286 0.0045 +0.0034 -0.0151 0.0380 0.0331 -0.0034 -0.0439 0.0145 0.0120 0.0036 0.0017 +-0.0348 0.0192 0.0167 0.0069 -0.0266 -0.0085 -0.0076 0.0260 0.0234 0.0075 +-0.0237 0.0150 -0.0094 -0.0201 0.0234 -0.0041 -0.0160 -0.0549 -0.0021 0.0239 +-0.0019 0.0173 0.0295 0.0443 0.0081 0.0181 -0.0039 -0.0270 0.0155 0.0107 +0.0065 -0.0055 -0.0368 0.0232 0.0370 0.0367 0.0046 -0.0167 0.0047 0.0173 +0.0116 0.0053 -0.0229 0.0382 0.0160 -0.0453 0.0057 -0.0267 0.0020 -0.0051 +-0.0140 0.0302 -0.0208 0.0106 0.0101 -0.0049 -0.0319 0.0227 -0.0206 -0.0371 +-0.0007 -0.0109 -0.0053 0.0078 0.0410 -0.0001 0.0543 0.0328 -0.0196 0.0332 +-0.0043 -0.0028 -0.0246 0.0285 -0.0248 0.0153 0.0303 -0.0310 -0.0335 -0.0315 +-0.0417 0.1029 0.0377 0.0069 0.0012 0.0065 0.0007 -0.0144 -0.0083 0.0004 +0.0295 0.0099 -0.0144 -0.0145 0.0141 -0.0013 0.0362 -0.0142 -0.0428 -0.0161 +-0.0095 -0.0206 0.0116 0.0132 0.0164 0.0158 0.0012 -0.0024 0.0640 0.0364 +0.0005 -0.0022 -0.0165 -0.0057 0.0263 0.0339 0.0014 0.0541 0.0164 -0.0411 +0.0039 -0.0143 -0.0107 0.0032 -0.0160 -0.0502 0.0010 0.0272 0.0161 -0.0500 +0.0083 0.0292 -0.0076 -0.0201 0.0313 0.0213 0.0120 0.0087 0.0285 0.0332 +0.0170 0.0018 0.0001 0.0205 0.0106 -0.0064 -0.0082 -0.0083 -0.0082 0.0886 +0.0075 -0.0078 -0.0038 -0.0337 -0.0491 0.0048 0.0069 0.0300 0.0369 0.0088 +-0.0091 -0.0327 0.0041 0.0376 0.0170 0.0154 0.0126 0.0153 -0.0024 -0.0353 +0.0289 -0.0080 0.0063 0.0274 -0.0061 0.0208 0.0390 -0.0060 0.0294 -0.0088 +-0.0037 -0.0195 0.0058 0.0023 -0.0149 -0.0360 -0.0587 -0.0248 0.0288 0.0203 +-0.0031 0.0081 -0.0112 -0.0221 0.0067 -0.0505 -0.0233 0.0353 -0.0131 0.0417 +0.0243 0.0231 -0.0013 0.0049 -0.0423 -0.0245 -0.0029 0.0184 -0.0162 -0.0010 +0.0045 0.0101 -0.0042 0.0014 -0.0133 -0.0321 0.0642 0.0153 0.0377 0.0277 +0.0275 0.0083 0.0286 -0.0243 -0.0084 -0.0236 0.0027 -0.0289 0.0201 0.0235 +0.0281 0.0078 0.0038 0.0069 0.0302 0.0170 -0.0423 -0.0340 0.0104 -0.0181 +0.0334 -0.0034 -0.0257 -0.0061 0.0140 -0.0099 -0.0195 0.0529 0.0019 0.0010 +-0.0114 0.0012 -0.0038 -0.0016 -0.0140 0.0697 0.0372 0.0243 0.0172 0.0066 +0.0192 0.0149 0.0285 0.0077 0.0246 -0.0135 0.0145 0.0317 -0.0074 -0.0438 +-0.0034 -0.0175 -0.0245 -0.0153 0.0357 -0.0102 -0.0062 -0.0053 -0.0308 -0.0499 +0.0025 -0.0253 0.0148 0.0031 0.0189 -0.0023 -0.0085 -0.0596 -0.0337 0.0175 +-0.0091 -0.0171 -0.0217 -0.0189 0.0056 0.0249 -0.0499 0.0236 0.0042 0.0449 diff --git a/gr-vocoder/lib/codec2/codec2.c b/gr-vocoder/lib/codec2/codec2.c index 93ea9208c1..bc4a084839 100644 --- a/gr-vocoder/lib/codec2/codec2.c +++ b/gr-vocoder/lib/codec2/codec2.c @@ -42,7 +42,32 @@ #include "interp.h" #include "postfilter.h" #include "codec2.h" +#include "lsp.h" #include "codec2_internal.h" +#include "machdep.h" + +/*---------------------------------------------------------------------------*\ + + FUNCTION HEADERS + +\*---------------------------------------------------------------------------*/ + +void analyse_one_frame(struct CODEC2 *c2, MODEL *model, short speech[]); +void synthesise_one_frame(struct CODEC2 *c2, short speech[], MODEL *model, + float ak[]); +void codec2_encode_3200(struct CODEC2 *c2, unsigned char * bits, short speech[]); +void codec2_decode_3200(struct CODEC2 *c2, short speech[], const unsigned char * bits); +void codec2_encode_2400(struct CODEC2 *c2, unsigned char * bits, short speech[]); +void codec2_decode_2400(struct CODEC2 *c2, short speech[], const unsigned char * bits); +void codec2_encode_1600(struct CODEC2 *c2, unsigned char * bits, short speech[]); +void codec2_decode_1600(struct CODEC2 *c2, short speech[], const unsigned char * bits); +void codec2_encode_1400(struct CODEC2 *c2, unsigned char * bits, short speech[]); +void codec2_decode_1400(struct CODEC2 *c2, short speech[], const unsigned char * bits); +void codec2_encode_1300(struct CODEC2 *c2, unsigned char * bits, short speech[]); +void codec2_decode_1300(struct CODEC2 *c2, short speech[], const unsigned char * bits, float ber_est); +void codec2_encode_1200(struct CODEC2 *c2, unsigned char * bits, short speech[]); +void codec2_decode_1200(struct CODEC2 *c2, short speech[], const unsigned char * bits); +static void ear_protection(float in_out[], int n); /*---------------------------------------------------------------------------*\ @@ -64,50 +89,68 @@ \*---------------------------------------------------------------------------*/ -void *codec2_create() +struct CODEC2 * CODEC2_WIN32SUPPORT codec2_create(int mode) { - CODEC2 *c2; - int i,l; + struct CODEC2 *c2; + int i,l; - c2 = (CODEC2*)malloc(sizeof(CODEC2)); + c2 = (struct CODEC2*)malloc(sizeof(struct CODEC2)); if (c2 == NULL) return NULL; + assert( + (mode == CODEC2_MODE_3200) || + (mode == CODEC2_MODE_2400) || + (mode == CODEC2_MODE_1600) || + (mode == CODEC2_MODE_1400) || + (mode == CODEC2_MODE_1300) || + (mode == CODEC2_MODE_1200) + ); + c2->mode = mode; for(i=0; i<M; i++) c2->Sn[i] = 1.0; c2->hpf_states[0] = c2->hpf_states[1] = 0.0; for(i=0; i<2*N; i++) c2->Sn_[i] = 0; - make_analysis_window(c2->w,c2->W); + c2->fft_fwd_cfg = kiss_fft_alloc(FFT_ENC, 0, NULL, NULL); + make_analysis_window(c2->fft_fwd_cfg, c2->w,c2->W); make_synthesis_window(c2->Pn); + c2->fft_inv_cfg = kiss_fft_alloc(FFT_DEC, 1, NULL, NULL); quantise_init(); - c2->prev_Wo = 0.0; + c2->prev_Wo_enc = 0.0; c2->bg_est = 0.0; c2->ex_phase = 0.0; - for(l=1; l<MAX_AMP; l++) - c2->prev_model.A[l] = 0.0; - c2->prev_model.Wo = TWO_PI/P_MAX; - c2->prev_model.L = PI/c2->prev_model.Wo; - c2->prev_model.voiced = 0; + for(l=1; l<=MAX_AMP; l++) + c2->prev_model_dec.A[l] = 0.0; + c2->prev_model_dec.Wo = TWO_PI/P_MAX; + c2->prev_model_dec.L = PI/c2->prev_model_dec.Wo; + c2->prev_model_dec.voiced = 0; for(i=0; i<LPC_ORD; i++) { - c2->prev_lsps[i] = i*PI/(LPC_ORD+1); + c2->prev_lsps_dec[i] = i*PI/(LPC_ORD+1); } - c2->prev_energy = 1; + c2->prev_e_dec = 1; - c2->nlp = nlp_create(); + c2->nlp = nlp_create(M); if (c2->nlp == NULL) { free (c2); return NULL; } - return (void*)c2; + c2->lpc_pf = 1; c2->bass_boost = 1; c2->beta = LPCPF_BETA; c2->gamma = LPCPF_GAMMA; + + c2->xq_enc[0] = c2->xq_enc[1] = 0.0; + c2->xq_dec[0] = c2->xq_dec[1] = 0.0; + + c2->smoothing = 0; + + return c2; } /*---------------------------------------------------------------------------*\ - FUNCTION....: codec2_create + FUNCTION....: codec2_destroy AUTHOR......: David Rowe DATE CREATED: 21/8/2010 @@ -115,27 +158,282 @@ void *codec2_create() \*---------------------------------------------------------------------------*/ -void codec2_destroy(void *codec2_state) +void CODEC2_WIN32SUPPORT codec2_destroy(struct CODEC2 *c2) { - CODEC2 *c2; - - assert(codec2_state != NULL); - c2 = (CODEC2*)codec2_state; + assert(c2 != NULL); nlp_destroy(c2->nlp); - free(codec2_state); + KISS_FFT_FREE(c2->fft_fwd_cfg); + KISS_FFT_FREE(c2->fft_inv_cfg); + free(c2); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_bits_per_frame + AUTHOR......: David Rowe + DATE CREATED: Nov 14 2011 + + Returns the number of bits per frame. + +\*---------------------------------------------------------------------------*/ + +int CODEC2_WIN32SUPPORT codec2_bits_per_frame(struct CODEC2 *c2) { + if (c2->mode == CODEC2_MODE_3200) + return 64; + if (c2->mode == CODEC2_MODE_2400) + return 48; + if (c2->mode == CODEC2_MODE_1600) + return 64; + if (c2->mode == CODEC2_MODE_1400) + return 56; + if (c2->mode == CODEC2_MODE_1300) + return 52; + if (c2->mode == CODEC2_MODE_1200) + return 48; + + return 0; /* shouldn't get here */ +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_samples_per_frame + AUTHOR......: David Rowe + DATE CREATED: Nov 14 2011 + + Returns the number of bits per frame. + +\*---------------------------------------------------------------------------*/ + +int CODEC2_WIN32SUPPORT codec2_samples_per_frame(struct CODEC2 *c2) { + if (c2->mode == CODEC2_MODE_3200) + return 160; + if (c2->mode == CODEC2_MODE_2400) + return 160; + if (c2->mode == CODEC2_MODE_1600) + return 320; + if (c2->mode == CODEC2_MODE_1400) + return 320; + if (c2->mode == CODEC2_MODE_1300) + return 320; + if (c2->mode == CODEC2_MODE_1200) + return 320; + + return 0; /* shouldnt get here */ +} + +void CODEC2_WIN32SUPPORT codec2_encode(struct CODEC2 *c2, unsigned char *bits, short speech[]) +{ + assert(c2 != NULL); + assert( + (c2->mode == CODEC2_MODE_3200) || + (c2->mode == CODEC2_MODE_2400) || + (c2->mode == CODEC2_MODE_1600) || + (c2->mode == CODEC2_MODE_1400) || + (c2->mode == CODEC2_MODE_1300) || + (c2->mode == CODEC2_MODE_1200) + ); + + if (c2->mode == CODEC2_MODE_3200) + codec2_encode_3200(c2, bits, speech); + if (c2->mode == CODEC2_MODE_2400) + codec2_encode_2400(c2, bits, speech); + if (c2->mode == CODEC2_MODE_1600) + codec2_encode_1600(c2, bits, speech); + if (c2->mode == CODEC2_MODE_1400) + codec2_encode_1400(c2, bits, speech); + if (c2->mode == CODEC2_MODE_1300) + codec2_encode_1300(c2, bits, speech); + if (c2->mode == CODEC2_MODE_1200) + codec2_encode_1200(c2, bits, speech); +} + +void CODEC2_WIN32SUPPORT codec2_decode(struct CODEC2 *c2, short speech[], const unsigned char *bits, float ber_est) +{ + assert(c2 != NULL); + assert( + (c2->mode == CODEC2_MODE_3200) || + (c2->mode == CODEC2_MODE_2400) || + (c2->mode == CODEC2_MODE_1600) || + (c2->mode == CODEC2_MODE_1400) || + (c2->mode == CODEC2_MODE_1300) || + (c2->mode == CODEC2_MODE_1200) + ); + + if (c2->mode == CODEC2_MODE_3200) + codec2_decode_3200(c2, speech, bits); + if (c2->mode == CODEC2_MODE_2400) + codec2_decode_2400(c2, speech, bits); + if (c2->mode == CODEC2_MODE_1600) + codec2_decode_1600(c2, speech, bits); + if (c2->mode == CODEC2_MODE_1400) + codec2_decode_1400(c2, speech, bits); + if (c2->mode == CODEC2_MODE_1300) + codec2_decode_1300(c2, speech, bits, ber_est); + if (c2->mode == CODEC2_MODE_1200) + codec2_decode_1200(c2, speech, bits); } + /*---------------------------------------------------------------------------*\ - FUNCTION....: codec2_encode + FUNCTION....: codec2_encode_3200 + AUTHOR......: David Rowe + DATE CREATED: 13 Sep 2012 + + Encodes 160 speech samples (20ms of speech) into 64 bits. + + The codec2 algorithm actually operates internally on 10ms (80 + sample) frames, so we run the encoding algorithm twice. On the + first frame we just send the voicing bits. On the second frame we + send all model parameters. Compared to 2400 we use a larger number + of bits for the LSPs and non-VQ pitch and energy. + + The bit allocation is: + + Parameter bits/frame + -------------------------------------- + Harmonic magnitudes (LSPs) 50 + Pitch (Wo) 7 + Energy 5 + Voicing (10ms update) 2 + TOTAL 64 + +\*---------------------------------------------------------------------------*/ + +void codec2_encode_3200(struct CODEC2 *c2, unsigned char * bits, short speech[]) +{ + MODEL model; + float ak[LPC_ORD+1]; + float lsps[LPC_ORD]; + float e; + int Wo_index, e_index; + int lspd_indexes[LPC_ORD]; + int i; + unsigned int nbit = 0; + + assert(c2 != NULL); + + memset(bits, '\0', ((codec2_bits_per_frame(c2) + 7) / 8)); + + /* first 10ms analysis frame - we just want voicing */ + + analyse_one_frame(c2, &model, speech); + pack(bits, &nbit, model.voiced, 1); + + /* second 10ms analysis frame */ + + analyse_one_frame(c2, &model, &speech[N]); + pack(bits, &nbit, model.voiced, 1); + Wo_index = encode_Wo(model.Wo); + pack(bits, &nbit, Wo_index, WO_BITS); + + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + e_index = encode_energy(e); + pack(bits, &nbit, e_index, E_BITS); + + encode_lspds_scalar(lspd_indexes, lsps, LPC_ORD); + for(i=0; i<LSPD_SCALAR_INDEXES; i++) { + pack(bits, &nbit, lspd_indexes[i], lspd_bits(i)); + } + assert(nbit == (unsigned)codec2_bits_per_frame(c2)); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_decode_3200 + AUTHOR......: David Rowe + DATE CREATED: 13 Sep 2012 + + Decodes a frame of 64 bits into 160 samples (20ms) of speech. + +\*---------------------------------------------------------------------------*/ + +void codec2_decode_3200(struct CODEC2 *c2, short speech[], const unsigned char * bits) +{ + MODEL model[2]; + int lspd_indexes[LPC_ORD]; + float lsps[2][LPC_ORD]; + int Wo_index, e_index; + float e[2]; + float snr; + float ak[2][LPC_ORD+1]; + int i,j; + unsigned int nbit = 0; + + assert(c2 != NULL); + + /* only need to zero these out due to (unused) snr calculation */ + + for(i=0; i<2; i++) + for(j=1; j<=MAX_AMP; j++) + model[i].A[j] = 0.0; + + /* unpack bits from channel ------------------------------------*/ + + /* this will partially fill the model params for the 2 x 10ms + frames */ + + model[0].voiced = unpack(bits, &nbit, 1); + model[1].voiced = unpack(bits, &nbit, 1); + + Wo_index = unpack(bits, &nbit, WO_BITS); + model[1].Wo = decode_Wo(Wo_index); + model[1].L = PI/model[1].Wo; + + e_index = unpack(bits, &nbit, E_BITS); + e[1] = decode_energy(e_index); + + for(i=0; i<LSPD_SCALAR_INDEXES; i++) { + lspd_indexes[i] = unpack(bits, &nbit, lspd_bits(i)); + } + decode_lspds_scalar(&lsps[1][0], lspd_indexes, LPC_ORD); + + /* interpolate ------------------------------------------------*/ + + /* Wo and energy are sampled every 20ms, so we interpolate just 1 + 10ms frame between 20ms samples */ + + interp_Wo(&model[0], &c2->prev_model_dec, &model[1]); + e[0] = interp_energy(c2->prev_e_dec, e[1]); + + /* LSPs are sampled every 20ms so we interpolate the frame in + between, then recover spectral amplitudes */ + + interpolate_lsp_ver2(&lsps[0][0], c2->prev_lsps_dec, &lsps[1][0], 0.5); + for(i=0; i<2; i++) { + lsp_to_lpc(&lsps[i][0], &ak[i][0], LPC_ORD); + aks_to_M2(c2->fft_fwd_cfg, &ak[i][0], LPC_ORD, &model[i], e[i], &snr, 0, 0, + c2->lpc_pf, c2->bass_boost, c2->beta, c2->gamma); + apply_lpc_correction(&model[i]); + } + + /* synthesise ------------------------------------------------*/ + + for(i=0; i<2; i++) + synthesise_one_frame(c2, &speech[N*i], &model[i], &ak[i][0]); + + /* update memories for next frame ----------------------------*/ + + c2->prev_model_dec = model[1]; + c2->prev_e_dec = e[1]; + for(i=0; i<LPC_ORD; i++) + c2->prev_lsps_dec[i] = lsps[1][i]; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_encode_2400 AUTHOR......: David Rowe DATE CREATED: 21/8/2010 - Encodes 160 speech samples (20ms of speech) into 51 bits. + Encodes 160 speech samples (20ms of speech) into 48 bits. The codec2 algorithm actually operates internally on 10ms (80 sample) frames, so we run the encoding algorithm twice. On the - first frame we just send the voicing bit. One the second frame we + first frame we just send the voicing bit. On the second frame we send all model parameters. The bit allocation is: @@ -143,132 +441,859 @@ void codec2_destroy(void *codec2_state) Parameter bits/frame -------------------------------------- Harmonic magnitudes (LSPs) 36 - Low frequency LPC correction 1 - Energy 5 - Wo (fundamental frequnecy) 7 + Joint VQ of Energy and Wo 8 Voicing (10ms update) 2 - TOTAL 51 + Spare 2 + TOTAL 48 \*---------------------------------------------------------------------------*/ -void codec2_encode(void *codec2_state, unsigned char * bits, short speech[]) +void codec2_encode_2400(struct CODEC2 *c2, unsigned char * bits, short speech[]) { - CODEC2 *c2; MODEL model; - int voiced1, voiced2; + float ak[LPC_ORD+1]; + float lsps[LPC_ORD]; + float e; + int WoE_index; int lsp_indexes[LPC_ORD]; - int energy_index; - int Wo_index; int i; + int spare = 0; unsigned int nbit = 0; - assert(codec2_state != NULL); - c2 = (CODEC2*)codec2_state; + assert(c2 != NULL); + + memset(bits, '\0', ((codec2_bits_per_frame(c2) + 7) / 8)); /* first 10ms analysis frame - we just want voicing */ analyse_one_frame(c2, &model, speech); - voiced1 = model.voiced; + pack(bits, &nbit, model.voiced, 1); /* second 10ms analysis frame */ analyse_one_frame(c2, &model, &speech[N]); - voiced2 = model.voiced; + pack(bits, &nbit, model.voiced, 1); + + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + WoE_index = encode_WoE(&model, e, c2->xq_enc); + pack(bits, &nbit, WoE_index, WO_E_BITS); + + encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD); + for(i=0; i<LSP_SCALAR_INDEXES; i++) { + pack(bits, &nbit, lsp_indexes[i], lsp_bits(i)); + } + pack(bits, &nbit, spare, 2); + + assert(nbit == (unsigned)codec2_bits_per_frame(c2)); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_decode_2400 + AUTHOR......: David Rowe + DATE CREATED: 21/8/2010 + + Decodes frames of 48 bits into 160 samples (20ms) of speech. + +\*---------------------------------------------------------------------------*/ + +void codec2_decode_2400(struct CODEC2 *c2, short speech[], const unsigned char * bits) +{ + MODEL model[2]; + int lsp_indexes[LPC_ORD]; + float lsps[2][LPC_ORD]; + int WoE_index; + float e[2]; + float snr; + float ak[2][LPC_ORD+1]; + int i,j; + unsigned int nbit = 0; + + assert(c2 != NULL); + + /* only need to zero these out due to (unused) snr calculation */ + + for(i=0; i<2; i++) + for(j=1; j<=MAX_AMP; j++) + model[i].A[j] = 0.0; + + /* unpack bits from channel ------------------------------------*/ + + /* this will partially fill the model params for the 2 x 10ms + frames */ + + model[0].voiced = unpack(bits, &nbit, 1); + + model[1].voiced = unpack(bits, &nbit, 1); + WoE_index = unpack(bits, &nbit, WO_E_BITS); + decode_WoE(&model[1], &e[1], c2->xq_dec, WoE_index); + + for(i=0; i<LSP_SCALAR_INDEXES; i++) { + lsp_indexes[i] = unpack(bits, &nbit, lsp_bits(i)); + } + decode_lsps_scalar(&lsps[1][0], lsp_indexes, LPC_ORD); + check_lsp_order(&lsps[1][0], LPC_ORD); + bw_expand_lsps(&lsps[1][0], LPC_ORD, 50.0, 100.0); + + /* interpolate ------------------------------------------------*/ + + /* Wo and energy are sampled every 20ms, so we interpolate just 1 + 10ms frame between 20ms samples */ + + interp_Wo(&model[0], &c2->prev_model_dec, &model[1]); + e[0] = interp_energy(c2->prev_e_dec, e[1]); + + /* LSPs are sampled every 20ms so we interpolate the frame in + between, then recover spectral amplitudes */ + + interpolate_lsp_ver2(&lsps[0][0], c2->prev_lsps_dec, &lsps[1][0], 0.5); + for(i=0; i<2; i++) { + lsp_to_lpc(&lsps[i][0], &ak[i][0], LPC_ORD); + aks_to_M2(c2->fft_fwd_cfg, &ak[i][0], LPC_ORD, &model[i], e[i], &snr, 0, 0, + c2->lpc_pf, c2->bass_boost, c2->beta, c2->gamma); + apply_lpc_correction(&model[i]); + } + + /* synthesise ------------------------------------------------*/ + + for(i=0; i<2; i++) + synthesise_one_frame(c2, &speech[N*i], &model[i], &ak[i][0]); + + /* update memories for next frame ----------------------------*/ + + c2->prev_model_dec = model[1]; + c2->prev_e_dec = e[1]; + for(i=0; i<LPC_ORD; i++) + c2->prev_lsps_dec[i] = lsps[1][i]; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_encode_1600 + AUTHOR......: David Rowe + DATE CREATED: Feb 28 2013 + + Encodes 320 speech samples (40ms of speech) into 64 bits. + + The codec2 algorithm actually operates internally on 10ms (80 + sample) frames, so we run the encoding algorithm 4 times: + + frame 0: voicing bit + frame 1: voicing bit, Wo and E + frame 2: voicing bit + frame 3: voicing bit, Wo and E, scalar LSPs + + The bit allocation is: + + Parameter frame 2 frame 4 Total + ------------------------------------------------------- + Harmonic magnitudes (LSPs) 0 36 36 + Pitch (Wo) 7 7 14 + Energy 5 5 10 + Voicing (10ms update) 2 2 4 + TOTAL 14 50 64 + +\*---------------------------------------------------------------------------*/ + +void codec2_encode_1600(struct CODEC2 *c2, unsigned char * bits, short speech[]) +{ + MODEL model; + float lsps[LPC_ORD]; + float ak[LPC_ORD+1]; + float e; + int lsp_indexes[LPC_ORD]; + int Wo_index, e_index; + int i; + unsigned int nbit = 0; + + assert(c2 != NULL); + + memset(bits, '\0', ((codec2_bits_per_frame(c2) + 7) / 8)); + + /* frame 1: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, speech); + pack(bits, &nbit, model.voiced, 1); + + /* frame 2: - voicing, scalar Wo & E -------------------------------*/ + + analyse_one_frame(c2, &model, &speech[N]); + pack(bits, &nbit, model.voiced, 1); Wo_index = encode_Wo(model.Wo); - encode_amplitudes(lsp_indexes, - &energy_index, - &model, - c2->Sn, - c2->w); - memset(bits, '\0', ((CODEC2_BITS_PER_FRAME + 7) / 8)); pack(bits, &nbit, Wo_index, WO_BITS); - for(i=0; i<LPC_ORD; i++) { + + /* need to run this just to get LPC energy */ + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + e_index = encode_energy(e); + pack(bits, &nbit, e_index, E_BITS); + + /* frame 3: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, &speech[2*N]); + pack(bits, &nbit, model.voiced, 1); + + /* frame 4: - voicing, scalar Wo & E, scalar LSPs ------------------*/ + + analyse_one_frame(c2, &model, &speech[3*N]); + pack(bits, &nbit, model.voiced, 1); + + Wo_index = encode_Wo(model.Wo); + pack(bits, &nbit, Wo_index, WO_BITS); + + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + e_index = encode_energy(e); + pack(bits, &nbit, e_index, E_BITS); + + encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD); + for(i=0; i<LSP_SCALAR_INDEXES; i++) { pack(bits, &nbit, lsp_indexes[i], lsp_bits(i)); } - pack(bits, &nbit, energy_index, E_BITS); - pack(bits, &nbit, voiced1, 1); - pack(bits, &nbit, voiced2, 1); - assert(nbit == CODEC2_BITS_PER_FRAME); + assert(nbit == (unsigned)codec2_bits_per_frame(c2)); } + /*---------------------------------------------------------------------------*\ - FUNCTION....: codec2_decode + FUNCTION....: codec2_decode_1600 AUTHOR......: David Rowe - DATE CREATED: 21/8/2010 + DATE CREATED: 11 May 2012 - Decodes frames of 51 bits into 160 samples (20ms) of speech. + Decodes frames of 64 bits into 320 samples (40ms) of speech. \*---------------------------------------------------------------------------*/ -void codec2_decode(void *codec2_state, short speech[], - const unsigned char * bits) +void codec2_decode_1600(struct CODEC2 *c2, short speech[], const unsigned char * bits) +{ + MODEL model[4]; + int lsp_indexes[LPC_ORD]; + float lsps[4][LPC_ORD]; + int Wo_index, e_index; + float e[4]; + float snr; + float ak[4][LPC_ORD+1]; + int i,j; + unsigned int nbit = 0; + float weight; + + assert(c2 != NULL); + + /* only need to zero these out due to (unused) snr calculation */ + + for(i=0; i<4; i++) + for(j=1; j<=MAX_AMP; j++) + model[i].A[j] = 0.0; + + /* unpack bits from channel ------------------------------------*/ + + /* this will partially fill the model params for the 4 x 10ms + frames */ + + model[0].voiced = unpack(bits, &nbit, 1); + + model[1].voiced = unpack(bits, &nbit, 1); + Wo_index = unpack(bits, &nbit, WO_BITS); + model[1].Wo = decode_Wo(Wo_index); + model[1].L = PI/model[1].Wo; + + e_index = unpack(bits, &nbit, E_BITS); + e[1] = decode_energy(e_index); + + model[2].voiced = unpack(bits, &nbit, 1); + + model[3].voiced = unpack(bits, &nbit, 1); + Wo_index = unpack(bits, &nbit, WO_BITS); + model[3].Wo = decode_Wo(Wo_index); + model[3].L = PI/model[3].Wo; + + e_index = unpack(bits, &nbit, E_BITS); + e[3] = decode_energy(e_index); + + for(i=0; i<LSP_SCALAR_INDEXES; i++) { + lsp_indexes[i] = unpack(bits, &nbit, lsp_bits(i)); + } + decode_lsps_scalar(&lsps[3][0], lsp_indexes, LPC_ORD); + check_lsp_order(&lsps[3][0], LPC_ORD); + bw_expand_lsps(&lsps[3][0], LPC_ORD, 50.0, 100.0); + + /* interpolate ------------------------------------------------*/ + + /* Wo and energy are sampled every 20ms, so we interpolate just 1 + 10ms frame between 20ms samples */ + + interp_Wo(&model[0], &c2->prev_model_dec, &model[1]); + e[0] = interp_energy(c2->prev_e_dec, e[1]); + interp_Wo(&model[2], &model[1], &model[3]); + e[2] = interp_energy(e[1], e[3]); + + /* LSPs are sampled every 40ms so we interpolate the 3 frames in + between, then recover spectral amplitudes */ + + for(i=0, weight=0.25; i<3; i++, weight += 0.25) { + interpolate_lsp_ver2(&lsps[i][0], c2->prev_lsps_dec, &lsps[3][0], weight); + } + for(i=0; i<4; i++) { + lsp_to_lpc(&lsps[i][0], &ak[i][0], LPC_ORD); + aks_to_M2(c2->fft_fwd_cfg, &ak[i][0], LPC_ORD, &model[i], e[i], &snr, 0, 0, + c2->lpc_pf, c2->bass_boost, c2->beta, c2->gamma); + apply_lpc_correction(&model[i]); + } + + /* synthesise ------------------------------------------------*/ + + for(i=0; i<4; i++) + synthesise_one_frame(c2, &speech[N*i], &model[i], &ak[i][0]); + + /* update memories for next frame ----------------------------*/ + + c2->prev_model_dec = model[3]; + c2->prev_e_dec = e[3]; + for(i=0; i<LPC_ORD; i++) + c2->prev_lsps_dec[i] = lsps[3][i]; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_encode_1400 + AUTHOR......: David Rowe + DATE CREATED: May 11 2012 + + Encodes 320 speech samples (40ms of speech) into 56 bits. + + The codec2 algorithm actually operates internally on 10ms (80 + sample) frames, so we run the encoding algorithm 4 times: + + frame 0: voicing bit + frame 1: voicing bit, joint VQ of Wo and E + frame 2: voicing bit + frame 3: voicing bit, joint VQ of Wo and E, scalar LSPs + + The bit allocation is: + + Parameter frame 2 frame 4 Total + ------------------------------------------------------- + Harmonic magnitudes (LSPs) 0 36 36 + Energy+Wo 8 8 16 + Voicing (10ms update) 2 2 4 + TOTAL 10 46 56 + +\*---------------------------------------------------------------------------*/ + +void codec2_encode_1400(struct CODEC2 *c2, unsigned char * bits, short speech[]) { - CODEC2 *c2; MODEL model; - int voiced1, voiced2; + float lsps[LPC_ORD]; + float ak[LPC_ORD+1]; + float e; int lsp_indexes[LPC_ORD]; + int WoE_index; + int i; + unsigned int nbit = 0; + + assert(c2 != NULL); + + memset(bits, '\0', ((codec2_bits_per_frame(c2) + 7) / 8)); + + /* frame 1: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, speech); + pack(bits, &nbit, model.voiced, 1); + + /* frame 2: - voicing, joint Wo & E -------------------------------*/ + + analyse_one_frame(c2, &model, &speech[N]); + pack(bits, &nbit, model.voiced, 1); + + /* need to run this just to get LPC energy */ + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + + WoE_index = encode_WoE(&model, e, c2->xq_enc); + pack(bits, &nbit, WoE_index, WO_E_BITS); + + /* frame 3: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, &speech[2*N]); + pack(bits, &nbit, model.voiced, 1); + + /* frame 4: - voicing, joint Wo & E, scalar LSPs ------------------*/ + + analyse_one_frame(c2, &model, &speech[3*N]); + pack(bits, &nbit, model.voiced, 1); + + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + WoE_index = encode_WoE(&model, e, c2->xq_enc); + pack(bits, &nbit, WoE_index, WO_E_BITS); + + encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD); + for(i=0; i<LSP_SCALAR_INDEXES; i++) { + pack(bits, &nbit, lsp_indexes[i], lsp_bits(i)); + } + + assert(nbit == (unsigned)codec2_bits_per_frame(c2)); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_decode_1400 + AUTHOR......: David Rowe + DATE CREATED: 11 May 2012 + + Decodes frames of 56 bits into 320 samples (40ms) of speech. + +\*---------------------------------------------------------------------------*/ + +void codec2_decode_1400(struct CODEC2 *c2, short speech[], const unsigned char * bits) +{ + MODEL model[4]; + int lsp_indexes[LPC_ORD]; + float lsps[4][LPC_ORD]; + int WoE_index; + float e[4]; + float snr; + float ak[4][LPC_ORD+1]; + int i,j; + unsigned int nbit = 0; + float weight; + + assert(c2 != NULL); + + /* only need to zero these out due to (unused) snr calculation */ + + for(i=0; i<4; i++) + for(j=1; j<=MAX_AMP; j++) + model[i].A[j] = 0.0; + + /* unpack bits from channel ------------------------------------*/ + + /* this will partially fill the model params for the 4 x 10ms + frames */ + + model[0].voiced = unpack(bits, &nbit, 1); + + model[1].voiced = unpack(bits, &nbit, 1); + WoE_index = unpack(bits, &nbit, WO_E_BITS); + decode_WoE(&model[1], &e[1], c2->xq_dec, WoE_index); + + model[2].voiced = unpack(bits, &nbit, 1); + + model[3].voiced = unpack(bits, &nbit, 1); + WoE_index = unpack(bits, &nbit, WO_E_BITS); + decode_WoE(&model[3], &e[3], c2->xq_dec, WoE_index); + + for(i=0; i<LSP_SCALAR_INDEXES; i++) { + lsp_indexes[i] = unpack(bits, &nbit, lsp_bits(i)); + } + decode_lsps_scalar(&lsps[3][0], lsp_indexes, LPC_ORD); + check_lsp_order(&lsps[3][0], LPC_ORD); + bw_expand_lsps(&lsps[3][0], LPC_ORD, 50.0, 100.0); + + /* interpolate ------------------------------------------------*/ + + /* Wo and energy are sampled every 20ms, so we interpolate just 1 + 10ms frame between 20ms samples */ + + interp_Wo(&model[0], &c2->prev_model_dec, &model[1]); + e[0] = interp_energy(c2->prev_e_dec, e[1]); + interp_Wo(&model[2], &model[1], &model[3]); + e[2] = interp_energy(e[1], e[3]); + + /* LSPs are sampled every 40ms so we interpolate the 3 frames in + between, then recover spectral amplitudes */ + + for(i=0, weight=0.25; i<3; i++, weight += 0.25) { + interpolate_lsp_ver2(&lsps[i][0], c2->prev_lsps_dec, &lsps[3][0], weight); + } + for(i=0; i<4; i++) { + lsp_to_lpc(&lsps[i][0], &ak[i][0], LPC_ORD); + aks_to_M2(c2->fft_fwd_cfg, &ak[i][0], LPC_ORD, &model[i], e[i], &snr, 0, 0, + c2->lpc_pf, c2->bass_boost, c2->beta, c2->gamma); + apply_lpc_correction(&model[i]); + } + + /* synthesise ------------------------------------------------*/ + + for(i=0; i<4; i++) + synthesise_one_frame(c2, &speech[N*i], &model[i], &ak[i][0]); + + /* update memories for next frame ----------------------------*/ + + c2->prev_model_dec = model[3]; + c2->prev_e_dec = e[3]; + for(i=0; i<LPC_ORD; i++) + c2->prev_lsps_dec[i] = lsps[3][i]; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_encode_1300 + AUTHOR......: David Rowe + DATE CREATED: March 14 2013 + + Encodes 320 speech samples (40ms of speech) into 52 bits. + + The codec2 algorithm actually operates internally on 10ms (80 + sample) frames, so we run the encoding algorithm 4 times: + + frame 0: voicing bit + frame 1: voicing bit, + frame 2: voicing bit + frame 3: voicing bit, Wo and E, scalar LSPs + + The bit allocation is: + + Parameter frame 2 frame 4 Total + ------------------------------------------------------- + Harmonic magnitudes (LSPs) 0 36 36 + Pitch (Wo) 0 7 7 + Energy 0 5 5 + Voicing (10ms update) 2 2 4 + TOTAL 2 50 52 + +\*---------------------------------------------------------------------------*/ + +void codec2_encode_1300(struct CODEC2 *c2, unsigned char * bits, short speech[]) +{ + MODEL model; float lsps[LPC_ORD]; - int energy_index; - float energy; - int Wo_index; float ak[LPC_ORD+1]; - float ak_interp[LPC_ORD+1]; + float e; + int lsp_indexes[LPC_ORD]; + int Wo_index, e_index; int i; unsigned int nbit = 0; - MODEL model_interp; + #ifdef TIMER + unsigned int quant_start; + #endif + + assert(c2 != NULL); + + memset(bits, '\0', ((codec2_bits_per_frame(c2) + 7) / 8)); + + /* frame 1: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, speech); + pack(bits, &nbit, model.voiced, 1); + + /* frame 2: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, &speech[N]); + pack(bits, &nbit, model.voiced, 1); + + /* frame 3: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, &speech[2*N]); + pack(bits, &nbit, model.voiced, 1); - assert(codec2_state != NULL); - c2 = (CODEC2*)codec2_state; + /* frame 4: - voicing, scalar Wo & E, scalar LSPs ------------------*/ - /* unpack bit stream to integer codes */ + analyse_one_frame(c2, &model, &speech[3*N]); + pack(bits, &nbit, model.voiced, 1); + + Wo_index = encode_Wo(model.Wo); + pack(bits, &nbit, Wo_index, WO_BITS); + + #ifdef TIMER + quant_start = machdep_timer_sample(); + #endif + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + e_index = encode_energy(e); + pack(bits, &nbit, e_index, E_BITS); + + encode_lsps_scalar(lsp_indexes, lsps, LPC_ORD); + for(i=0; i<LSP_SCALAR_INDEXES; i++) { + pack(bits, &nbit, lsp_indexes[i], lsp_bits(i)); + } + #ifdef TIMER + machdep_timer_sample_and_log(quant_start, " quant/packing"); + #endif + + assert(nbit == (unsigned)codec2_bits_per_frame(c2)); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_decode_1300 + AUTHOR......: David Rowe + DATE CREATED: 11 May 2012 + + Decodes frames of 52 bits into 320 samples (40ms) of speech. + +\*---------------------------------------------------------------------------*/ + +void codec2_decode_1300(struct CODEC2 *c2, short speech[], const unsigned char * bits, float ber_est) +{ + MODEL model[4]; + int lsp_indexes[LPC_ORD]; + float lsps[4][LPC_ORD]; + int Wo_index, e_index; + float e[4]; + float snr; + float ak[4][LPC_ORD+1]; + int i,j; + unsigned int nbit = 0; + float weight; + TIMER_VAR(recover_start); + + assert(c2 != NULL); + + /* only need to zero these out due to (unused) snr calculation */ + + for(i=0; i<4; i++) + for(j=1; j<=MAX_AMP; j++) + model[i].A[j] = 0.0; + + /* unpack bits from channel ------------------------------------*/ + + /* this will partially fill the model params for the 4 x 10ms + frames */ + + model[0].voiced = unpack(bits, &nbit, 1); + model[1].voiced = unpack(bits, &nbit, 1); + model[2].voiced = unpack(bits, &nbit, 1); + model[3].voiced = unpack(bits, &nbit, 1); Wo_index = unpack(bits, &nbit, WO_BITS); - for(i=0; i<LPC_ORD; i++) { + model[3].Wo = decode_Wo(Wo_index); + model[3].L = PI/model[3].Wo; + + e_index = unpack(bits, &nbit, E_BITS); + e[3] = decode_energy(e_index); + + for(i=0; i<LSP_SCALAR_INDEXES; i++) { lsp_indexes[i] = unpack(bits, &nbit, lsp_bits(i)); } - energy_index = unpack(bits, &nbit, E_BITS); - voiced1 = unpack(bits, &nbit, 1); - voiced2 = unpack(bits, &nbit, 1); - assert(nbit == CODEC2_BITS_PER_FRAME); + decode_lsps_scalar(&lsps[3][0], lsp_indexes, LPC_ORD); + check_lsp_order(&lsps[3][0], LPC_ORD); + bw_expand_lsps(&lsps[3][0], LPC_ORD, 50.0, 100.0); + + if (ber_est > 0.15) { + model[0].voiced = model[1].voiced = model[2].voiced = model[3].voiced = 0; + e[3] = decode_energy(10); + bw_expand_lsps(&lsps[3][0], LPC_ORD, 200.0, 200.0); + fprintf(stderr, "soft mute\n"); + } + + /* interpolate ------------------------------------------------*/ + + /* Wo, energy, and LSPs are sampled every 40ms so we interpolate + the 3 frames in between */ + + TIMER_SAMPLE(recover_start); + for(i=0, weight=0.25; i<3; i++, weight += 0.25) { + interpolate_lsp_ver2(&lsps[i][0], c2->prev_lsps_dec, &lsps[3][0], weight); + interp_Wo2(&model[i], &c2->prev_model_dec, &model[3], weight); + e[i] = interp_energy2(c2->prev_e_dec, e[3],weight); + } + + /* then recover spectral amplitudes */ + + for(i=0; i<4; i++) { + lsp_to_lpc(&lsps[i][0], &ak[i][0], LPC_ORD); + aks_to_M2(c2->fft_fwd_cfg, &ak[i][0], LPC_ORD, &model[i], e[i], &snr, 0, 0, + c2->lpc_pf, c2->bass_boost, c2->beta, c2->gamma); + apply_lpc_correction(&model[i]); + } + TIMER_SAMPLE_AND_LOG2(recover_start, " recover"); + + /* synthesise ------------------------------------------------*/ + + for(i=0; i<4; i++) + synthesise_one_frame(c2, &speech[N*i], &model[i], &ak[i][0]); + + /* update memories for next frame ----------------------------*/ + + c2->prev_model_dec = model[3]; + c2->prev_e_dec = e[3]; + for(i=0; i<LPC_ORD; i++) + c2->prev_lsps_dec[i] = lsps[3][i]; + +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_encode_1200 + AUTHOR......: David Rowe + DATE CREATED: Nov 14 2011 + + Encodes 320 speech samples (40ms of speech) into 48 bits. + + The codec2 algorithm actually operates internally on 10ms (80 + sample) frames, so we run the encoding algorithm four times: + + frame 0: voicing bit + frame 1: voicing bit, joint VQ of Wo and E + frame 2: voicing bit + frame 3: voicing bit, joint VQ of Wo and E, VQ LSPs + + The bit allocation is: + + Parameter frame 2 frame 4 Total + ------------------------------------------------------- + Harmonic magnitudes (LSPs) 0 27 27 + Energy+Wo 8 8 16 + Voicing (10ms update) 2 2 4 + Spare 0 1 1 + TOTAL 10 38 48 + +\*---------------------------------------------------------------------------*/ + +void codec2_encode_1200(struct CODEC2 *c2, unsigned char * bits, short speech[]) +{ + MODEL model; + float lsps[LPC_ORD]; + float lsps_[LPC_ORD]; + float ak[LPC_ORD+1]; + float e; + int lsp_indexes[LPC_ORD]; + int WoE_index; + int i; + int spare = 0; + unsigned int nbit = 0; + + assert(c2 != NULL); + + memset(bits, '\0', ((codec2_bits_per_frame(c2) + 7) / 8)); + + /* frame 1: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, speech); + pack(bits, &nbit, model.voiced, 1); + + /* frame 2: - voicing, joint Wo & E -------------------------------*/ + + analyse_one_frame(c2, &model, &speech[N]); + pack(bits, &nbit, model.voiced, 1); + + /* need to run this just to get LPC energy */ + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + + WoE_index = encode_WoE(&model, e, c2->xq_enc); + pack(bits, &nbit, WoE_index, WO_E_BITS); + + /* frame 3: - voicing ---------------------------------------------*/ + + analyse_one_frame(c2, &model, &speech[2*N]); + pack(bits, &nbit, model.voiced, 1); + + /* frame 4: - voicing, joint Wo & E, scalar LSPs ------------------*/ + + analyse_one_frame(c2, &model, &speech[3*N]); + pack(bits, &nbit, model.voiced, 1); + + e = speech_to_uq_lsps(lsps, ak, c2->Sn, c2->w, LPC_ORD); + WoE_index = encode_WoE(&model, e, c2->xq_enc); + pack(bits, &nbit, WoE_index, WO_E_BITS); + + encode_lsps_vq(lsp_indexes, lsps, lsps_, LPC_ORD); + for(i=0; i<LSP_PRED_VQ_INDEXES; i++) { + pack(bits, &nbit, lsp_indexes[i], lsp_pred_vq_bits(i)); + } + pack(bits, &nbit, spare, 1); + + assert(nbit == (unsigned)codec2_bits_per_frame(c2)); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: codec2_decode_1200 + AUTHOR......: David Rowe + DATE CREATED: 14 Feb 2012 + + Decodes frames of 48 bits into 320 samples (40ms) of speech. - /* decode integer codes to model parameters */ +\*---------------------------------------------------------------------------*/ - model.Wo = decode_Wo(Wo_index); - model.L = PI/model.Wo; - memset(&model.A, 0, (model.L+1)*sizeof(model.A[0])); - decode_amplitudes(&model, - ak, - lsp_indexes, - energy_index, - lsps, - &energy); +void codec2_decode_1200(struct CODEC2 *c2, short speech[], const unsigned char * bits) +{ + MODEL model[4]; + int lsp_indexes[LPC_ORD]; + float lsps[4][LPC_ORD]; + int WoE_index; + float e[4]; + float snr; + float ak[4][LPC_ORD+1]; + int i,j; + unsigned int nbit = 0; + float weight; - model.voiced = voiced2; - model_interp.voiced = voiced1; - model_interp.Wo = P_MAX/2; - memset(&model_interp.A, 0, MAX_AMP*sizeof(model_interp.A[0])); + assert(c2 != NULL); - /* interpolate middle frame's model parameters for adjacent frames */ + /* only need to zero these out due to (unused) snr calculation */ - interpolate_lsp(&model_interp, &c2->prev_model, &model, - c2->prev_lsps, c2->prev_energy, lsps, energy, ak_interp); - apply_lpc_correction(&model_interp); + for(i=0; i<4; i++) + for(j=1; j<=MAX_AMP; j++) + model[i].A[j] = 0.0; + + /* unpack bits from channel ------------------------------------*/ + + /* this will partially fill the model params for the 4 x 10ms + frames */ + + model[0].voiced = unpack(bits, &nbit, 1); + + model[1].voiced = unpack(bits, &nbit, 1); + WoE_index = unpack(bits, &nbit, WO_E_BITS); + decode_WoE(&model[1], &e[1], c2->xq_dec, WoE_index); + + model[2].voiced = unpack(bits, &nbit, 1); + + model[3].voiced = unpack(bits, &nbit, 1); + WoE_index = unpack(bits, &nbit, WO_E_BITS); + decode_WoE(&model[3], &e[3], c2->xq_dec, WoE_index); + + for(i=0; i<LSP_PRED_VQ_INDEXES; i++) { + lsp_indexes[i] = unpack(bits, &nbit, lsp_pred_vq_bits(i)); + } + decode_lsps_vq(lsp_indexes, &lsps[3][0], LPC_ORD); + check_lsp_order(&lsps[3][0], LPC_ORD); + bw_expand_lsps(&lsps[3][0], LPC_ORD, 50.0, 100.0); + + /* interpolate ------------------------------------------------*/ + + /* Wo and energy are sampled every 20ms, so we interpolate just 1 + 10ms frame between 20ms samples */ + + interp_Wo(&model[0], &c2->prev_model_dec, &model[1]); + e[0] = interp_energy(c2->prev_e_dec, e[1]); + interp_Wo(&model[2], &model[1], &model[3]); + e[2] = interp_energy(e[1], e[3]); + + /* LSPs are sampled every 40ms so we interpolate the 3 frames in + between, then recover spectral amplitudes */ + + for(i=0, weight=0.25; i<3; i++, weight += 0.25) { + interpolate_lsp_ver2(&lsps[i][0], c2->prev_lsps_dec, &lsps[3][0], weight); + } + for(i=0; i<4; i++) { + lsp_to_lpc(&lsps[i][0], &ak[i][0], LPC_ORD); + aks_to_M2(c2->fft_fwd_cfg, &ak[i][0], LPC_ORD, &model[i], e[i], &snr, 0, 0, + c2->lpc_pf, c2->bass_boost, c2->beta, c2->gamma); + apply_lpc_correction(&model[i]); + } - /* synthesis two 10ms frames */ + /* synthesise ------------------------------------------------*/ - synthesise_one_frame(c2, speech, &model_interp, ak_interp); - synthesise_one_frame(c2, &speech[N], &model, ak); + for(i=0; i<4; i++) + synthesise_one_frame(c2, &speech[N*i], &model[i], &ak[i][0]); - /* update memories (decode states) for next time */ + /* update memories for next frame ----------------------------*/ - memcpy(&c2->prev_model, &model, sizeof(MODEL)); - memcpy(c2->prev_lsps, lsps, sizeof(lsps)); - c2->prev_energy = energy; + c2->prev_model_dec = model[3]; + c2->prev_e_dec = e[3]; + for(i=0; i<LPC_ORD; i++) + c2->prev_lsps_dec[i] = lsps[3][i]; } + /*---------------------------------------------------------------------------*\ FUNCTION....: synthesise_one_frame() @@ -279,13 +1304,30 @@ void codec2_decode(void *codec2_state, short speech[], \*---------------------------------------------------------------------------*/ -void synthesise_one_frame(CODEC2 *c2, short speech[], MODEL *model, float ak[]) +void synthesise_one_frame(struct CODEC2 *c2, short speech[], MODEL *model, float ak[]) { int i; + TIMER_VAR(phase_start, pf_start, synth_start); + + #ifdef DUMP + dump_quantised_model(model); + #endif + + TIMER_SAMPLE(phase_start); + + phase_synth_zero_order(c2->fft_fwd_cfg, model, ak, &c2->ex_phase, LPC_ORD); + + TIMER_SAMPLE_AND_LOG(pf_start,phase_start, " phase_synth"); - phase_synth_zero_order(model, ak, &c2->ex_phase, LPC_ORD); postfilter(model, &c2->bg_est); - synthesise(c2->Sn_, model, c2->Pn, 1); + + TIMER_SAMPLE_AND_LOG(synth_start, pf_start, " postfilter"); + + synthesise(c2->fft_inv_cfg, c2->Sn_, model, c2->Pn, 1); + + TIMER_SAMPLE_AND_LOG2(synth_start, " synth"); + + ear_protection(c2->Sn_, N); for(i=0; i<N; i++) { if (c2->Sn_[i] > 32767.0) @@ -309,13 +1351,14 @@ void synthesise_one_frame(CODEC2 *c2, short speech[], MODEL *model, float ak[]) \*---------------------------------------------------------------------------*/ -void analyse_one_frame(CODEC2 *c2, MODEL *model, short speech[]) +void analyse_one_frame(struct CODEC2 *c2, MODEL *model, short speech[]) { COMP Sw[FFT_ENC]; COMP Sw_[FFT_ENC]; COMP Ew[FFT_ENC]; float pitch; int i; + TIMER_VAR(dft_start, nlp_start, model_start, two_stage, estamps); /* Read input speech */ @@ -324,19 +1367,155 @@ void analyse_one_frame(CODEC2 *c2, MODEL *model, short speech[]) for(i=0; i<N; i++) c2->Sn[i+M-N] = speech[i]; - dft_speech(Sw, c2->Sn, c2->w); + TIMER_SAMPLE(dft_start); + dft_speech(c2->fft_fwd_cfg, Sw, c2->Sn, c2->w); + TIMER_SAMPLE_AND_LOG(nlp_start, dft_start, " dft_speech"); /* Estimate pitch */ - nlp(c2->nlp,c2->Sn,N,M,P_MIN,P_MAX,&pitch,Sw,&c2->prev_Wo); + nlp(c2->nlp,c2->Sn,N,P_MIN,P_MAX,&pitch,Sw, c2->W, &c2->prev_Wo_enc); + TIMER_SAMPLE_AND_LOG(model_start, nlp_start, " nlp"); + model->Wo = TWO_PI/pitch; model->L = PI/model->Wo; /* estimate model parameters */ two_stage_pitch_refinement(model, Sw); - estimate_amplitudes(model, Sw, c2->W); - est_voicing_mbe(model, Sw, c2->W, Sw_, Ew, c2->prev_Wo); + TIMER_SAMPLE_AND_LOG(two_stage, model_start, " two_stage"); + estimate_amplitudes(model, Sw, c2->W, 0); + TIMER_SAMPLE_AND_LOG(estamps, two_stage, " est_amps"); + est_voicing_mbe(model, Sw, c2->W, Sw_, Ew, c2->prev_Wo_enc); + c2->prev_Wo_enc = model->Wo; + TIMER_SAMPLE_AND_LOG2(estamps, " est_voicing"); + #ifdef DUMP + dump_model(model); + #endif +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: ear_protection() + AUTHOR......: David Rowe + DATE CREATED: Nov 7 2012 + + Limits output level to protect ears when there are bit errors or the input + is overdriven. This doesn't correct or mask bit erros, just reduces the + worst of their damage. + +\*---------------------------------------------------------------------------*/ + +static void ear_protection(float in_out[], int n) { + float max_sample, over, gain; + int i; + + /* find maximum sample in frame */ + + max_sample = 0.0; + for(i=0; i<n; i++) + if (in_out[i] > max_sample) + max_sample = in_out[i]; + + /* determine how far above set point */ + + over = max_sample/30000.0; + + /* If we are x dB over set point we reduce level by 2x dB, this + attenuates major excursions in amplitude (likely to be caused + by bit errors) more than smaller ones */ + + if (over > 1.0) { + gain = 1.0/(over*over); + //fprintf(stderr, "gain: %f\n", gain); + for(i=0; i<n; i++) + in_out[i] *= gain; + } +} + +void CODEC2_WIN32SUPPORT codec2_set_lpc_post_filter(struct CODEC2 *c2, int enable, int bass_boost, float beta, float gamma) +{ + assert((beta >= 0.0) && (beta <= 1.0)); + assert((gamma >= 0.0) && (gamma <= 1.0)); + c2->lpc_pf = enable; + c2->bass_boost = bass_boost; + c2->beta = beta; + c2->gamma = gamma; +} + +/* + Allows optional stealing of one of the voicing bits for use as a + spare bit, only 1300 & 1400 & 1600 bit/s supported for now. + Experimental method of sending voice/data frames for FreeDV. +*/ + +int CODEC2_WIN32SUPPORT codec2_get_spare_bit_index(struct CODEC2 *c2) +{ + assert(c2 != NULL); + + switch(c2->mode) { + case CODEC2_MODE_1300: + return 2; // bit 2 (3th bit) is v2 (third voicing bit) + break; + case CODEC2_MODE_1400: + return 10; // bit 10 (11th bit) is v2 (third voicing bit) + break; + case CODEC2_MODE_1600: + return 15; // bit 15 (16th bit) is v2 (third voicing bit) + break; + } + + return -1; +} + +/* + Reconstructs the spare voicing bit. Note works on unpacked bits + for convenience. +*/ + +int CODEC2_WIN32SUPPORT codec2_rebuild_spare_bit(struct CODEC2 *c2, int unpacked_bits[]) +{ + int v1,v3; + + assert(c2 != NULL); + + v1 = unpacked_bits[1]; + + switch(c2->mode) { + case CODEC2_MODE_1300: + + v3 = unpacked_bits[1+1+1]; + + /* if either adjacent frame is voiced, make this one voiced */ + + unpacked_bits[2] = (v1 || v3); + + return 0; + + break; + + case CODEC2_MODE_1400: + + v3 = unpacked_bits[1+1+8+1]; + + /* if either adjacent frame is voiced, make this one voiced */ + + unpacked_bits[10] = (v1 || v3); + + return 0; + + break; + + case CODEC2_MODE_1600: + v3 = unpacked_bits[1+1+8+5+1]; + + /* if either adjacent frame is voiced, make this one voiced */ + + unpacked_bits[15] = (v1 || v3); + + return 0; + + break; + } - c2->prev_Wo = model->Wo; + return -1; } diff --git a/gr-vocoder/lib/codec2/codec2.h b/gr-vocoder/lib/codec2/codec2.h index f812a05983..2f0c2b1246 100644 --- a/gr-vocoder/lib/codec2/codec2.h +++ b/gr-vocoder/lib/codec2/codec2.h @@ -2,10 +2,10 @@ FILE........: codec2.h AUTHOR......: David Rowe - DATE CREATED: 21/8/2010 + DATE CREATED: 21 August 2010 - Codec2 fully quantised encoder and decoder functions. If you want use - codec2, these are the functions you need to call. + Codec 2 fully quantised encoder and decoder functions. If you want use + Codec 2, these are the functions you need to call. \*---------------------------------------------------------------------------*/ @@ -26,17 +26,49 @@ along with this program; if not, see <http://www.gnu.org/licenses/>. */ +#ifdef __cplusplus + extern "C" { +#endif + #ifndef __CODEC2__ #define __CODEC2__ -#define CODEC2_SAMPLES_PER_FRAME 160 -#define CODEC2_BITS_PER_FRAME 50 -#define CODEC2_BYTES_PER_FRAME ((CODEC2_BITS_PER_FRAME + 7) / 8) // == 8 bytes when packing the 50 bits +/* set up the calling convention for DLL function import/export for + WIN32 cross compiling */ + +#ifdef __CODEC2_WIN32__ +#ifdef __CODEC2_BUILDING_DLL__ +#define CODEC2_WIN32SUPPORT __declspec(dllexport) __stdcall +#else +#define CODEC2_WIN32SUPPORT __declspec(dllimport) __stdcall +#endif +#else +#define CODEC2_WIN32SUPPORT +#endif + +#define CODEC2_MODE_3200 0 +#define CODEC2_MODE_2400 1 +#define CODEC2_MODE_1600 2 +#define CODEC2_MODE_1400 3 +#define CODEC2_MODE_1300 4 +#define CODEC2_MODE_1200 5 -void *codec2_create(); -void codec2_destroy(void *codec2_state); -void codec2_encode(void *codec2_state, unsigned char * bits, short speech_in[]); -void codec2_decode(void *codec2_state, short speech_out[], - const unsigned char * bits); +struct CODEC2; + +struct CODEC2 * CODEC2_WIN32SUPPORT codec2_create(int mode); +void CODEC2_WIN32SUPPORT codec2_destroy(struct CODEC2 *codec2_state); +void CODEC2_WIN32SUPPORT codec2_encode(struct CODEC2 *codec2_state, unsigned char * bits, short speech_in[]); + void CODEC2_WIN32SUPPORT codec2_decode(struct CODEC2 *codec2_state, short speech_out[], const unsigned char *bits, float ber_est); +int CODEC2_WIN32SUPPORT codec2_samples_per_frame(struct CODEC2 *codec2_state); +int CODEC2_WIN32SUPPORT codec2_bits_per_frame(struct CODEC2 *codec2_state); + +void CODEC2_WIN32SUPPORT codec2_set_lpc_post_filter(struct CODEC2 *codec2_state, int enable, int bass_boost, float beta, float gamma); +int CODEC2_WIN32SUPPORT codec2_get_spare_bit_index(struct CODEC2 *codec2_state); +int CODEC2_WIN32SUPPORT codec2_rebuild_spare_bit(struct CODEC2 *codec2_state, int unpacked_bits[]); #endif + +#ifdef __cplusplus +} +#endif + diff --git a/gr-vocoder/lib/codec2/codec2_fdmdv.h b/gr-vocoder/lib/codec2/codec2_fdmdv.h new file mode 100644 index 0000000000..b7da96f629 --- /dev/null +++ b/gr-vocoder/lib/codec2/codec2_fdmdv.h @@ -0,0 +1,124 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: codec2_fdmdv.h + AUTHOR......: David Rowe + DATE CREATED: April 14 2012 + + A 1400 bit/s (nominal) Frequency Division Multiplexed Digital Voice + (FDMDV) modem. Used for digital audio over HF SSB. See + README_fdmdv.txt for more information, and fdmdv_mod.c and + fdmdv_demod.c for example usage. + + The name codec2_fdmdv.h is used to make it unique when "make + installed". + + References: + + [1] http://n1su.com/fdmdv/FDMDV_Docs_Rel_1_4b.pdf + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#ifndef __FDMDV__ +#define __FDMDV__ + +#ifdef __cplusplus +extern "C" { +#endif + +/* set up the calling convention for DLL function import/export for + WIN32 cross compiling */ + +#ifdef __CODEC2_WIN32__ +#ifdef __CODEC2_BUILDING_DLL__ +#define CODEC2_WIN32SUPPORT __declspec(dllexport) __stdcall +#else +#define CODEC2_WIN32SUPPORT __declspec(dllimport) __stdcall +#endif +#else +#define CODEC2_WIN32SUPPORT +#endif + +#include "comp.h" + +#define FDMDV_NC 14 /* default number of data carriers */ +#define FDMDV_NC_MAX 20 /* maximum number of data carriers */ +#define FDMDV_BITS_PER_FRAME 28 /* 20ms frames, for nominal 1400 bit/s */ +#define FDMDV_NOM_SAMPLES_PER_FRAME 160 /* modulator output samples/frame and nominal demod samples/frame */ + /* at 8000 Hz sample rate */ +#define FDMDV_MAX_SAMPLES_PER_FRAME 200 /* max demod samples/frame, use this to allocate storage */ +#define FDMDV_SCALE 1000 /* suggested scaling for 16 bit shorts */ +#define FDMDV_FCENTRE 1500 /* Centre frequency, Nc/2 carriers below this, Nc/2 carriers above (Hz) */ + +/* 8 to 48 kHz sample rate conversion */ + +#define FDMDV_OS 6 /* oversampling rate */ +#define FDMDV_OS_TAPS 48 /* number of OS filter taps */ + +/* FFT points */ + +#define FDMDV_NSPEC 512 +#define FDMDV_MAX_F_HZ 4000 + +/* FDMDV states and stats structures */ + +struct FDMDV; + +struct FDMDV_STATS { + int Nc; + float snr_est; /* estimated SNR of rx signal in dB (3 kHz noise BW) */ + COMP rx_symbols[FDMDV_NC_MAX+1]; /* latest received symbols, for scatter plot */ + int sync; /* demod sync state */ + float foff; /* estimated freq offset in Hz */ + float rx_timing; /* estimated optimum timing offset in samples */ + float clock_offset; /* Estimated tx/rx sample clock offset in ppm */ +}; + +struct FDMDV * CODEC2_WIN32SUPPORT fdmdv_create(int Nc); +void CODEC2_WIN32SUPPORT fdmdv_destroy(struct FDMDV *fdmdv_state); +void CODEC2_WIN32SUPPORT fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv_state); +int CODEC2_WIN32SUPPORT fdmdv_bits_per_frame(struct FDMDV *fdmdv_state); +float CODEC2_WIN32SUPPORT fdmdv_get_fsep(struct FDMDV *fdmdv_state); +void CODEC2_WIN32SUPPORT fdmdv_set_fsep(struct FDMDV *fdmdv_state, float fsep); + +void CODEC2_WIN32SUPPORT fdmdv_mod(struct FDMDV *fdmdv_state, COMP tx_fdm[], int tx_bits[], int *sync_bit); +void CODEC2_WIN32SUPPORT fdmdv_demod(struct FDMDV *fdmdv_state, int rx_bits[], int *reliable_sync_bit, COMP rx_fdm[], int *nin); + +void CODEC2_WIN32SUPPORT fdmdv_get_test_bits(struct FDMDV *fdmdv_state, int tx_bits[]); +int CODEC2_WIN32SUPPORT fdmdv_error_pattern_size(struct FDMDV *fdmdv_state); +void CODEC2_WIN32SUPPORT fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[], int *bit_errors, int *ntest_bits, int rx_bits[]); + +void CODEC2_WIN32SUPPORT fdmdv_get_demod_stats(struct FDMDV *fdmdv_state, struct FDMDV_STATS *fdmdv_stats); +void CODEC2_WIN32SUPPORT fdmdv_get_rx_spectrum(struct FDMDV *fdmdv_state, float mag_dB[], COMP rx_fdm[], int nin); + +void CODEC2_WIN32SUPPORT fdmdv_8_to_48(float out48k[], float in8k[], int n); +void CODEC2_WIN32SUPPORT fdmdv_48_to_8(float out8k[], float in48k[], int n); + +void CODEC2_WIN32SUPPORT fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, COMP *foff_rect, COMP *foff_phase_rect, int nin); + +/* debug/development function(s) */ + +void CODEC2_WIN32SUPPORT fdmdv_dump_osc_mags(struct FDMDV *f); + +#ifdef __cplusplus +} +#endif + +#endif + diff --git a/gr-vocoder/lib/codec2/codec2_fifo.h b/gr-vocoder/lib/codec2/codec2_fifo.h new file mode 100644 index 0000000000..9140fd7f78 --- /dev/null +++ b/gr-vocoder/lib/codec2/codec2_fifo.h @@ -0,0 +1,51 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: codec2_fifo.h + AUTHOR......: David Rowe + DATE CREATED: Oct 15 2012 + + A FIFO design useful in gluing the FDMDV modem and codec together in + integrated applications. + + The name codec2_fifo.h is used to make it unique when "make + installed". + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#ifndef __FIFO__ +#define __FIFO__ + +#ifdef __cplusplus +extern "C" { +#endif + +struct FIFO; + +struct FIFO *fifo_create(int nshort); +void fifo_destroy(struct FIFO *fifo); +int fifo_write(struct FIFO *fifo, short data[], int n); +int fifo_read(struct FIFO *fifo, short data[], int n); +int fifo_used(struct FIFO *fifo); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/gr-vocoder/lib/codec2/codec2_internal.h b/gr-vocoder/lib/codec2/codec2_internal.h index 3aa5300b10..246d1ae6af 100644 --- a/gr-vocoder/lib/codec2/codec2_internal.h +++ b/gr-vocoder/lib/codec2/codec2_internal.h @@ -2,15 +2,15 @@ FILE........: codec2_internal.h AUTHOR......: David Rowe - DATE CREATED: 22 March 2011 + DATE CREATED: April 16 2012 - Some internal structures and states broken out here as they are useful for - testing and development. + Header file for Codec2 internal states, exposed via this header + file to assist in testing. \*---------------------------------------------------------------------------*/ /* - Copyright (C) 2011 David Rowe + Copyright (C) 2012 David Rowe All rights reserved. @@ -27,37 +27,36 @@ */ #ifndef __CODEC2_INTERNAL__ -#define __CODEC2_INTERNAL__ - -/*---------------------------------------------------------------------------*\ - - STATES - -\*---------------------------------------------------------------------------*/ - -typedef struct { - float w[M]; /* time domain hamming window */ - COMP W[FFT_ENC]; /* DFT of w[] */ - float Pn[2*N]; /* trapezoidal synthesis window */ - float Sn[M]; /* input speech */ - float hpf_states[2]; /* high pass filter states */ - void *nlp; /* pitch predictor states */ - float Sn_[2*N]; /* synthesised output speech */ - float ex_phase; /* excitation model phase track */ - float bg_est; /* background noise estimate for post filter */ - float prev_Wo; /* previous frame's pitch estimate */ - MODEL prev_model; /* previous frame's model parameters */ - float prev_lsps[LPC_ORD]; /* previous frame's LSPs */ - float prev_energy; /* previous frame's LPC energy */ -} CODEC2; - -/*---------------------------------------------------------------------------*\ - - FUNCTION HEADERS - -\*---------------------------------------------------------------------------*/ - -void analyse_one_frame(CODEC2 *c2, MODEL *model, short speech[]); -void synthesise_one_frame(CODEC2 *c2, short speech[], MODEL *model,float ak[]); +#define __CODEC2_INTERNAL__ + +struct CODEC2 { + int mode; + kiss_fft_cfg fft_fwd_cfg; /* forward FFT config */ + float w[M]; /* time domain hamming window */ + COMP W[FFT_ENC]; /* DFT of w[] */ + float Pn[2*N]; /* trapezoidal synthesis window */ + float Sn[M]; /* input speech */ + float hpf_states[2]; /* high pass filter states */ + void *nlp; /* pitch predictor states */ + + kiss_fft_cfg fft_inv_cfg; /* inverse FFT config */ + float Sn_[2*N]; /* synthesised output speech */ + float ex_phase; /* excitation model phase track */ + float bg_est; /* background noise estimate for post filter */ + float prev_Wo_enc; /* previous frame's pitch estimate */ + MODEL prev_model_dec; /* previous frame's model parameters */ + float prev_lsps_dec[LPC_ORD]; /* previous frame's LSPs */ + float prev_e_dec; /* previous frame's LPC energy */ + + int lpc_pf; /* LPC post filter on */ + int bass_boost; /* LPC post filter bass boost */ + float beta; /* LPC post filter parameters */ + float gamma; + + float xq_enc[2]; /* joint pitch and energy VQ states */ + float xq_dec[2]; + + int smoothing; /* enable smoothing for channels with errors */ +}; #endif diff --git a/gr-vocoder/lib/codec2/defines.h b/gr-vocoder/lib/codec2/defines.h index 75064fae14..4b81357ea6 100644 --- a/gr-vocoder/lib/codec2/defines.h +++ b/gr-vocoder/lib/codec2/defines.h @@ -68,8 +68,8 @@ typedef struct { float Wo; /* fundamental frequency estimate in radians */ int L; /* number of harmonics */ - float A[MAX_AMP]; /* amplitiude of each harmonic */ - float phi[MAX_AMP]; /* phase of each harmonic */ + float A[MAX_AMP+1]; /* amplitiude of each harmonic */ + float phi[MAX_AMP+1]; /* phase of each harmonic */ int voiced; /* non-zero if this frame is voiced */ } MODEL; @@ -81,8 +81,14 @@ struct lsp_codebook { int m; /* elements in codebook */ const float * cb; /* The elements */ }; + extern const struct lsp_codebook lsp_cb[]; extern const struct lsp_codebook lsp_cbd[]; -extern const struct lsp_codebook lsp_cbdvq[]; +extern const struct lsp_codebook lsp_cbvq[]; +extern const struct lsp_codebook lsp_cbjnd[]; +extern const struct lsp_codebook lsp_cbdt[]; +extern const struct lsp_codebook lsp_cbjvm[]; +extern const struct lsp_codebook lsp_cbvqanssi[]; +extern const struct lsp_codebook ge_cb[]; #endif diff --git a/gr-vocoder/lib/codec2/dump.c b/gr-vocoder/lib/codec2/dump.c index 1dc34c858d..cc935d73cf 100644 --- a/gr-vocoder/lib/codec2/dump.c +++ b/gr-vocoder/lib/codec2/dump.c @@ -32,6 +32,13 @@ #include <string.h> #include <math.h> +#ifdef __EMBEDDED__ +#include "gdb_stdio.h" +#define fprintf gdb_stdio_fprintf +#define fopen gdb_stdio_fopen +#define fclose gdb_stdio_fclose +#endif + #ifdef DUMP static int dumpon = 0; @@ -41,8 +48,12 @@ static FILE *few = NULL; static FILE *fsw_ = NULL; static FILE *fmodel = NULL; static FILE *fqmodel = NULL; +static FILE *fpwb = NULL; static FILE *fpw = NULL; +static FILE *frw = NULL; static FILE *flsp = NULL; +static FILE *fweights = NULL; +static FILE *flsp_ = NULL; static FILE *fphase = NULL; static FILE *fphase_ = NULL; static FILE *ffw = NULL; @@ -50,11 +61,13 @@ static FILE *fe = NULL; static FILE *fsq = NULL; static FILE *fdec = NULL; static FILE *fsnr = NULL; +static FILE *flpcsnr = NULL; static FILE *fak = NULL; +static FILE *fak_ = NULL; static FILE *fbg = NULL; static FILE *fE = NULL; static FILE *frk = NULL; -static FILE *fres = NULL; +static FILE *fhephase = NULL; static char prefix[MAX_STR]; @@ -76,10 +89,18 @@ void dump_off(){ fclose(fmodel); if (fqmodel != NULL) fclose(fqmodel); + if (fpwb != NULL) + fclose(fpwb); if (fpw != NULL) fclose(fpw); + if (frw != NULL) + fclose(frw); if (flsp != NULL) fclose(flsp); + if (fweights != NULL) + fclose(fweights); + if (flsp_ != NULL) + fclose(flsp_); if (fphase != NULL) fclose(fphase); if (fphase_ != NULL) @@ -94,16 +115,20 @@ void dump_off(){ fclose(fdec); if (fsnr != NULL) fclose(fsnr); + if (flpcsnr != NULL) + fclose(flpcsnr); if (fak != NULL) fclose(fak); + if (fak_ != NULL) + fclose(fak_); if (fbg != NULL) fclose(fbg); if (fE != NULL) fclose(fE); if (frk != NULL) fclose(frk); - if (fres != NULL) - fclose(fres); + if (fhephase != NULL) + fclose(fhephase); } void dump_Sn(float Sn[]) { @@ -186,6 +211,7 @@ void dump_Ew(COMP Ew[]) { void dump_model(MODEL *model) { int l; char s[MAX_STR]; + char line[2048]; if (!dumpon) return; @@ -195,18 +221,25 @@ void dump_model(MODEL *model) { assert(fmodel != NULL); } - fprintf(fmodel,"%f\t%d\t", model->Wo, model->L); - for(l=1; l<=model->L; l++) - fprintf(fmodel,"%f\t",model->A[l]); - for(l=model->L+1; l<MAX_AMP; l++) - fprintf(fmodel,"0.0\t"); - fprintf(fmodel,"%d\t",model->voiced); - fprintf(fmodel,"\n"); + sprintf(line,"%12f %12d ", model->Wo, model->L); + for(l=1; l<=model->L; l++) { + sprintf(s,"%12f ",model->A[l]); + strcat(line, s); + } + for(l=model->L+1; l<=MAX_AMP; l++) { + sprintf(s,"%12f ", 0.0); + strcat(line,s); + } + + sprintf(s,"%d\n",model->voiced); + strcat(line,s); + fprintf(fmodel,"%s",line); } void dump_quantised_model(MODEL *model) { int l; char s[MAX_STR]; + char line[2048]; if (!dumpon) return; @@ -216,32 +249,19 @@ void dump_quantised_model(MODEL *model) { assert(fqmodel != NULL); } - fprintf(fqmodel,"%f\t%d\t", model->Wo, model->L); - for(l=1; l<=model->L; l++) - fprintf(fqmodel,"%f\t",model->A[l]); - for(l=model->L+1; l<MAX_AMP; l++) - fprintf(fqmodel,"0.0\t"); - fprintf(fqmodel,"\n"); -} - -void dump_resample(float w[], float A[], int n) { - int l; - char s[MAX_STR]; - - if (!dumpon) return; - - if (fres == NULL) { - sprintf(s,"%s_res.txt", prefix); - fres = fopen(s, "wt"); - assert(fres != NULL); + sprintf(line,"%12f %12d ", model->Wo, model->L); + for(l=1; l<=model->L; l++) { + sprintf(s,"%12f ",model->A[l]); + strcat(line, s); + } + for(l=model->L+1; l<=MAX_AMP; l++) { + sprintf(s,"%12f ", 0.0); + strcat(line, s); } - fprintf(fres,"%d\t",n); - for(l=0; l<n; l++) - fprintf(fres,"%f\t",w[l]); - for(l=0; l<n; l++) - fprintf(fres,"%f\t",A[l]); - fprintf(fres,"\n"); + sprintf(s,"%d\n",model->voiced); + strcat(line, s); + fprintf(fqmodel, "%s", line); } void dump_phase(float phase[], int L) { @@ -258,7 +278,7 @@ void dump_phase(float phase[], int L) { for(l=1; l<=L; l++) fprintf(fphase,"%f\t",phase[l]); - for(l=L+1; l<MAX_AMP; l++) + for(l=L+1; l<=MAX_AMP; l++) fprintf(fphase,"%f\t",0.0); fprintf(fphase,"\n"); } @@ -282,6 +302,25 @@ void dump_phase_(float phase_[], int L) { fprintf(fphase_,"\n"); } + +void dump_hephase(int ind[], int dim) { + int m; + char s[MAX_STR]; + + if (!dumpon) return; + + if (fhephase == NULL) { + sprintf(s,"%s_hephase.txt", prefix); + fhephase = fopen(s, "wt"); + assert(fhephase != NULL); + } + + for(m=0; m<dim; m++) + fprintf(fhephase,"%d\t",ind[m]); + fprintf(fhephase,"\n"); +} + + void dump_snr(float snr) { char s[MAX_STR]; @@ -296,6 +335,39 @@ void dump_snr(float snr) { fprintf(fsnr,"%f\n",snr); } +void dump_lpc_snr(float snr) { + char s[MAX_STR]; + + if (!dumpon) return; + + if (flpcsnr == NULL) { + sprintf(s,"%s_lpc_snr.txt", prefix); + flpcsnr = fopen(s, "wt"); + assert(flpcsnr != NULL); + } + + fprintf(flpcsnr,"%f\n",snr); +} + +/* Pw "before" post filter so we can plot before and after */ + +void dump_Pwb(COMP Pwb[]) { + int i; + char s[MAX_STR]; + + if (!dumpon) return; + + if (fpwb == NULL) { + sprintf(s,"%s_pwb.txt", prefix); + fpwb = fopen(s, "wt"); + assert(fpwb != NULL); + } + + for(i=0; i<FFT_ENC/2; i++) + fprintf(fpwb,"%f\t",Pwb[i].real); + fprintf(fpwb,"\n"); +} + void dump_Pw(COMP Pw[]) { int i; char s[MAX_STR]; @@ -308,11 +380,45 @@ void dump_Pw(COMP Pw[]) { assert(fpw != NULL); } - for(i=0; i<FFT_DEC/2; i++) + for(i=0; i<FFT_ENC/2; i++) fprintf(fpw,"%f\t",Pw[i].real); fprintf(fpw,"\n"); } +void dump_Rw(float Rw[]) { + int i; + char s[MAX_STR]; + + if (!dumpon) return; + + if (frw == NULL) { + sprintf(s,"%s_rw.txt", prefix); + frw = fopen(s, "wt"); + assert(frw != NULL); + } + + for(i=0; i<FFT_ENC/2; i++) + fprintf(frw,"%f\t",Rw[i]); + fprintf(frw,"\n"); +} + +void dump_weights(float w[], int order) { + int i; + char s[MAX_STR]; + + if (!dumpon) return; + + if (fweights == NULL) { + sprintf(s,"%s_weights.txt", prefix); + fweights = fopen(s, "wt"); + assert(fweights != NULL); + } + + for(i=0; i<order; i++) + fprintf(fweights,"%f\t", w[i]); + fprintf(fweights,"\n"); +} + void dump_lsp(float lsp[]) { int i; char s[MAX_STR]; @@ -330,6 +436,23 @@ void dump_lsp(float lsp[]) { fprintf(flsp,"\n"); } +void dump_lsp_(float lsp_[]) { + int i; + char s[MAX_STR]; + + if (!dumpon) return; + + if (flsp_ == NULL) { + sprintf(s,"%s_lsp_.txt", prefix); + flsp_ = fopen(s, "wt"); + assert(flsp_ != NULL); + } + + for(i=0; i<10; i++) + fprintf(flsp_,"%f\t",lsp_[i]); + fprintf(flsp_,"\n"); +} + void dump_ak(float ak[], int order) { int i; char s[MAX_STR]; @@ -347,6 +470,23 @@ void dump_ak(float ak[], int order) { fprintf(fak,"\n"); } +void dump_ak_(float ak_[], int order) { + int i; + char s[MAX_STR]; + + if (!dumpon) return; + + if (fak_ == NULL) { + sprintf(s,"%s_ak_.txt", prefix); + fak_ = fopen(s, "wt"); + assert(fak_ != NULL); + } + + for(i=0; i<=order; i++) + fprintf(fak_,"%f\t",ak_[i]); + fprintf(fak_,"\n"); +} + void dump_Fw(COMP Fw[]) { int i; char s[MAX_STR]; diff --git a/gr-vocoder/lib/codec2/dump.h b/gr-vocoder/lib/codec2/dump.h index 4b92d009d9..a61fdaab69 100644 --- a/gr-vocoder/lib/codec2/dump.h +++ b/gr-vocoder/lib/codec2/dump.h @@ -26,7 +26,10 @@ #ifndef __DUMP__ #define __DUMP__ +#include "defines.h" #include "comp.h" +#include "kiss_fft.h" +#include "codec2_internal.h" void dump_on(char filename_prefix[]); void dump_off(); @@ -40,17 +43,23 @@ void dump_Ew(COMP Ew[]); void dump_model(MODEL *m); void dump_quantised_model(MODEL *m); +void dump_Pwn(COMP Pw[]); void dump_Pw(COMP Pw[]); +void dump_Rw(float Rw[]); void dump_lsp(float lsp[]); +void dump_weights(float w[], int ndim); +void dump_lsp_(float lsp_[]); void dump_ak(float ak[], int order); +void dump_ak_(float ak[], int order); void dump_E(float E); -void dump_resample(float w[], float A[], int n); +void dump_lpc_snr(float snr); /* phase modelling */ void dump_snr(float snr); void dump_phase(float phase[], int L); void dump_phase_(float phase[], int L); +void dump_hephase(int ind[], int dim); /* NLP states */ @@ -63,5 +72,6 @@ void dump_Rk(float Rk[]); /* post filter */ void dump_bg(float e, float bg_est, float percent_uv); +void dump_Pwb(COMP Pwb[]); #endif diff --git a/gr-vocoder/lib/codec2/fdmdv.c b/gr-vocoder/lib/codec2/fdmdv.c new file mode 100644 index 0000000000..6af1cf4c6d --- /dev/null +++ b/gr-vocoder/lib/codec2/fdmdv.c @@ -0,0 +1,1569 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: fdmdv.c + AUTHOR......: David Rowe + DATE CREATED: April 14 2012 + + Functions that implement the FDMDV modem. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +/*---------------------------------------------------------------------------*\ + + INCLUDES + +\*---------------------------------------------------------------------------*/ + +#include <assert.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <math.h> + +#include "fdmdv_internal.h" +#include "codec2_fdmdv.h" +#include "rn.h" +#include "test_bits.h" +#include "pilot_coeff.h" +#include "kiss_fft.h" +#include "hanning.h" +#include "os.h" + +static int sync_uw[] = {1,-1,1,-1,1,-1}; + +/*---------------------------------------------------------------------------* \ + + FUNCTIONS + +\*---------------------------------------------------------------------------*/ + +static COMP cneg(COMP a) +{ + COMP res; + + res.real = -a.real; + res.imag = -a.imag; + + return res; +} + +static COMP cconj(COMP a) +{ + COMP res; + + res.real = a.real; + res.imag = -a.imag; + + return res; +} + +static COMP cmult(COMP a, COMP b) +{ + COMP res; + + res.real = a.real*b.real - a.imag*b.imag; + res.imag = a.real*b.imag + a.imag*b.real; + + return res; +} + +static COMP fcmult(float a, COMP b) +{ + COMP res; + + res.real = a*b.real; + res.imag = a*b.imag; + + return res; +} + +static COMP cadd(COMP a, COMP b) +{ + COMP res; + + res.real = a.real + b.real; + res.imag = a.imag + b.imag; + + return res; +} + +static float cabsolute(COMP a) +{ + return sqrt(pow(a.real, 2.0) + pow(a.imag, 2.0)); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_create + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Create and initialise an instance of the modem. Returns a pointer + to the modem states or NULL on failure. One set of states is + sufficient for a full duplex modem. + +\*---------------------------------------------------------------------------*/ + +struct FDMDV * CODEC2_WIN32SUPPORT fdmdv_create(int Nc) +{ + struct FDMDV *f; + int c, i, k; + + assert(NC == FDMDV_NC_MAX); /* check public and private #defines match */ + assert(Nc <= NC); + assert(FDMDV_NOM_SAMPLES_PER_FRAME == M); + assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M+M/P)); + + f = (struct FDMDV*)malloc(sizeof(struct FDMDV)); + if (f == NULL) + return NULL; + + f->Nc = Nc; + + f->ntest_bits = Nc*NB*4; + f->current_test_bit = 0; + f->rx_test_bits_mem = (int*)malloc(sizeof(int)*f->ntest_bits); + assert(f->rx_test_bits_mem != NULL); + for(i=0; i<f->ntest_bits; i++) + f->rx_test_bits_mem[i] = 0; + assert((sizeof(test_bits)/sizeof(int)) >= f->ntest_bits); + + f->old_qpsk_mapping = 0; + + f->tx_pilot_bit = 0; + + for(c=0; c<Nc+1; c++) { + f->prev_tx_symbols[c].real = 1.0; + f->prev_tx_symbols[c].imag = 0.0; + f->prev_rx_symbols[c].real = 1.0; + f->prev_rx_symbols[c].imag = 0.0; + + for(k=0; k<NSYM; k++) { + f->tx_filter_memory[c][k].real = 0.0; + f->tx_filter_memory[c][k].imag = 0.0; + } + + for(k=0; k<NFILTER; k++) { + f->rx_filter_memory[c][k].real = 0.0; + f->rx_filter_memory[c][k].imag = 0.0; + } + + /* Spread initial FDM carrier phase out as far as possible. + This helped PAPR for a few dB. We don't need to adjust rx + phase as DQPSK takes care of that. */ + + f->phase_tx[c].real = cos(2.0*PI*c/(Nc+1)); + f->phase_tx[c].imag = sin(2.0*PI*c/(Nc+1)); + + f->phase_rx[c].real = 1.0; + f->phase_rx[c].imag = 0.0; + + for(k=0; k<NT*P; k++) { + f->rx_filter_mem_timing[c][k].real = 0.0; + f->rx_filter_mem_timing[c][k].imag = 0.0; + } + for(k=0; k<NFILTERTIMING; k++) { + f->rx_baseband_mem_timing[c][k].real = 0.0; + f->rx_baseband_mem_timing[c][k].imag = 0.0; + } + } + + fdmdv_set_fsep(f, FSEP); + f->freq[Nc].real = cos(2.0*PI*FDMDV_FCENTRE/FS); + f->freq[Nc].imag = sin(2.0*PI*FDMDV_FCENTRE/FS); + + /* Generate DBPSK pilot Look Up Table (LUT) */ + + generate_pilot_lut(f->pilot_lut, &f->freq[Nc]); + + /* freq Offset estimation states */ + + f->fft_pilot_cfg = kiss_fft_alloc (MPILOTFFT, 0, NULL, NULL); + assert(f->fft_pilot_cfg != NULL); + + for(i=0; i<NPILOTBASEBAND; i++) { + f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0; + f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0; + } + f->pilot_lut_index = 0; + f->prev_pilot_lut_index = 3*M; + + for(i=0; i<NPILOTLPF; i++) { + f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0; + f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0; + } + + f->foff = 0.0; + f->foff_rect.real = 1.0; + f->foff_rect.imag = 0.0; + f->foff_phase_rect.real = 1.0; + f->foff_phase_rect.imag = 0.0; + + f->fest_state = 0; + f->sync = 0; + f->timer = 0; + for(i=0; i<NSYNC_MEM; i++) + f->sync_mem[i] = 0; + + for(c=0; c<Nc+1; c++) { + f->sig_est[c] = 0.0; + f->noise_est[c] = 0.0; + } + + for(i=0; i<2*FDMDV_NSPEC; i++) + f->fft_buf[i] = 0.0; + f->fft_cfg = kiss_fft_alloc (2*FDMDV_NSPEC, 0, NULL, NULL); + assert(f->fft_cfg != NULL); + + + return f; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_destroy + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Destroy an instance of the modem. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_destroy(struct FDMDV *fdmdv) +{ + assert(fdmdv != NULL); + KISS_FFT_FREE(fdmdv->fft_pilot_cfg); + KISS_FFT_FREE(fdmdv->fft_cfg); + free(fdmdv->rx_test_bits_mem); + free(fdmdv); +} + + +void CODEC2_WIN32SUPPORT fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) { + fdmdv->old_qpsk_mapping = 1; +} + + +int CODEC2_WIN32SUPPORT fdmdv_bits_per_frame(struct FDMDV *fdmdv) +{ + return (fdmdv->Nc * NB); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_get_test_bits() + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Generate a frame of bits from a repeating sequence of random data. OK so + it's not very random if it repeats but it makes syncing at the demod easier + for test purposes. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[]) +{ + int i; + int bits_per_frame = fdmdv_bits_per_frame(f); + + for(i=0; i<bits_per_frame; i++) { + tx_bits[i] = test_bits[f->current_test_bit]; + f->current_test_bit++; + if (f->current_test_bit > (f->ntest_bits-1)) + f->current_test_bit = 0; + } + } + +float CODEC2_WIN32SUPPORT fdmdv_get_fsep(struct FDMDV *f) +{ + return f->fsep; +} + +void CODEC2_WIN32SUPPORT fdmdv_set_fsep(struct FDMDV *f, float fsep) { + int c; + float carrier_freq; + + f->fsep = fsep; + /* Set up frequency of each carrier */ + + for(c=0; c<f->Nc/2; c++) { + carrier_freq = (-f->Nc/2 + c)*f->fsep + FDMDV_FCENTRE; + f->freq[c].real = cos(2.0*PI*carrier_freq/FS); + f->freq[c].imag = sin(2.0*PI*carrier_freq/FS); + } + + for(c=f->Nc/2; c<f->Nc; c++) { + carrier_freq = (-f->Nc/2 + c + 1)*f->fsep + FDMDV_FCENTRE; + f->freq[c].real = cos(2.0*PI*carrier_freq/FS); + f->freq[c].imag = sin(2.0*PI*carrier_freq/FS); + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: bits_to_dqpsk_symbols() + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from + vector of (1,Nc*Nb) input tx_bits. The Nc+1 symbol is the +1 -1 +1 + .... BPSK sync carrier. + +\*---------------------------------------------------------------------------*/ + +void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping) +{ + int c, msb, lsb; + COMP j = {0.0,1.0}; + + /* Map tx_bits to to Nc DQPSK symbols. Note legacy support for + old (suboptimal) V0.91 FreeDV mapping */ + + for(c=0; c<Nc; c++) { + msb = tx_bits[2*c]; + lsb = tx_bits[2*c+1]; + if ((msb == 0) && (lsb == 0)) + tx_symbols[c] = prev_tx_symbols[c]; + if ((msb == 0) && (lsb == 1)) + tx_symbols[c] = cmult(j, prev_tx_symbols[c]); + if ((msb == 1) && (lsb == 0)) { + if (old_qpsk_mapping) + tx_symbols[c] = cneg(prev_tx_symbols[c]); + else + tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]); + } + if ((msb == 1) && (lsb == 1)) { + if (old_qpsk_mapping) + tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]); + else + tx_symbols[c] = cneg(prev_tx_symbols[c]); + } + } + + /* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly) + two spectral lines at +/- Rs/2 */ + + if (*pilot_bit) + tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]); + else + tx_symbols[Nc] = prev_tx_symbols[Nc]; + + if (*pilot_bit) + *pilot_bit = 0; + else + *pilot_bit = 1; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: tx_filter() + AUTHOR......: David Rowe + DATE CREATED: 17/4/2012 + + Given Nc*NB bits construct M samples (1 symbol) of Nc+1 filtered + symbols streams. + +\*---------------------------------------------------------------------------*/ + +void tx_filter(COMP tx_baseband[NC+1][M], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM]) +{ + int c; + int i,j,k; + float acc; + COMP gain; + + gain.real = sqrt(2.0)/2.0; + gain.imag = 0.0; + + for(c=0; c<Nc+1; c++) + tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain); + + /* + tx filter each symbol, generate M filtered output samples for each symbol. + Efficient polyphase filter techniques used as tx_filter_memory is sparse + */ + + for(i=0; i<M; i++) { + for(c=0; c<Nc+1; c++) { + + /* filter real sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=M-i-1; j<NSYM; j++,k+=M) + acc += M * tx_filter_memory[c][j].real * gt_alpha5_root[k]; + tx_baseband[c][i].real = acc; + + /* filter imag sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=M-i-1; j<NSYM; j++,k+=M) + acc += M * tx_filter_memory[c][j].imag * gt_alpha5_root[k]; + tx_baseband[c][i].imag = acc; + + } + } + + /* shift memory, inserting zeros at end */ + + for(i=0; i<NSYM-1; i++) + for(c=0; c<Nc+1; c++) + tx_filter_memory[c][i] = tx_filter_memory[c][i+1]; + + for(c=0; c<Nc+1; c++) { + tx_filter_memory[c][NSYM-1].real = 0.0; + tx_filter_memory[c][NSYM-1].imag = 0.0; + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdm_upconvert() + AUTHOR......: David Rowe + DATE CREATED: 17/4/2012 + + Construct FDM signal by frequency shifting each filtered symbol + stream. Returns complex signal so we can apply frequency offsets + easily. + +\*---------------------------------------------------------------------------*/ + +void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M], COMP phase_tx[], COMP freq[]) +{ + int i,c; + COMP two = {2.0, 0.0}; + COMP pilot; + + for(i=0; i<M; i++) { + tx_fdm[i].real = 0.0; + tx_fdm[i].imag = 0.0; + } + + /* Nc/2 tones below centre freq */ + + for (c=0; c<Nc/2; c++) + for (i=0; i<M; i++) { + phase_tx[c] = cmult(phase_tx[c], freq[c]); + tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c])); + } + + /* Nc/2 tones above centre freq */ + + for (c=Nc/2; c<Nc; c++) + for (i=0; i<M; i++) { + phase_tx[c] = cmult(phase_tx[c], freq[c]); + tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c])); + } + + /* add centre pilot tone */ + + c = Nc; + for (i=0; i<M; i++) { + phase_tx[c] = cmult(phase_tx[c], freq[c]); + pilot = cmult(cmult(two, tx_baseband[c][i]), phase_tx[c]); + tx_fdm[i] = cadd(tx_fdm[i], pilot); + } + + /* + Scale such that total Carrier power C of real(tx_fdm) = Nc. This + excludes the power of the pilot tone. + We return the complex (single sided) signal to make frequency + shifting for the purpose of testing easier + */ + + for (i=0; i<M; i++) + tx_fdm[i] = cmult(two, tx_fdm[i]); + + /* normalise digital oscilators as the magnitude can drfift over time */ + + for (c=0; c<Nc+1; c++) { + phase_tx[c].real /= cabsolute(phase_tx[c]); + phase_tx[c].imag /= cabsolute(phase_tx[c]); + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_mod() + AUTHOR......: David Rowe + DATE CREATED: 26/4/2012 + + FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and + generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols. + Sync bit is returned to aid alignment of your next frame. + + The sync_bit value returned will be used for the _next_ frame. + + The output signal is complex to support single sided frequency + shifting, for example when testing frequency offsets in channel + simulation. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[], + int tx_bits[], int *sync_bit) +{ + COMP tx_symbols[NC+1]; + COMP tx_baseband[NC+1][M]; + + bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping); + memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1)); + tx_filter(tx_baseband, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory); + fdm_upconvert(tx_fdm, fdmdv->Nc, tx_baseband, fdmdv->phase_tx, fdmdv->freq); + + *sync_bit = fdmdv->tx_pilot_bit; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: generate_pilot_fdm() + AUTHOR......: David Rowe + DATE CREATED: 19/4/2012 + + Generate M samples of DBPSK pilot signal for Freq offset estimation. + +\*---------------------------------------------------------------------------*/ + +void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol, + float *filter_mem, COMP *phase, COMP *freq) +{ + int i,j,k; + float tx_baseband[M]; + + /* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly) + two spectral lines at +/- RS/2 */ + + if (*bit) + *symbol = -*symbol; + else + *symbol = *symbol; + if (*bit) + *bit = 0; + else + *bit = 1; + + /* filter DPSK symbol to create M baseband samples */ + + filter_mem[NFILTER-1] = (sqrt(2)/2) * *symbol; + for(i=0; i<M; i++) { + tx_baseband[i] = 0.0; + for(j=M-1,k=M-i-1; j<NFILTER; j+=M,k+=M) + tx_baseband[i] += M * filter_mem[j] * gt_alpha5_root[k]; + } + + /* shift memory, inserting zeros at end */ + + for(i=0; i<NFILTER-M; i++) + filter_mem[i] = filter_mem[i+M]; + + for(i=NFILTER-M; i<NFILTER; i++) + filter_mem[i] = 0.0; + + /* upconvert */ + + for(i=0; i<M; i++) { + *phase = cmult(*phase, *freq); + pilot_fdm[i].real = sqrt(2)*2*tx_baseband[i] * phase->real; + pilot_fdm[i].imag = sqrt(2)*2*tx_baseband[i] * phase->imag; + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: generate_pilot_lut() + AUTHOR......: David Rowe + DATE CREATED: 19/4/2012 + + Generate a 4M sample vector of DBPSK pilot signal. As the pilot signal + is periodic in 4M samples we can then use this vector as a look up table + for pilot signal generation in the demod. + +\*---------------------------------------------------------------------------*/ + +void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq) +{ + int pilot_rx_bit = 0; + float pilot_symbol = sqrt(2.0); + COMP pilot_phase = {1.0, 0.0}; + float pilot_filter_mem[NFILTER]; + COMP pilot[M]; + int i,f; + + for(i=0; i<NFILTER; i++) + pilot_filter_mem[i] = 0.0; + + /* discard first 4 symbols as filter memory is filling, just keep + last four symbols */ + + for(f=0; f<8; f++) { + generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq); + if (f >= 4) + memcpy(&pilot_lut[M*(f-4)], pilot, M*sizeof(COMP)); + } + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: lpf_peak_pick() + AUTHOR......: David Rowe + DATE CREATED: 20/4/2012 + + LPF and peak pick part of freq est, put in a function as we call it twice. + +\*---------------------------------------------------------------------------*/ + +void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[], + COMP pilot_lpf[], kiss_fft_cfg fft_pilot_cfg, COMP S[], int nin) +{ + int i,j,k; + int mpilot; + COMP s[MPILOTFFT]; + float mag, imax; + int ix; + float r; + + /* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */ + + for(i=0; i<NPILOTLPF-nin; i++) + pilot_lpf[i] = pilot_lpf[nin+i]; + for(i=NPILOTLPF-nin, j=0; i<NPILOTLPF; i++,j++) { + pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0; + for(k=0; k<NPILOTCOEFF; k++) + pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j+k])); + } + + /* decimate to improve DFT resolution, window and DFT */ + + mpilot = FS/(2*200); /* calc decimation rate given new sample rate is twice LPF freq */ + for(i=0; i<MPILOTFFT; i++) { + s[i].real = 0.0; s[i].imag = 0.0; + } + for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) { + s[j] = fcmult(hanning[i], pilot_lpf[i]); + } + + kiss_fft(fft_pilot_cfg, (kiss_fft_cpx *)s, (kiss_fft_cpx *)S); + + /* peak pick and convert to Hz */ + + imax = 0.0; + ix = 0; + for(i=0; i<MPILOTFFT; i++) { + mag = S[i].real*S[i].real + S[i].imag*S[i].imag; + if (mag > imax) { + imax = mag; + ix = i; + } + } + r = 2.0*200.0/MPILOTFFT; /* maps FFT bin to frequency in Hz */ + + if (ix >= MPILOTFFT/2) + *foff = (ix - MPILOTFFT)*r; + else + *foff = (ix)*r; + *max = imax; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_est_freq_offset() + AUTHOR......: David Rowe + DATE CREATED: 19/4/2012 + + Estimate frequency offset of FDM signal using BPSK pilot. Note that + this algorithm is quite sensitive to pilot tone level wrt other + carriers, so test variations to the pilot amplitude carefully. + +\*---------------------------------------------------------------------------*/ + +float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin) +{ + int i,j; + COMP pilot[M+M/P]; + COMP prev_pilot[M+M/P]; + float foff, foff1, foff2; + float max1, max2; + + assert(nin <= M+M/P); + + /* get pilot samples used for correlation/down conversion of rx signal */ + + for (i=0; i<nin; i++) { + pilot[i] = f->pilot_lut[f->pilot_lut_index]; + f->pilot_lut_index++; + if (f->pilot_lut_index >= 4*M) + f->pilot_lut_index = 0; + + prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index]; + f->prev_pilot_lut_index++; + if (f->prev_pilot_lut_index >= 4*M) + f->prev_pilot_lut_index = 0; + } + + /* + Down convert latest M samples of pilot by multiplying by ideal + BPSK pilot signal we have generated locally. The peak of the + resulting signal is sensitive to the time shift between the + received and local version of the pilot, so we do it twice at + different time shifts and choose the maximum. + */ + + for(i=0; i<NPILOTBASEBAND-nin; i++) { + f->pilot_baseband1[i] = f->pilot_baseband1[i+nin]; + f->pilot_baseband2[i] = f->pilot_baseband2[i+nin]; + } + + for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) { + f->pilot_baseband1[j] = cmult(rx_fdm[i], cconj(pilot[i])); + f->pilot_baseband2[j] = cmult(rx_fdm[i], cconj(prev_pilot[i])); + } + + lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin); + lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin); + + if (max1 > max2) + foff = foff1; + else + foff = foff2; + + return foff; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_freq_shift() + AUTHOR......: David Rowe + DATE CREATED: 26/4/2012 + + Frequency shift modem signal. The use of complex input and output allows + single sided frequency shifting (no images). + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, + COMP *foff_rect, COMP *foff_phase_rect, int nin) +{ + int i; + + foff_rect->real = cos(2.0*PI*foff/FS); + foff_rect->imag = sin(2.0*PI*foff/FS); + for(i=0; i<nin; i++) { + *foff_phase_rect = cmult(*foff_phase_rect, *foff_rect); + rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect); + } + + /* normalise digital oscilator as the magnitude can drfift over time */ + + foff_phase_rect->real /= cabsolute(*foff_phase_rect); + foff_phase_rect->imag /= cabsolute(*foff_phase_rect); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdm_downconvert() + AUTHOR......: David Rowe + DATE CREATED: 22/4/2012 + + Frequency shift each modem carrier down to Nc+1 baseband signals. + +\*---------------------------------------------------------------------------*/ + +void fdm_downconvert(COMP rx_baseband[NC+1][M+M/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin) +{ + int i,c; + + /* maximum number of input samples to demod */ + + assert(nin <= (M+M/P)); + + /* Nc/2 tones below centre freq */ + + for (c=0; c<Nc/2; c++) + for (i=0; i<nin; i++) { + phase_rx[c] = cmult(phase_rx[c], freq[c]); + rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c])); + } + + /* Nc/2 tones above centre freq */ + + for (c=Nc/2; c<Nc; c++) + for (i=0; i<nin; i++) { + phase_rx[c] = cmult(phase_rx[c], freq[c]); + rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c])); + } + + /* centre pilot tone */ + + c = Nc; + for (i=0; i<nin; i++) { + phase_rx[c] = cmult(phase_rx[c], freq[c]); + rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c])); + } + + /* normalise digital oscilators as the magnitude can drift over time */ + + for (c=0; c<Nc+1; c++) { + phase_rx[c].real /= cabsolute(phase_rx[c]); + phase_rx[c].imag /= cabsolute(phase_rx[c]); + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_filter() + AUTHOR......: David Rowe + DATE CREATED: 22/4/2012 + + Receive filter each baseband signal at oversample rate P. Filtering at + rate P lowers CPU compared to rate M. + + Depending on the number of input samples to the demod nin, we + produce P-1, P (usually), or P+1 filtered samples at rate P. nin is + occasionally adjusted to compensate for timing slips due to + different tx and rx sample clocks. + +\*---------------------------------------------------------------------------*/ + +void rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_baseband[NC+1][M+M/P], COMP rx_filter_memory[NC+1][NFILTER], int nin) +{ + int c, i,j,k,l; + int n=M/P; + + /* rx filter each symbol, generate P filtered output samples for + each symbol. Note we keep filter memory at rate M, it's just + the filter output at rate P */ + + for(i=0, j=0; i<nin; i+=n,j++) { + + /* latest input sample */ + + for(c=0; c<Nc+1; c++) + for(k=NFILTER-n,l=i; k<NFILTER; k++,l++) + rx_filter_memory[c][k] = rx_baseband[c][l]; + + /* convolution (filtering) */ + + for(c=0; c<Nc+1; c++) { + rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0; + for(k=0; k<NFILTER; k++) + rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k])); + } + + /* make room for next input sample */ + + for(c=0; c<Nc+1; c++) + for(k=0,l=n; k<NFILTER-n; k++,l++) + rx_filter_memory[c][k] = rx_filter_memory[c][l]; + } + + assert(j <= (P+1)); /* check for any over runs */ +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_est_timing() + AUTHOR......: David Rowe + DATE CREATED: 23/4/2012 + + Estimate optimum timing offset, re-filter receive symbols at optimum + timing estimate. + +\*---------------------------------------------------------------------------*/ + +float rx_est_timing(COMP rx_symbols[], + int Nc, + COMP rx_filt[NC+1][P+1], + COMP rx_baseband[NC+1][M+M/P], + COMP rx_filter_mem_timing[NC+1][NT*P], + float env[], + COMP rx_baseband_mem_timing[NC+1][NFILTERTIMING], + int nin) +{ + int c,i,j,k; + int adjust, s; + COMP x, phase, freq; + float rx_timing; + + /* + nin adjust + -------------------------------- + 120 -1 (one less rate P sample) + 160 0 (nominal) + 200 1 (one more rate P sample) + */ + + adjust = P - nin*P/M; + + /* update buffer of NT rate P filtered symbols */ + + for(c=0; c<Nc+1; c++) + for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++) + rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j]; + for(c=0; c<Nc+1; c++) + for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++) + rx_filter_mem_timing[c][i] = rx_filt[c][j]; + + /* sum envelopes of all carriers */ + + for(i=0; i<NT*P; i++) { + env[i] = 0.0; + for(c=0; c<Nc+1; c++) + env[i] += cabsolute(rx_filter_mem_timing[c][i]); + } + + /* The envelope has a frequency component at the symbol rate. The + phase of this frequency component indicates the timing. So work + out single DFT at frequency 2*pi/P */ + + x.real = 0.0; x.imag = 0.0; + freq.real = cos(2*PI/P); + freq.imag = sin(2*PI/P); + phase.real = 1.0; + phase.imag = 0.0; + + for(i=0; i<NT*P; i++) { + x = cadd(x, fcmult(env[i], phase)); + phase = cmult(phase, freq); + } + + /* Map phase to estimated optimum timing instant at rate M. The + M/4 part was adjusted by experiment, I know not why.... */ + + rx_timing = atan2(x.imag, x.real)*M/(2*PI) + M/4; + + if (rx_timing > M) + rx_timing -= M; + if (rx_timing < -M) + rx_timing += M; + + /* rx_filt_mem_timing contains M + Nfilter + M samples of the + baseband signal at rate M this enables us to resample the + filtered rx symbol with M sample precision once we have + rx_timing */ + + for(c=0; c<Nc+1; c++) + for(i=0,j=nin; i<NFILTERTIMING-nin; i++,j++) + rx_baseband_mem_timing[c][i] = rx_baseband_mem_timing[c][j]; + for(c=0; c<Nc+1; c++) + for(i=NFILTERTIMING-nin,j=0; i<NFILTERTIMING; i++,j++) + rx_baseband_mem_timing[c][i] = rx_baseband[c][j]; + + /* rx filter to get symbol for each carrier at estimated optimum + timing instant. We use rate M filter memory to get fine timing + resolution. */ + + s = round(rx_timing) + M; + for(c=0; c<Nc+1; c++) { + rx_symbols[c].real = 0.0; + rx_symbols[c].imag = 0.0; + for(k=s,j=0; k<s+NFILTER; k++,j++) + rx_symbols[c] = cadd(rx_symbols[c], fcmult(gt_alpha5_root[j], rx_baseband_mem_timing[c][k])); + } + + return rx_timing; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: qpsk_to_bits() + AUTHOR......: David Rowe + DATE CREATED: 24/4/2012 + + Convert DQPSK symbols back to an array of bits, extracts sync bit + from DBPSK pilot, and also uses pilot to estimate fine frequency + error. + +\*---------------------------------------------------------------------------*/ + +float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[], + COMP rx_symbols[], int old_qpsk_mapping) +{ + int c; + COMP pi_on_4; + COMP d; + int msb=0, lsb=0; + float ferr, norm; + + pi_on_4.real = cos(PI/4.0); + pi_on_4.imag = sin(PI/4.0); + + /* Extra 45 degree clockwise lets us use real and imag axis as + decision boundaries. "norm" makes sure the phase subtraction + from the previous symbol doesn't affect the amplitude, which + leads to sensible scatter plots */ + + for(c=0; c<Nc; c++) { + norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6); + phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4); + } + + /* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */ + + for (c=0; c<Nc; c++) { + d = phase_difference[c]; + if ((d.real >= 0) && (d.imag >= 0)) { + msb = 0; lsb = 0; + } + if ((d.real < 0) && (d.imag >= 0)) { + msb = 0; lsb = 1; + } + if ((d.real < 0) && (d.imag < 0)) { + if (old_qpsk_mapping) { + msb = 1; lsb = 0; + } else { + msb = 1; lsb = 1; + } + } + if ((d.real >= 0) && (d.imag < 0)) { + if (old_qpsk_mapping) { + msb = 1; lsb = 1; + } else { + msb = 1; lsb = 0; + } + } + rx_bits[2*c] = msb; + rx_bits[2*c+1] = lsb; + } + + /* Extract DBPSK encoded Sync bit and fine freq offset estimate */ + + norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6); + phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc]))); + if (phase_difference[Nc].real < 0) { + *sync_bit = 1; + ferr = phase_difference[Nc].imag; + } + else { + *sync_bit = 0; + ferr = -phase_difference[Nc].imag; + } + + /* pilot carrier gets an extra pi/4 rotation to make it consistent + with other carriers, as we need it for snr_update and scatter + diagram */ + + phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4); + + return ferr; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: snr_update() + AUTHOR......: David Rowe + DATE CREATED: 17 May 2012 + + Given phase differences update estimates of signal and noise levels. + +\*---------------------------------------------------------------------------*/ + +void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[]) +{ + float s[NC+1]; + COMP refl_symbols[NC+1]; + float n[NC+1]; + COMP pi_on_4; + int c; + + pi_on_4.real = cos(PI/4.0); + pi_on_4.imag = sin(PI/4.0); + + /* mag of each symbol is distance from origin, this gives us a + vector of mags, one for each carrier. */ + + for(c=0; c<Nc+1; c++) + s[c] = cabsolute(phase_difference[c]); + + /* signal mag estimate for each carrier is a smoothed version of + instantaneous magntitude, this gives us a vector of smoothed + mag estimates, one for each carrier. */ + + for(c=0; c<Nc+1; c++) + sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c]; + + /* noise mag estimate is distance of current symbol from average + location of that symbol. We reflect all symbols into the first + quadrant for convenience. */ + + for(c=0; c<Nc+1; c++) { + refl_symbols[c].real = fabs(phase_difference[c].real); + refl_symbols[c].imag = fabs(phase_difference[c].imag); + n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c]))); + } + + /* noise mag estimate for each carrier is a smoothed version of + instantaneous noise mag, this gives us a vector of smoothed + noise power estimates, one for each carrier. */ + + for(c=0; c<Nc+1; c++) + noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c]; +} + +// returns number of shorts in error_pattern[], one short per error + +int CODEC2_WIN32SUPPORT fdmdv_error_pattern_size(struct FDMDV *f) { + return f->ntest_bits; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_put_test_bits() + AUTHOR......: David Rowe + DATE CREATED: 24/4/2012 + + Accepts nbits from rx and attempts to sync with test_bits sequence. + If sync OK measures bit errors. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[], + int *bit_errors, int *ntest_bits, + int rx_bits[]) +{ + int i,j; + float ber; + int bits_per_frame = fdmdv_bits_per_frame(f); + + /* Append to our memory */ + + for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++) + f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j]; + for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++) + f->rx_test_bits_mem[i] = rx_bits[j]; + + /* see how many bit errors we get when checked against test sequence */ + + *bit_errors = 0; + for(i=0; i<f->ntest_bits; i++) { + error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i]; + *bit_errors += error_pattern[i]; + //printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]); + } + + /* if less than a thresh we are aligned and in sync with test sequence */ + + ber = (float)*bit_errors/f->ntest_bits; + + *sync = 0; + if (ber < 0.2) + *sync = 1; + + *ntest_bits = f->ntest_bits; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: freq_state(() + AUTHOR......: David Rowe + DATE CREATED: 24/4/2012 + + Freq offset state machine. Moves between coarse and fine states + based on BPSK pilot sequence. Freq offset estimator occasionally + makes mistakes when used continuously. So we use it until we have + acquired the BPSK pilot, then switch to a more robust "fine" + tracking algorithm. If we lose sync we switch back to coarse mode + for fast re-acquisition of large frequency offsets. + + The sync state is also useful for higher layers to determine when + there is valid FDMDV data for decoding. We want to reliably and + quickly get into sync, stay in sync even on fading channels, and + fall out of sync quickly if tx stops or it's a false sync. + + In multipath fading channels the BPSK sync carrier may be pushed + down in the noise, despite other carriers being at full strength. + We want to avoid loss of sync in these cases. + +\*---------------------------------------------------------------------------*/ + +int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem) +{ + int next_state, sync, unique_word, i, corr; + + /* look for 6 symbols (120ms) 101010 of sync sequence */ + + unique_word = 0; + for(i=0; i<NSYNC_MEM-1; i++) + sync_mem[i] = sync_mem[i+1]; + sync_mem[i] = 1 - 2*sync_bit; + corr = 0; + for(i=0; i<NSYNC_MEM; i++) + corr += sync_mem[i]*sync_uw[i]; + if (abs(corr) == NSYNC_MEM) + unique_word = 1; + *reliable_sync_bit = (corr == NSYNC_MEM); + + /* iterate state machine */ + + next_state = *state; + switch(*state) { + case 0: + if (unique_word) { + next_state = 1; + *timer = 0; + } + break; + case 1: /* tentative sync state */ + if (unique_word) { + (*timer)++; + if (*timer == 25) /* sync has been good for 500ms */ + next_state = 2; + } + else + next_state = 0; /* quickly fall out of sync */ + break; + case 2: /* good sync state */ + if (unique_word == 0) { + *timer = 0; + next_state = 3; + } + break; + case 3: /* tentative bad state, but could be a fade */ + if (unique_word) + next_state = 2; + else { + (*timer)++; + if (*timer == 50) /* wait for 1000ms in case sync comes back */ + next_state = 0; + } + break; + } + + //printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer); + *state = next_state; + if (*state) + sync = 1; + else + sync = 0; + + return sync; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_demod() + AUTHOR......: David Rowe + DATE CREATED: 26/4/2012 + + FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME + modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits, + plus the sync bit. + + The input signal is complex to support single sided frequency shifting + before the demod input (e.g. fdmdv2 click to tune feature). + + The number of input samples nin will normally be M == + FDMDV_SAMPLES_PER_FRAME. However to adjust for differences in + transmit and receive sample clocks nin will occasionally be M-M/P, + or M+M/P. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[], + int *reliable_sync_bit, COMP rx_fdm[], int *nin) +{ + float foff_coarse, foff_fine; + COMP rx_fdm_fcorr[M+M/P]; + COMP rx_baseband[NC+1][M+M/P]; + COMP rx_filt[NC+1][P+1]; + COMP rx_symbols[NC+1]; + float env[NT*P]; + int sync_bit; + + /* freq offset estimation and correction */ + + foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm, *nin); + + if (fdmdv->sync == 0) + fdmdv->foff = foff_coarse; + fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm, -fdmdv->foff, &fdmdv->foff_rect, &fdmdv->foff_phase_rect, *nin); + + /* baseband processing */ + + fdm_downconvert(rx_baseband, fdmdv->Nc, rx_fdm_fcorr, fdmdv->phase_rx, fdmdv->freq, *nin); + rx_filter(rx_filt, fdmdv->Nc, rx_baseband, fdmdv->rx_filter_memory, *nin); + fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, rx_baseband, fdmdv->rx_filter_mem_timing, env, fdmdv->rx_baseband_mem_timing, *nin); + + /* Adjust number of input samples to keep timing within bounds */ + + *nin = M; + + if (fdmdv->rx_timing > 2*M/P) + *nin += M/P; + + if (fdmdv->rx_timing < 0) + *nin -= M/P; + + foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols, + fdmdv->old_qpsk_mapping); + memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1)); + snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference); + + /* freq offset estimation state machine */ + + fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem); + fdmdv->foff -= TRACK_COEFF*foff_fine; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: calc_snr() + AUTHOR......: David Rowe + DATE CREATED: 17 May 2012 + + Calculate current SNR estimate (3000Hz noise BW) + +\*---------------------------------------------------------------------------*/ + +float calc_snr(int Nc, float sig_est[], float noise_est[]) +{ + float S, SdB; + float mean, N50, N50dB, N3000dB; + float snr_dB; + int c; + + S = 0.0; + for(c=0; c<Nc+1; c++) + S += pow(sig_est[c], 2.0); + SdB = 10.0*log10(S+1E-12); + + /* Average noise mag across all carriers and square to get an + average noise power. This is an estimate of the noise power in + Rs = 50Hz of BW (note for raised root cosine filters Rs is the + noise BW of the filter) */ + + mean = 0.0; + for(c=0; c<Nc+1; c++) + mean += noise_est[c]; + mean /= (Nc+1); + N50 = pow(mean, 2.0); + N50dB = 10.0*log10(N50+1E-12); + + /* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power + in 3000 Hz */ + + N3000dB = N50dB + 10.0*log10(3000.0/RS); + + snr_dB = SdB - N3000dB; + + return snr_dB; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_get_demod_stats() + AUTHOR......: David Rowe + DATE CREATED: 1 May 2012 + + Fills stats structure with a bunch of demod information. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_get_demod_stats(struct FDMDV *fdmdv, + struct FDMDV_STATS *fdmdv_stats) +{ + int c; + + fdmdv_stats->Nc = fdmdv->Nc; + fdmdv_stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est); + fdmdv_stats->sync = fdmdv->sync; + fdmdv_stats->foff = fdmdv->foff; + fdmdv_stats->rx_timing = fdmdv->rx_timing; + fdmdv_stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */ + + for(c=0; c<fdmdv->Nc+1; c++) { + fdmdv_stats->rx_symbols[c] = fdmdv->phase_difference[c]; + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_8_to_48() + AUTHOR......: David Rowe + DATE CREATED: 9 May 2012 + + Changes the sample rate of a signal from 8 to 48 kHz. Experience + with PC based modems has shown that PC sound cards have a more + accurate sample clock when set for 48 kHz than 8 kHz. + + n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n samples + at the 48 kHz rate. A memory of FDMDV_OS_TAPS/FDMDV_OS samples is reqd for + in8k[] (see t48_8.c unit test as example). + + This is a classic polyphase upsampler. We take the 8 kHz samples + and insert (FDMDV_OS-1) zeroes between each sample, then + FDMDV_OS_TAPS FIR low pass filter the signal at 4kHz. As most of + the input samples are zeroes, we only need to multiply non-zero + input samples by filter coefficients. The zero insertion and + filtering are combined in the code below and I'm too lazy to explain + it further right now.... + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_8_to_48(float out48k[], float in8k[], int n) +{ + int i,j,k,l; + + /* make sure n is an integer multiple of the oversampling rate, ow + this function breaks */ + + assert((n % FDMDV_OS) == 0); + + for(i=0; i<n; i++) { + for(j=0; j<FDMDV_OS; j++) { + out48k[i*FDMDV_OS+j] = 0.0; + for(k=0,l=0; k<FDMDV_OS_TAPS; k+=FDMDV_OS,l++) + out48k[i*FDMDV_OS+j] += fdmdv_os_filter[k+j]*in8k[i-l]; + out48k[i*FDMDV_OS+j] *= FDMDV_OS; + + } + } + + /* update filter memory */ + + for(i=-(FDMDV_OS_TAPS/FDMDV_OS); i<0; i++) + in8k[i] = in8k[i + n]; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_48_to_8() + AUTHOR......: David Rowe + DATE CREATED: 9 May 2012 + + Changes the sample rate of a signal from 48 to 8 kHz. + + n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n + samples at the 48 kHz rate. As above however a memory of + FDMDV_OS_TAPS samples is reqd for in48k[] (see t48_8.c unit test as example). + + Low pass filter the 48 kHz signal at 4 kHz using the same filter as + the upsampler, then just output every FDMDV_OS-th filtered sample. + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_48_to_8(float out8k[], float in48k[], int n) +{ + int i,j; + + for(i=0; i<n; i++) { + out8k[i] = 0.0; + for(j=0; j<FDMDV_OS_TAPS; j++) + out8k[i] += fdmdv_os_filter[j]*in48k[i*FDMDV_OS-j]; + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS; i<0; i++) + in48k[i] = in48k[i + n*FDMDV_OS]; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_get_rx_spectrum() + AUTHOR......: David Rowe + DATE CREATED: 9 June 2012 + + Returns the FDMDV_NSPEC point magnitude spectrum of the rx signal in + dB. The spectral samples are scaled so that 0dB is the peak, a good + range for plotting is 0 to -40dB. + + Note only the real part of the complex input signal is used at + present. A complex variable is used for input for compatability + with the other rx signal procesing. + + Successive calls can be used to build up a waterfall or spectrogram + plot, by mapping the received levels to colours. + + The time-frequency resolution of the spectrum can be adjusted by varying + FDMDV_NSPEC. Note that a 2*FDMDV_NSPEC size FFT is reqd to get + FDMDV_NSPEC output points. FDMDV_NSPEC must be a power of 2. + + See octave/tget_spec.m for a demo real time spectral display using + Octave. This demo averages the output over time to get a smoother + display: + + av = 0.9*av + 0.1*mag_dB + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_get_rx_spectrum(struct FDMDV *f, float mag_spec_dB[], + COMP rx_fdm[], int nin) +{ + int i,j; + COMP fft_in[2*FDMDV_NSPEC]; + COMP fft_out[2*FDMDV_NSPEC]; + float full_scale_dB; + + /* update buffer of input samples */ + + for(i=0; i<2*FDMDV_NSPEC-nin; i++) + f->fft_buf[i] = f->fft_buf[i+nin]; + for(j=0; j<nin; j++,i++) + f->fft_buf[i] = rx_fdm[j].real; + assert(i == 2*FDMDV_NSPEC); + + /* window and FFT */ + + for(i=0; i<2*FDMDV_NSPEC; i++) { + fft_in[i].real = f->fft_buf[i] * (0.5 - 0.5*cos((float)i*2.0*PI/(2*FDMDV_NSPEC))); + fft_in[i].imag = 0.0; + } + + kiss_fft(f->fft_cfg, (kiss_fft_cpx *)fft_in, (kiss_fft_cpx *)fft_out); + + /* FFT scales up a signal of level 1 FDMDV_NSPEC */ + + full_scale_dB = 20*log10(FDMDV_NSPEC); + + /* scale and convert to dB */ + + for(i=0; i<FDMDV_NSPEC; i++) { + mag_spec_dB[i] = 10.0*log10(fft_out[i].real*fft_out[i].real + fft_out[i].imag*fft_out[i].imag + 1E-12); + mag_spec_dB[i] -= full_scale_dB; + } +} + +/*---------------------------------------------------------------------------*\ + + Function used during development to test if magnitude of digital + oscillators was drifting. It was! + +\*---------------------------------------------------------------------------*/ + +void CODEC2_WIN32SUPPORT fdmdv_dump_osc_mags(struct FDMDV *f) +{ + int i; + + fprintf(stderr, "phase_tx[]:\n"); + for(i=0; i<=f->Nc; i++) + fprintf(stderr," %1.3f", cabsolute(f->phase_tx[i])); + fprintf(stderr,"\nfreq[]:\n"); + for(i=0; i<=f->Nc; i++) + fprintf(stderr," %1.3f", cabsolute(f->freq[i])); + fprintf(stderr,"\nfoff_rect %1.3f foff_phase_rect: %1.3f", cabsolute(f->foff_rect), cabsolute(f->foff_phase_rect)); + fprintf(stderr,"\nphase_rx[]:\n"); + for(i=0; i<=f->Nc; i++) + fprintf(stderr," %1.3f", cabsolute(f->phase_rx[i])); + fprintf(stderr, "\n\n"); +} diff --git a/gr-vocoder/lib/codec2/fdmdv_internal.h b/gr-vocoder/lib/codec2/fdmdv_internal.h new file mode 100644 index 0000000000..24080e63c8 --- /dev/null +++ b/gr-vocoder/lib/codec2/fdmdv_internal.h @@ -0,0 +1,176 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: fdmdv_internal.h + AUTHOR......: David Rowe + DATE CREATED: April 16 2012 + + Header file for FDMDV internal functions, exposed via this header + file for testing. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#ifndef __FDMDV_INTERNAL__ +#define __FDMDV_INTERNAL__ + +#include "comp.h" +#include "codec2_fdmdv.h" +#include "kiss_fft.h" + +/*---------------------------------------------------------------------------*\ + + DEFINES + +\*---------------------------------------------------------------------------*/ + +#define PI 3.141592654 +#define FS 8000 /* sample rate in Hz */ +#define T (1.0/FS) /* sample period in seconds */ +#define RS 50 /* symbol rate in Hz */ +#define NC 20 /* max number of data carriers (plus one pilot in the centre) */ +#define NB 2 /* Bits/symbol for QPSK modulation */ +#define RB (NC*RS*NB) /* bit rate */ +#define M (FS/RS) /* oversampling factor */ +#define NSYM 6 /* number of symbols to filter over */ +#define NFILTER (NSYM*M) /* size of tx/rx filters at sample rate M */ + +#define FSEP 75 /* Default separation between carriers (Hz) */ + +#define NT 5 /* number of symbols we estimate timing over */ +#define P 4 /* oversample factor used for initial rx symbol filtering */ +#define NFILTERTIMING (M+NFILTER+M) /* filter memory used for resampling after timing estimation */ + +#define NPILOT_LUT (4*M) /* number of pilot look up table samples */ +#define NPILOTCOEFF 30 /* number of FIR filter coeffs in LP filter */ +#define NPILOTBASEBAND (NPILOTCOEFF+M+M/P) /* number of pilot baseband samples reqd for pilot LPF */ +#define NPILOTLPF (4*M) /* number of samples we DFT pilot over, pilot est window */ +#define MPILOTFFT 256 + +#define NSYNC_MEM 6 + +/* averaging filter coeffs */ + +#define TRACK_COEFF 0.5 +#define SNR_COEFF 0.9 /* SNR est averaging filter coeff */ + +/*---------------------------------------------------------------------------*\ + + STRUCT for States + +\*---------------------------------------------------------------------------*/ + +struct FDMDV { + + int Nc; + float fsep; + + /* test data (test frame) states */ + + int ntest_bits; + int current_test_bit; + int *rx_test_bits_mem; + + /* Modulator */ + + int old_qpsk_mapping; + int tx_pilot_bit; + COMP prev_tx_symbols[NC+1]; + COMP tx_filter_memory[NC+1][NSYM]; + COMP phase_tx[NC+1]; + COMP freq[NC+1]; + + /* Pilot generation at demodulator */ + + COMP pilot_lut[NPILOT_LUT]; + int pilot_lut_index; + int prev_pilot_lut_index; + + /* freq offset estimation states */ + + kiss_fft_cfg fft_pilot_cfg; + COMP pilot_baseband1[NPILOTBASEBAND]; + COMP pilot_baseband2[NPILOTBASEBAND]; + COMP pilot_lpf1[NPILOTLPF]; + COMP pilot_lpf2[NPILOTLPF]; + COMP S1[MPILOTFFT]; + COMP S2[MPILOTFFT]; + + /* freq offset correction states */ + + float foff; + COMP foff_rect; + COMP foff_phase_rect; + + /* Demodulator */ + + COMP phase_rx[NC+1]; + COMP rx_filter_memory[NC+1][NFILTER]; + COMP rx_filter_mem_timing[NC+1][NT*P]; + COMP rx_baseband_mem_timing[NC+1][NFILTERTIMING]; + float rx_timing; + COMP phase_difference[NC+1]; + COMP prev_rx_symbols[NC+1]; + + /* sync state machine */ + + int sync_mem[NSYNC_MEM]; + int fest_state; + int sync; + int timer; + + /* SNR estimation states */ + + float sig_est[NC+1]; + float noise_est[NC+1]; + + /* Buf for FFT/waterfall */ + + float fft_buf[2*FDMDV_NSPEC]; + kiss_fft_cfg fft_cfg; + }; + +/*---------------------------------------------------------------------------*\ + + FUNCTION PROTOTYPES + +\*---------------------------------------------------------------------------*/ + +void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping); +void tx_filter(COMP tx_baseband[NC+1][M], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM]); +void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M], COMP phase_tx[], COMP freq_tx[]); +void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol, float *filter_mem, COMP *phase, COMP *freq); +void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq); +float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin); +void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[], COMP pilot_lpf[], kiss_fft_cfg fft_pilot_cfg, COMP S[], int nin); +void freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, COMP *foff_rect, COMP *foff_phase_rect, int nin); +void fdm_downconvert(COMP rx_baseband[NC+1][M+M/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin); +void rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_baseband[NC+1][M+M/P], COMP rx_filter_memory[NC+1][NFILTER], int nin); +float rx_est_timing(COMP rx_symbols[], int Nc, + COMP rx_filt[NC+1][P+1], + COMP rx_baseband[NC+1][M+M/P], + COMP rx_filter_mem_timing[NC+1][NT*P], + float env[], + COMP rx_baseband_mem_timing[NC+1][NFILTERTIMING], + int nin); +float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[], COMP rx_symbols[], int old_qpsk_mapping); +void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[]); +int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem); +float calc_snr(int Nc, float sig_est[], float noise_est[]); + +#endif diff --git a/gr-vocoder/lib/codec2/fft.c b/gr-vocoder/lib/codec2/fft.c deleted file mode 100644 index 19f3141a80..0000000000 --- a/gr-vocoder/lib/codec2/fft.c +++ /dev/null @@ -1,101 +0,0 @@ -/*---------------------------------------------------------------------------*\ - - FILE........: fft.c - AUTHOR......: Bruce Robertson - DATE CREATED: 20/11/2010 - - Bridging function to the kiss_fft package. - -\*---------------------------------------------------------------------------*/ - -/* - Copyright (C) 2010 Bruce Robertson - - All rights reserved. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU Lesser General Public License version 2.1, as - published by the Free Software Foundation. This program is - distributed in the hope that it will be useful, but WITHOUT ANY - WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public - License for more details. - - You should have received a copy of the GNU Lesser General Public License - along with this program; if not, see <http://www.gnu.org/licenses/>. -*/ - -#include <assert.h> -#include "kiss_fft.h" - -/*---------------------------------------------------------------------------*\ - - GLOBALS - -\*---------------------------------------------------------------------------*/ - -kiss_fft_cpx *fin; -kiss_fft_cpx *fout; -kiss_fft_cfg cfg_forward; -kiss_fft_cfg cfg_reverse; - -/*---------------------------------------------------------------------------*\ - - initialize_fft(int n) - - Initialisation function for kiss_fft. This assumes that all calls to fft() - use the same datatypes and are one arrays of the same size. - -\*---------------------------------------------------------------------------*/ - -void -initialize_fft (int n) -{ - fin = KISS_FFT_MALLOC (n * sizeof (kiss_fft_cpx)); - assert(fin != NULL); - fout = KISS_FFT_MALLOC (n * sizeof (kiss_fft_cpx)); - assert(fout != NULL); - cfg_forward = kiss_fft_alloc (n, 0, NULL, NULL); - assert(cfg_forward != NULL); - cfg_reverse = kiss_fft_alloc (n, 1, NULL, NULL); - assert(cfg_reverse != NULL); -} - -/*---------------------------------------------------------------------------*\ - - fft(float x[], int n, int isign) - Function that calls kiss_fft with the signature of four1 from NRC. - -\*---------------------------------------------------------------------------*/ - - -void -fft (float x[], int n, int isign) -{ - //int isReverse = 0; // never used - int c; - kiss_fft_cfg cfg; - if (cfg_forward == NULL) - { - initialize_fft (n); - } - for (c = 0; c < n * 2; c += 2) - { - fin[c / 2].r = x[c]; - fin[c / 2].i = -x[c + 1]; - } - if (isign == -1) - { - cfg = cfg_reverse; - } - else - { - cfg = cfg_forward; - } - kiss_fft (cfg, fin, fout); - for (c = 0; c < n * 2; c += 2) - { - x[c] = fout[(c) / 2].r; - x[c + 1] = -fout[(c) / 2].i; - } -} diff --git a/gr-vocoder/lib/codec2/fft.h b/gr-vocoder/lib/codec2/fft.h deleted file mode 100644 index d5f83045e1..0000000000 --- a/gr-vocoder/lib/codec2/fft.h +++ /dev/null @@ -1,16 +0,0 @@ -/*---------------------------------------------------------------------------*\ - - FILE........: fft.h - AUTHOR......: Bruce Robertson - DATE CREATED: 29/11/2010 - - Bridge between existing code and kiss_fft. - -\*---------------------------------------------------------------------------*/ - -#ifndef __FFT__ -#define __FFT__ -void fft(float x[], int n, int isign); - -#endif /* __FFT__ */ - diff --git a/gr-vocoder/lib/codec2/fifo.c b/gr-vocoder/lib/codec2/fifo.c new file mode 100644 index 0000000000..acac2614f7 --- /dev/null +++ b/gr-vocoder/lib/codec2/fifo.c @@ -0,0 +1,142 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: fifo.c + AUTHOR......: David Rowe + DATE CREATED: Oct 15 2012 + + A FIFO design useful in gluing the FDMDV modem and codec together in + integrated applications. The unittest/tfifo indicates these + routines are thread safe without the need for syncronisation + object, e.g. a different thread can read and write to a fifo at the + same time. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#include <assert.h> +#include <stdlib.h> +#include <stdio.h> +#include "codec2_fifo.h" + +struct FIFO { + short *buf; + short *pin; + short *pout; + int nshort; +}; + +struct FIFO *fifo_create(int nshort) { + struct FIFO *fifo; + + fifo = (struct FIFO *)malloc(sizeof(struct FIFO)); + assert(fifo != NULL); + + fifo->buf = (short*)malloc(sizeof(short)*nshort); + assert(fifo->buf != NULL); + fifo->pin = fifo->buf; + fifo->pout = fifo->buf; + fifo->nshort = nshort; + + return fifo; +} + +void fifo_destroy(struct FIFO *fifo) { + assert(fifo != NULL); + free(fifo->buf); + free(fifo); +} + +int fifo_write(struct FIFO *fifo, short data[], int n) { + int i; + int fifo_free; + short *pdata; + short *pin = fifo->pin; + + assert(fifo != NULL); + assert(data != NULL); + + // available storage is one less than nshort as prd == pwr + // is reserved for empty rather than full + + fifo_free = fifo->nshort - fifo_used(fifo) - 1; + + if (n > fifo_free) { + return -1; + } + else { + + /* This could be made more efficient with block copies + using memcpy */ + + pdata = data; + for(i=0; i<n; i++) { + *pin++ = *pdata++; + if (pin == (fifo->buf + fifo->nshort)) + pin = fifo->buf; + } + fifo->pin = pin; + } + + return 0; +} + +int fifo_read(struct FIFO *fifo, short data[], int n) +{ + int i; + short *pdata; + short *pout = fifo->pout; + + assert(fifo != NULL); + assert(data != NULL); + + if (n > fifo_used(fifo)) { + return -1; + } + else { + + /* This could be made more efficient with block copies + using memcpy */ + + pdata = data; + for(i=0; i<n; i++) { + *pdata++ = *pout++; + if (pout == (fifo->buf + fifo->nshort)) + pout = fifo->buf; + } + fifo->pout = pout; + } + + return 0; +} + +int fifo_used(struct FIFO *fifo) +{ + short *pin = fifo->pin; + short *pout = fifo->pout; + unsigned int used; + + assert(fifo != NULL); + if (pin >= pout) + used = pin - pout; + else + used = fifo->nshort + (unsigned int)(pin - pout); + + return used; +} + diff --git a/gr-vocoder/lib/codec2/fq20.sh b/gr-vocoder/lib/codec2/fq20.sh deleted file mode 100755 index 9ccf739dc2..0000000000 --- a/gr-vocoder/lib/codec2/fq20.sh +++ /dev/null @@ -1,8 +0,0 @@ -#!/bin/sh -# fq20.shsh -# David Rowe 27 July 2010 -# -# Decode a file with fully quantised codec at 20ms frame rate - -../src/sinedec ../raw/$1.raw $1.mdl -o $1_phase0_lsp_20_EWo2.raw --phase 0 --lpc 10 --lsp --postfilter --dec - diff --git a/gr-vocoder/lib/codec2/hanning.h b/gr-vocoder/lib/codec2/hanning.h new file mode 100644 index 0000000000..81d88dcb35 --- /dev/null +++ b/gr-vocoder/lib/codec2/hanning.h @@ -0,0 +1,644 @@ +/* Generated by hanning_file() Octave function */ + +const float hanning[]={ + 0, + 2.4171e-05, + 9.66816e-05, + 0.000217525, + 0.000386689, + 0.000604158, + 0.00086991, + 0.00118392, + 0.00154616, + 0.00195659, + 0.00241517, + 0.00292186, + 0.00347661, + 0.00407937, + 0.00473008, + 0.00542867, + 0.00617507, + 0.00696922, + 0.00781104, + 0.00870045, + 0.00963736, + 0.0106217, + 0.0116533, + 0.0127322, + 0.0138581, + 0.0150311, + 0.0162509, + 0.0175175, + 0.0188308, + 0.0201906, + 0.0215968, + 0.0230492, + 0.0245478, + 0.0260923, + 0.0276826, + 0.0293186, + 0.0310001, + 0.032727, + 0.034499, + 0.036316, + 0.0381779, + 0.0400844, + 0.0420354, + 0.0440307, + 0.04607, + 0.0481533, + 0.0502802, + 0.0524506, + 0.0546643, + 0.056921, + 0.0592206, + 0.0615627, + 0.0639473, + 0.0663741, + 0.0688427, + 0.0713531, + 0.0739048, + 0.0764978, + 0.0791318, + 0.0818064, + 0.0845214, + 0.0872767, + 0.0900718, + 0.0929066, + 0.0957807, + 0.0986939, + 0.101646, + 0.104636, + 0.107665, + 0.110732, + 0.113836, + 0.116978, + 0.120156, + 0.123372, + 0.126624, + 0.129912, + 0.133235, + 0.136594, + 0.139989, + 0.143418, + 0.146881, + 0.150379, + 0.153911, + 0.157476, + 0.161074, + 0.164705, + 0.168368, + 0.172063, + 0.17579, + 0.179549, + 0.183338, + 0.187158, + 0.191008, + 0.194888, + 0.198798, + 0.202737, + 0.206704, + 0.2107, + 0.214724, + 0.218775, + 0.222854, + 0.226959, + 0.231091, + 0.235249, + 0.239432, + 0.243641, + 0.247874, + 0.252132, + 0.256414, + 0.260719, + 0.265047, + 0.269398, + 0.273772, + 0.278167, + 0.282584, + 0.287021, + 0.29148, + 0.295958, + 0.300456, + 0.304974, + 0.30951, + 0.314065, + 0.318638, + 0.323228, + 0.327835, + 0.332459, + 0.3371, + 0.341756, + 0.346427, + 0.351113, + 0.355814, + 0.360528, + 0.365256, + 0.369997, + 0.374751, + 0.379516, + 0.384293, + 0.389082, + 0.393881, + 0.398691, + 0.40351, + 0.408338, + 0.413176, + 0.418022, + 0.422876, + 0.427737, + 0.432605, + 0.43748, + 0.44236, + 0.447247, + 0.452138, + 0.457034, + 0.461935, + 0.466839, + 0.471746, + 0.476655, + 0.481568, + 0.486481, + 0.491397, + 0.496313, + 0.501229, + 0.506145, + 0.511061, + 0.515976, + 0.520889, + 0.5258, + 0.530708, + 0.535614, + 0.540516, + 0.545414, + 0.550308, + 0.555197, + 0.560081, + 0.564958, + 0.56983, + 0.574695, + 0.579552, + 0.584402, + 0.589244, + 0.594077, + 0.598901, + 0.603715, + 0.60852, + 0.613314, + 0.618097, + 0.622868, + 0.627628, + 0.632375, + 0.63711, + 0.641831, + 0.646538, + 0.651232, + 0.655911, + 0.660574, + 0.665222, + 0.669855, + 0.67447, + 0.679069, + 0.683651, + 0.688215, + 0.69276, + 0.697287, + 0.701795, + 0.706284, + 0.710752, + 0.7152, + 0.719627, + 0.724033, + 0.728418, + 0.73278, + 0.73712, + 0.741437, + 0.74573, + 0.75, + 0.754246, + 0.758467, + 0.762663, + 0.766833, + 0.770978, + 0.775097, + 0.779189, + 0.783254, + 0.787291, + 0.791301, + 0.795283, + 0.799236, + 0.80316, + 0.807055, + 0.810921, + 0.814756, + 0.81856, + 0.822334, + 0.826077, + 0.829788, + 0.833468, + 0.837115, + 0.840729, + 0.844311, + 0.847859, + 0.851374, + 0.854855, + 0.858301, + 0.861713, + 0.86509, + 0.868431, + 0.871737, + 0.875007, + 0.87824, + 0.881437, + 0.884598, + 0.887721, + 0.890806, + 0.893854, + 0.896864, + 0.899835, + 0.902768, + 0.905661, + 0.908516, + 0.911331, + 0.914106, + 0.916841, + 0.919536, + 0.92219, + 0.924804, + 0.927376, + 0.929907, + 0.932397, + 0.934845, + 0.93725, + 0.939614, + 0.941935, + 0.944213, + 0.946448, + 0.94864, + 0.950789, + 0.952894, + 0.954955, + 0.956972, + 0.958946, + 0.960874, + 0.962759, + 0.964598, + 0.966393, + 0.968142, + 0.969846, + 0.971505, + 0.973118, + 0.974686, + 0.976207, + 0.977683, + 0.979112, + 0.980495, + 0.981832, + 0.983122, + 0.984365, + 0.985561, + 0.986711, + 0.987813, + 0.988868, + 0.989876, + 0.990837, + 0.99175, + 0.992616, + 0.993434, + 0.994204, + 0.994927, + 0.995601, + 0.996228, + 0.996807, + 0.997337, + 0.99782, + 0.998255, + 0.998641, + 0.998979, + 0.999269, + 0.999511, + 0.999704, + 0.999849, + 0.999946, + 0.999994, + 0.999994, + 0.999946, + 0.999849, + 0.999704, + 0.999511, + 0.999269, + 0.998979, + 0.998641, + 0.998255, + 0.99782, + 0.997337, + 0.996807, + 0.996228, + 0.995601, + 0.994927, + 0.994204, + 0.993434, + 0.992616, + 0.99175, + 0.990837, + 0.989876, + 0.988868, + 0.987813, + 0.986711, + 0.985561, + 0.984365, + 0.983122, + 0.981832, + 0.980495, + 0.979112, + 0.977683, + 0.976207, + 0.974686, + 0.973118, + 0.971505, + 0.969846, + 0.968142, + 0.966393, + 0.964598, + 0.962759, + 0.960874, + 0.958946, + 0.956972, + 0.954955, + 0.952894, + 0.950789, + 0.94864, + 0.946448, + 0.944213, + 0.941935, + 0.939614, + 0.93725, + 0.934845, + 0.932397, + 0.929907, + 0.927376, + 0.924804, + 0.92219, + 0.919536, + 0.916841, + 0.914106, + 0.911331, + 0.908516, + 0.905661, + 0.902768, + 0.899835, + 0.896864, + 0.893854, + 0.890806, + 0.887721, + 0.884598, + 0.881437, + 0.87824, + 0.875007, + 0.871737, + 0.868431, + 0.86509, + 0.861713, + 0.858301, + 0.854855, + 0.851374, + 0.847859, + 0.844311, + 0.840729, + 0.837115, + 0.833468, + 0.829788, + 0.826077, + 0.822334, + 0.81856, + 0.814756, + 0.810921, + 0.807055, + 0.80316, + 0.799236, + 0.795283, + 0.791301, + 0.787291, + 0.783254, + 0.779189, + 0.775097, + 0.770978, + 0.766833, + 0.762663, + 0.758467, + 0.754246, + 0.75, + 0.74573, + 0.741437, + 0.73712, + 0.73278, + 0.728418, + 0.724033, + 0.719627, + 0.7152, + 0.710752, + 0.706284, + 0.701795, + 0.697287, + 0.69276, + 0.688215, + 0.683651, + 0.679069, + 0.67447, + 0.669855, + 0.665222, + 0.660574, + 0.655911, + 0.651232, + 0.646538, + 0.641831, + 0.63711, + 0.632375, + 0.627628, + 0.622868, + 0.618097, + 0.613314, + 0.60852, + 0.603715, + 0.598901, + 0.594077, + 0.589244, + 0.584402, + 0.579552, + 0.574695, + 0.56983, + 0.564958, + 0.560081, + 0.555197, + 0.550308, + 0.545414, + 0.540516, + 0.535614, + 0.530708, + 0.5258, + 0.520889, + 0.515976, + 0.511061, + 0.506145, + 0.501229, + 0.496313, + 0.491397, + 0.486481, + 0.481568, + 0.476655, + 0.471746, + 0.466839, + 0.461935, + 0.457034, + 0.452138, + 0.447247, + 0.44236, + 0.43748, + 0.432605, + 0.427737, + 0.422876, + 0.418022, + 0.413176, + 0.408338, + 0.40351, + 0.398691, + 0.393881, + 0.389082, + 0.384293, + 0.379516, + 0.374751, + 0.369997, + 0.365256, + 0.360528, + 0.355814, + 0.351113, + 0.346427, + 0.341756, + 0.3371, + 0.332459, + 0.327835, + 0.323228, + 0.318638, + 0.314065, + 0.30951, + 0.304974, + 0.300456, + 0.295958, + 0.29148, + 0.287021, + 0.282584, + 0.278167, + 0.273772, + 0.269398, + 0.265047, + 0.260719, + 0.256414, + 0.252132, + 0.247874, + 0.243641, + 0.239432, + 0.235249, + 0.231091, + 0.226959, + 0.222854, + 0.218775, + 0.214724, + 0.2107, + 0.206704, + 0.202737, + 0.198798, + 0.194888, + 0.191008, + 0.187158, + 0.183338, + 0.179549, + 0.17579, + 0.172063, + 0.168368, + 0.164705, + 0.161074, + 0.157476, + 0.153911, + 0.150379, + 0.146881, + 0.143418, + 0.139989, + 0.136594, + 0.133235, + 0.129912, + 0.126624, + 0.123372, + 0.120156, + 0.116978, + 0.113836, + 0.110732, + 0.107665, + 0.104636, + 0.101646, + 0.0986939, + 0.0957807, + 0.0929066, + 0.0900718, + 0.0872767, + 0.0845214, + 0.0818064, + 0.0791318, + 0.0764978, + 0.0739048, + 0.0713531, + 0.0688427, + 0.0663741, + 0.0639473, + 0.0615627, + 0.0592206, + 0.056921, + 0.0546643, + 0.0524506, + 0.0502802, + 0.0481533, + 0.04607, + 0.0440307, + 0.0420354, + 0.0400844, + 0.0381779, + 0.036316, + 0.034499, + 0.032727, + 0.0310001, + 0.0293186, + 0.0276826, + 0.0260923, + 0.0245478, + 0.0230492, + 0.0215968, + 0.0201906, + 0.0188308, + 0.0175175, + 0.0162509, + 0.0150311, + 0.0138581, + 0.0127322, + 0.0116533, + 0.0106217, + 0.00963736, + 0.00870045, + 0.00781104, + 0.00696922, + 0.00617507, + 0.00542867, + 0.00473008, + 0.00407937, + 0.00347661, + 0.00292186, + 0.00241517, + 0.00195659, + 0.00154616, + 0.00118392, + 0.00086991, + 0.000604158, + 0.000386689, + 0.000217525, + 9.66816e-05, + 2.4171e-05, + 0 +}; diff --git a/gr-vocoder/lib/codec2/interp.c b/gr-vocoder/lib/codec2/interp.c index fad4554f43..be89fc3154 100644 --- a/gr-vocoder/lib/codec2/interp.c +++ b/gr-vocoder/lib/codec2/interp.c @@ -29,13 +29,11 @@ #include <math.h> #include <string.h> #include <stdio.h> -#include <stdlib.h> #include "defines.h" #include "interp.h" #include "lsp.h" #include "quantise.h" -#include "dump.h" float sample_log_amp(MODEL *model, float w); @@ -113,23 +111,19 @@ float sample_log_amp(MODEL *model, float w) assert(w > 0.0); assert (w <= PI); - m = 0; - while ((m+1)*model->Wo < w) m++; - f = (w - m*model->Wo)/model->Wo; + m = floorf(w/model->Wo + 0.5); + f = (w - m*model->Wo)/w; assert(f <= 1.0); if (m < 1) { - log_amp = f*log10(model->A[1] + 1E-6); + log_amp = f*log10f(model->A[1] + 1E-6); } else if ((m+1) > model->L) { - log_amp = (1.0-f)*log10(model->A[model->L] + 1E-6); + log_amp = (1.0-f)*log10f(model->A[model->L] + 1E-6); } else { - log_amp = (1.0-f)*log10(model->A[m] + 1E-6) + - f*log10(model->A[m+1] + 1E-6); - //printf("m=%d A[m] %f A[m+1] %f x %f %f %f\n", m, model->A[m], - // model->A[m+1], pow(10.0, log_amp), - // (1-f), f); + log_amp = (1.0-f)*log10f(model->A[m] + 1E-6) + + f*log10f(model->A[m+1] + 1E-6); } return log_amp; @@ -137,338 +131,193 @@ float sample_log_amp(MODEL *model, float w) /*---------------------------------------------------------------------------*\ - FUNCTION....: sample_log_amp_quad() + FUNCTION....: interp_lsp() AUTHOR......: David Rowe - DATE CREATED: 9 March 2011 - - Samples the amplitude envelope at an arbitrary frequency w. Uses - quadratic interpolation in the log domain to sample between harmonic - amplitudes. - - y(x) = ax*x + bx + c + DATE CREATED: 10 Nov 2010 - We assume three points are x=-1, x=0, x=1, which we map to m-1,m,m+1 + Given two frames decribed by model parameters 20ms apart, determines + the model parameters of the 10ms frame between them. Assumes + voicing is available for middle (interpolated) frame. Outputs are + amplitudes and Wo for the interpolated frame. - c = y(0) - b = (y(1) - y(-1))/2 - a = y(-1) + b - y(0) + This version uses interpolation of LSPs, seems to do a better job + with bg noise. \*---------------------------------------------------------------------------*/ -float sample_log_amp_quad(MODEL *model, float w) +void interpolate_lsp( + kiss_fft_cfg fft_fwd_cfg, + MODEL *interp, /* interpolated model params */ + MODEL *prev, /* previous frames model params */ + MODEL *next, /* next frames model params */ + float *prev_lsps, /* previous frames LSPs */ + float prev_e, /* previous frames LPC energy */ + float *next_lsps, /* next frames LSPs */ + float next_e, /* next frames LPC energy */ + float *ak_interp, /* interpolated aks for this frame */ + float *lsps_interp/* interpolated lsps for this frame */ +) { - int m; - float a,b,c,x, log_amp; + int i; + float e; + float snr; - assert(w > 0.0); assert (w <= PI); + /* trap corner case where V est is probably wrong */ - m = floor(w/model->Wo + 0.5); - if (m < 2) m = 2; - if (m > (model->L-1)) m = model->L-1; - c = log10(model->A[m]+1E-6); - b = (log10(model->A[m+1]+1E-6) - log10(model->A[m-1]+1E-6))/2.0; - a = log10(model->A[m-1]+1E-6) + b - c; - x = (w - m*model->Wo)/model->Wo; - - log_amp = a*x*x + b*x + c; - //printf("m=%d A[m-1] %f A[m] %f A[m+1] %f w %f x %f log_amp %f\n", m, - // model->A[m-1], - // model->A[m], model->A[m+1], w, x, pow(10.0, log_amp)); - return log_amp; -} + if (interp->voiced && !prev->voiced && !next->voiced) { + interp->voiced = 0; + } -/*---------------------------------------------------------------------------*\ + /* Wo depends on voicing of this and adjacent frames */ - FUNCTION....: sample_log_amp_quad_nl() - AUTHOR......: David Rowe - DATE CREATED: 10 March 2011 + if (interp->voiced) { + if (prev->voiced && next->voiced) + interp->Wo = (prev->Wo + next->Wo)/2.0; + if (!prev->voiced && next->voiced) + interp->Wo = next->Wo; + if (prev->voiced && !next->voiced) + interp->Wo = prev->Wo; + } + else { + interp->Wo = TWO_PI/P_MAX; + } + interp->L = PI/interp->Wo; - Samples the amplitude envelope at an arbitrary frequency w. Uses - quadratic interpolation in the log domain to sample between harmonic - amplitudes. This version can handle non-linear steps along a freq - axis defined by arbitrary steps. + //printf(" interp: prev_v: %d next_v: %d prev_Wo: %f next_Wo: %f\n", + // prev->voiced, next->voiced, prev->Wo, next->Wo); + //printf(" interp: Wo: %1.5f L: %d\n", interp->Wo, interp->L); - y(x) = ax*x + bx + c + /* interpolate LSPs */ - We assume three points are (x_1,y_1), (0,y0) and (x1,y1). + for(i=0; i<LPC_ORD; i++) { + lsps_interp[i] = (prev_lsps[i] + next_lsps[i])/2.0; + } -\*---------------------------------------------------------------------------*/ + /* Interpolate LPC energy in log domain */ -float sample_log_amp_quad_nl( - float w[], /* frequency points */ - float A[], /* for these amplitude samples */ - int np, /* number of frequency points */ - float w_sample /* frequency of new samples */ -) -{ - int m,i; - float a,b,c,x, log_amp, best_dist; - float x_1, x1; - float y_1, y0, y1; - - //printf("w_sample %f\n", w_sample); - assert(w_sample >= 0.0); assert (w_sample <= 1.1*PI); - - /* find closest point to centre quadratic interpolator */ - - best_dist = 1E32; - m = 0; - for (i=0; i<np; i++) - if (fabs(w[i] - w_sample) < best_dist) { - best_dist = fabs(w[i] - w_sample); - m = i; - } - - /* stay one point away from edge of array */ - - if (m < 1) m = 1; - if (m > (np-2)) m = np - 2; - - /* find polynomial coeffs */ - - x_1 = w[m-1]- w[m]; x1 = w[m+1] - w[m]; - y_1 = log10(A[m-1]+1E-6); - y0 = log10(A[m]+1E-6); - y1 = log10(A[m+1]+1E-6); - - c = y0; - a = (y_1*x1 - y1*x_1 + c*x_1 - c*x1)/(x_1*x_1*x1 - x1*x1*x_1); - b = (y1 -a*x1*x1 - c)/x1; - x = w_sample - w[m]; - - //printf("%f %f %f\n", w[0], w[1], w[2]); - //printf("%f %f %f %f %f %f\n", x_1, y_1, 0.0, y0, x1, y1); - log_amp = a*x*x + b*x + c; - //printf("a %f b %f c %f\n", a, b, c); - //printf("m=%d A[m-1] %f A[m] %f A[m+1] %f w_sample %f w[m] %f x %f log_amp %f\n", m, - // A[m-1], - // A[m], A[m+1], w_sample, w[m], x, log_amp); - //exit(0); - return log_amp; -} + e = powf(10.0, (log10f(prev_e) + log10f(next_e))/2.0); + //printf(" interp: e: %f\n", e); -#define M_MAX 40 + /* convert back to amplitudes */ + + lsp_to_lpc(lsps_interp, ak_interp, LPC_ORD); + aks_to_M2(fft_fwd_cfg, ak_interp, LPC_ORD, interp, e, &snr, 0, 0, 1, 1, LPCPF_BETA, LPCPF_GAMMA); + //printf(" interp: ak[1]: %f A[1] %f\n", ak_interp[1], interp->A[1]); +} -float fres[] = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, - 1200, 1400, 1600, 1850, 2100, 2350, 2600, 2900, 3400, 3800}; /*---------------------------------------------------------------------------*\ - FUNCTION....: resample_amp_nl() + FUNCTION....: interp_Wo() AUTHOR......: David Rowe - DATE CREATED: 7 March 2011 + DATE CREATED: 22 May 2012 - Converts the current model with L {Am} samples spaced Wo apart to - RES_POINTS samples spaced Wo/RES_POINTS apart. Then subtracts - from the previous frames samples to get the delta. + Interpolates centre 10ms sample of Wo and L samples given two + samples 20ms apart. Assumes voicing is available for centre + (interpolated) frame. \*---------------------------------------------------------------------------*/ -void resample_amp_fixed(MODEL *model, - float w[], float A[], - float wres[], float Ares[], - float AresdB_prev[], - float AresdB[], - float deltat[]) +void interp_Wo( + MODEL *interp, /* interpolated model params */ + MODEL *prev, /* previous frames model params */ + MODEL *next /* next frames model params */ + ) { - int i; - - for(i=1; i<=model->L; i++) { - w[i-1] = i*model->Wo; - A[i-1] = model->A[i]; - } - - for(i=0; i<RES_POINTS; i++) { - wres[i] = fres[i]*PI/4000.0; - } - - for(i=0; i<RES_POINTS; i++) { - Ares[i] = pow(10.0,sample_log_amp_quad_nl(w, A, model->L, wres[i])); - } - - /* work out delta T vector for this frame */ - - for(i=0; i<RES_POINTS; i++) { - AresdB[i] = 20.0*log10(Ares[i]); - deltat[i] = AresdB[i] - AresdB_prev[i]; - } - + interp_Wo2(interp, prev, next, 0.5); } /*---------------------------------------------------------------------------*\ - FUNCTION....: resample_amp_nl() + FUNCTION....: interp_Wo2() AUTHOR......: David Rowe - DATE CREATED: 7 March 2011 - - Converts the current model with L {Am} samples spaced Wo apart to M - samples spaced Wo/M apart. Then converts back to L {Am} samples. - used to prototype constant rate Amplitude encoding ideas. + DATE CREATED: 22 May 2012 - Returns the SNR in dB. + Weighted interpolation of two Wo samples. \*---------------------------------------------------------------------------*/ -float resample_amp_nl(MODEL *model, int m, float AresdB_prev[]) +void interp_Wo2( + MODEL *interp, /* interpolated model params */ + MODEL *prev, /* previous frames model params */ + MODEL *next, /* next frames model params */ + float weight +) { - int i; - float w[MAX_AMP], A[MAX_AMP]; - float wres[MAX_AMP], Ares[MAX_AMP], AresdB[MAX_AMP]; - float signal, noise, snr; - float new_A; - float deltat[MAX_AMP], deltat_q[MAX_AMP], AresdB_q[MAX_AMP]; - - resample_amp_fixed(model, w, A, wres, Ares, AresdB_prev, AresdB, deltat); - - /* quantise delta T vector */ - - for(i=0; i<RES_POINTS; i++) { - noise = 3.0*(1.0 - 2.0*rand()/RAND_MAX); - //noise = 0.0; - deltat_q[i] = deltat[i] + noise; - } + /* trap corner case where voicing est is probably wrong */ - /* recover Ares vector */ - - for(i=0; i<RES_POINTS; i++) { - AresdB_q[i] = AresdB_prev[i] + deltat_q[i]; - Ares[i] = pow(10.0, AresdB_q[i]/20.0); - //printf("%d %f %f\n", i, AresdB[i], AresdB_q[i]); + if (interp->voiced && !prev->voiced && !next->voiced) { + interp->voiced = 0; } - /* update memory based on version at decoder */ + /* Wo depends on voicing of this and adjacent frames */ - for(i=0; i<RES_POINTS; i++) { - AresdB_prev[i] = AresdB_q[i]; + if (interp->voiced) { + if (prev->voiced && next->voiced) + interp->Wo = (1.0 - weight)*prev->Wo + weight*next->Wo; + if (!prev->voiced && next->voiced) + interp->Wo = next->Wo; + if (prev->voiced && !next->voiced) + interp->Wo = prev->Wo; } - -#ifdef DUMP - dump_resample(wres,Ares,M_MAX); -#endif - - signal = noise = 0.0; - - for(i=1; i<model->L; i++) { - new_A = pow(10.0,sample_log_amp_quad_nl(wres, Ares, RES_POINTS, model->Wo*i)); - signal += pow(model->A[i], 2.0); - noise += pow(model->A[i] - new_A, 2.0); - //printf("%f %f\n", model->A[i], new_A); - model->A[i] = new_A; + else { + interp->Wo = TWO_PI/P_MAX; } - - snr = 10.0*log10(signal/noise); - printf("snr = %3.2f\n", snr); - //exit(0); - return snr; + interp->L = PI/interp->Wo; } + /*---------------------------------------------------------------------------*\ - FUNCTION....: resample_amp() + FUNCTION....: interp_energy() AUTHOR......: David Rowe - DATE CREATED: 10 March 2011 - - Converts the current model with L {Am} samples spaced Wo apart to M - samples with a non-linear spacing. Then converts back to L {Am} - samples. used to prototype constant rate Amplitude encoding ideas. + DATE CREATED: 22 May 2012 - Returns the SNR in dB. + Interpolates centre 10ms sample of energy given two samples 20ms + apart. \*---------------------------------------------------------------------------*/ -float resample_amp(MODEL *model, int m) +float interp_energy(float prev_e, float next_e) { - int i; - MODEL model_m; - float new_A, signal, noise, snr, log_amp_dB; - float n_db = 0.0; - - model_m.Wo = PI/(float)m; - model_m.L = PI/model_m.Wo; - - for(i=1; i<=model_m.L; i++) { - log_amp_dB = 20.0*sample_log_amp_quad(model, i*model_m.Wo); - log_amp_dB += n_db*(1.0 - 2.0*rand()/RAND_MAX); - model_m.A[i] = pow(10,log_amp_dB/20.0); - } - - //dump_resample(&model_m); - - signal = noise = 0.0; + return powf(10.0, (log10f(prev_e) + log10f(next_e))/2.0); - for(i=1; i<model->L/4; i++) { - new_A = pow(10,sample_log_amp_quad(&model_m, i*model->Wo)); - signal += pow(model->A[i], 2.0); - noise += pow(model->A[i] - new_A, 2.0); - //printf("%f %f\n", model->A[i], new_A); - model->A[i] = new_A; - } - - snr = 10.0*log10(signal/noise); - //printf("snr = %3.2f\n", snr); - //exit(0); - return snr; } + /*---------------------------------------------------------------------------*\ - FUNCTION....: interp_lsp() + FUNCTION....: interp_energy2() AUTHOR......: David Rowe - DATE CREATED: 10 Nov 2010 - - Given two frames decribed by model parameters 20ms apart, determines - the model parameters of the 10ms frame between them. Assumes - voicing is available for middle (interpolated) frame. Outputs are - amplitudes and Wo for the interpolated frame. + DATE CREATED: 22 May 2012 - This version uses interpolation of LSPs, seems to do a better job - with bg noise. + Interpolates centre 10ms sample of energy given two samples 20ms + apart. \*---------------------------------------------------------------------------*/ -void interpolate_lsp( - MODEL *interp, /* interpolated model params */ - MODEL *prev, /* previous frames model params */ - MODEL *next, /* next frames model params */ - float *prev_lsps, /* previous frames LSPs */ - float prev_e, /* previous frames LPC energy */ - float *next_lsps, /* next frames LSPs */ - float next_e, /* next frames LPC energy */ - float *ak_interp /* interpolated aks for this frame */ - ) +float interp_energy2(float prev_e, float next_e, float weight) { - //int l,i; - int i; - float lsps[LPC_ORD],e; - float snr; + return powf(10.0, (1.0 - weight)*log10f(prev_e) + weight*log10f(next_e)); - /* Wo depends on voicing of this and adjacent frames */ +} - if (interp->voiced) { - if (prev->voiced && next->voiced) - interp->Wo = (prev->Wo + next->Wo)/2.0; - if (!prev->voiced && next->voiced) - interp->Wo = next->Wo; - if (prev->voiced && !next->voiced) - interp->Wo = prev->Wo; - } - else { - interp->Wo = TWO_PI/P_MAX; - } - interp->L = PI/interp->Wo; - /* interpolate LSPs */ +/*---------------------------------------------------------------------------*\ - for(i=0; i<LPC_ORD; i++) { - lsps[i] = (prev_lsps[i] + next_lsps[i])/2.0; - } + FUNCTION....: interpolate_lsp_ver2() + AUTHOR......: David Rowe + DATE CREATED: 22 May 2012 - /* Interpolate LPC energy in log domain */ + Weighted interpolation of LSPs. - e = pow(10.0, (log10(prev_e) + log10(next_e))/2.0); +\*---------------------------------------------------------------------------*/ - /* convert back to amplitudes */ +void interpolate_lsp_ver2(float interp[], float prev[], float next[], float weight) +{ + int i; - lsp_to_lpc(lsps, ak_interp, LPC_ORD); - aks_to_M2(ak_interp, LPC_ORD, interp, e, &snr, 0); + for(i=0; i<LPC_ORD; i++) + interp[i] = (1.0 - weight)*prev[i] + weight*next[i]; } + diff --git a/gr-vocoder/lib/codec2/interp.h b/gr-vocoder/lib/codec2/interp.h index d509726140..24cb9462a3 100644 --- a/gr-vocoder/lib/codec2/interp.h +++ b/gr-vocoder/lib/codec2/interp.h @@ -28,14 +28,18 @@ #ifndef __INTERP__ #define __INTERP__ -#define RES_POINTS 20 +#include "kiss_fft.h" void interpolate(MODEL *interp, MODEL *prev, MODEL *next); -void interpolate_lsp(MODEL *interp, MODEL *prev, MODEL *next, +void interpolate_lsp(kiss_fft_cfg fft_dec_cfg, + MODEL *interp, MODEL *prev, MODEL *next, float *prev_lsps, float prev_e, float *next_lsps, float next_e, - float *ak_interp); -float resample_amp(MODEL *model, int m); -float resample_amp_nl(MODEL *model, int m, float Ares_prev[]); + float *ak_interp, float *lsps_interp); +void interp_Wo(MODEL *interp, MODEL *prev, MODEL *next); +void interp_Wo2(MODEL *interp, MODEL *prev, MODEL *next, float weight); +float interp_energy(float prev, float next); +float interp_energy2(float prev, float next, float weight); +void interpolate_lsp_ver2(float interp[], float prev[], float next[], float weight); #endif diff --git a/gr-vocoder/lib/codec2/listensim.sh b/gr-vocoder/lib/codec2/listensim.sh deleted file mode 100755 index 0b27a1b0cb..0000000000 --- a/gr-vocoder/lib/codec2/listensim.sh +++ /dev/null @@ -1,9 +0,0 @@ -#!/bin/sh -# listensim.sh -# David Rowe 10 Sep 2009 -# -# Listen to files processed with sim.sh - -../script/menu.sh ../raw/$1.raw $1_uq.raw $1_phase0.raw $1_lpc10.raw $1_phase0_lpc10.raw $1_phase0_lpc10_dec.raw $1_phase0_lsp_dec.raw $2 $3 - - diff --git a/gr-vocoder/lib/codec2/lpc.c b/gr-vocoder/lib/codec2/lpc.c index 1784f75ca1..9a730eb4ad 100644 --- a/gr-vocoder/lib/codec2/lpc.c +++ b/gr-vocoder/lib/codec2/lpc.c @@ -2,14 +2,14 @@ FILE........: lpc.c AUTHOR......: David Rowe - DATE CREATED: 30/9/90 + DATE CREATED: 30 Sep 1990 (!) Linear Prediction functions written in C. \*---------------------------------------------------------------------------*/ /* - Copyright (C) 2009 David Rowe + Copyright (C) 2009-2012 David Rowe All rights reserved. @@ -28,6 +28,9 @@ #define LPC_MAX_N 512 /* maximum no. of samples in frame */ #define PI 3.141592654 /* mathematical constant */ +#define ALPHA 1.0 +#define BETA 0.94 + #include <assert.h> #include <math.h> #include "defines.h" @@ -35,6 +38,60 @@ /*---------------------------------------------------------------------------*\ + pre_emp() + + Pre-emphasise (high pass filter with zero close to 0 Hz) a frame of + speech samples. Helps reduce dynamic range of LPC spectrum, giving + greater weight and hensea better match to low energy formants. + + Should be balanced by de-emphasis of the output speech. + +\*---------------------------------------------------------------------------*/ + +void pre_emp( + float Sn_pre[], /* output frame of speech samples */ + float Sn[], /* input frame of speech samples */ + float *mem, /* Sn[-1]single sample memory */ + int Nsam /* number of speech samples to use */ +) +{ + int i; + + for(i=0; i<Nsam; i++) { + Sn_pre[i] = Sn[i] - ALPHA * mem[0]; + mem[0] = Sn[i]; + } + +} + + +/*---------------------------------------------------------------------------*\ + + de_emp() + + De-emphasis filter (low pass filter with polse close to 0 Hz). + +\*---------------------------------------------------------------------------*/ + +void de_emp( + float Sn_de[], /* output frame of speech samples */ + float Sn[], /* input frame of speech samples */ + float *mem, /* Sn[-1]single sample memory */ + int Nsam /* number of speech samples to use */ +) +{ + int i; + + for(i=0; i<Nsam; i++) { + Sn_de[i] = Sn[i] + BETA * mem[0]; + mem[0] = Sn_de[i]; + } + +} + + +/*---------------------------------------------------------------------------*\ + hanning_window() Hanning windows a frame of speech samples. @@ -50,7 +107,7 @@ void hanning_window( int i; /* loop variable */ for(i=0; i<Nsam; i++) - Wn[i] = Sn[i]*(0.5 - 0.5*cos(2*PI*(float)i/(Nsam-1))); + Wn[i] = Sn[i]*(0.5 - 0.5*cosf(2*PI*(float)i/(Nsam-1))); } /*---------------------------------------------------------------------------*\ @@ -80,33 +137,6 @@ void autocorrelate( /*---------------------------------------------------------------------------*\ - autocorrelate_freq() - - Finds the first P autocorrelation values from an array of frequency domain - power samples. - -\*---------------------------------------------------------------------------*/ - -void autocorrelate_freq( - float Pw[], /* Nsam frequency domain power spectrum samples */ - float w[], /* frequency of each sample in Pw[] */ - float R[], /* array of order+1 autocorrelation coefficients */ - int Nsam, /* number of windowed samples to use */ - int order /* order of LPC analysis */ -) -{ - int i,j; /* loop variables */ - - for(j=0; j<order+1; j++) { - R[j] = 0.0; - for(i=0; i<Nsam; i++) - R[j] += Pw[i]*cos(j*w[i]); - } - R[j] /= Nsam; -} - -/*---------------------------------------------------------------------------*\ - levinson_durbin() Given P+1 autocorrelation coefficients, finds P Linear Prediction Coeff. @@ -139,7 +169,7 @@ void levinson_durbin( for(j=1; j<=i-1; j++) sum += a[i-1][j]*R[i-j]; k[i] = -1.0*(R[i] + sum)/E[i-1]; /* Equation 38b, Makhoul */ - if (fabs(k[i]) > 1.0) + if (fabsf(k[i]) > 1.0) k[i] = 0.0; a[i][i] = k[i]; @@ -274,6 +304,6 @@ void weight( int i; for(i=1; i<=order; i++) - akw[i] = ak[i]*pow(gamma,(float)i); + akw[i] = ak[i]*powf(gamma,(float)i); } diff --git a/gr-vocoder/lib/codec2/lpc.h b/gr-vocoder/lib/codec2/lpc.h index 9125189d1b..482aa1fff5 100644 --- a/gr-vocoder/lib/codec2/lpc.h +++ b/gr-vocoder/lib/codec2/lpc.h @@ -9,7 +9,7 @@ \*---------------------------------------------------------------------------*/ /* - Copyright (C) 2009 David Rowe + Copyright (C) 2009-2012 David Rowe All rights reserved. @@ -30,9 +30,10 @@ #define LPC_MAX_ORDER 20 +void pre_emp(float Sn_pre[], float Sn[], float *mem, int Nsam); +void de_emp(float Sn_se[], float Sn[], float *mem, int Nsam); void hanning_window(float Sn[], float Wn[], int Nsam); void autocorrelate(float Sn[], float Rn[], int Nsam, int order); -void autocorrelate_freq(float Pw[], float w[], float R[], int Nsam, int order); void levinson_durbin(float R[], float lpcs[], int order); void inverse_filter(float Sn[], float a[], int Nsam, float res[], int order); void synthesis_filter(float res[], float a[], int Nsam, int order, float Sn_[]); diff --git a/gr-vocoder/lib/codec2/lsp.c b/gr-vocoder/lib/codec2/lsp.c index b57507bb42..3f34444e33 100644 --- a/gr-vocoder/lib/codec2/lsp.c +++ b/gr-vocoder/lib/codec2/lsp.c @@ -212,7 +212,7 @@ int lpc_to_lsp (float *a, int lpcrdr, float *freq, int nb, float delta) interval between xl and xr and repeat till root is located within the specified limits */ - if((psumr*psuml)<0.0){ + if(((psumr*psuml)<0.0) || (psumr == 0.0)){ roots++; psumm=psuml; diff --git a/gr-vocoder/lib/codec2/machdep.h b/gr-vocoder/lib/codec2/machdep.h new file mode 100644 index 0000000000..ef2e64943e --- /dev/null +++ b/gr-vocoder/lib/codec2/machdep.h @@ -0,0 +1,51 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: machdep.h + AUTHOR......: David Rowe + DATE CREATED: May 2 2013 + + Machine dependant functions. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2013 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#ifndef __MACHDEP__ +#define __MACHDEP__ + +#ifdef TIMER +#define TIMER_VAR(...) unsigned int __VA_ARGS__ +#define TIMER_SAMPLE(timestamp) timestamp = machdep_timer_sample() +#define TIMER_SAMPLE_AND_LOG(timestamp, prev_timestamp, label) \ + timestamp = machdep_timer_sample_and_log(prev_timestamp, label) +#define TIMER_SAMPLE_AND_LOG2(prev_timestamp, label) \ + machdep_timer_sample_and_log(prev_timestamp, label) +#else +#define TIMER_VAR(...) +#define TIMER_SAMPLE(timestamp) +#define TIMER_SAMPLE_AND_LOG(timestamp, prev_timestamp, label) +#define TIMER_SAMPLE_AND_LOG2(prev_timestamp, label) +#endif + +void machdep_timer_init(void); +void machdep_timer_reset(void); +unsigned int machdep_timer_sample(void); +unsigned int machdep_timer_sample_and_log(unsigned int start, char s[]); +void machdep_timer_print_logged_samples(void); + +#endif diff --git a/gr-vocoder/lib/codec2/nlp.c b/gr-vocoder/lib/codec2/nlp.c index 0d5e530ce6..cca835b46f 100644 --- a/gr-vocoder/lib/codec2/nlp.c +++ b/gr-vocoder/lib/codec2/nlp.c @@ -28,7 +28,9 @@ #include "defines.h" #include "nlp.h" #include "dump.h" -#include "fft.h" +#include "kiss_fft.h" +#undef TIMER +#include "machdep.h" #include <assert.h> #include <math.h> @@ -51,6 +53,8 @@ #define CNLP 0.3 /* post processor constant */ #define NLP_NTAP 48 /* Decimation LPF order */ +#undef DUMP + /*---------------------------------------------------------------------------*\ GLOBALS @@ -111,12 +115,16 @@ const float nlp_fir[] = { }; typedef struct { - float sq[PMAX_M]; /* squared speech samples */ - float mem_x,mem_y; /* memory for notch filter */ - float mem_fir[NLP_NTAP]; /* decimation FIR filter memory */ + int m; + float w[PMAX_M/DEC]; /* DFT window */ + float sq[PMAX_M]; /* squared speech samples */ + float mem_x,mem_y; /* memory for notch filter */ + float mem_fir[NLP_NTAP]; /* decimation FIR filter memory */ + kiss_fft_cfg fft_cfg; /* kiss FFT config */ } NLP; -float post_process_mbe(COMP Fw[], int pmin, int pmax, float gmax); +float test_candidate_mbe(COMP Sw[], COMP W[], float f0); +float post_process_mbe(COMP Fw[], int pmin, int pmax, float gmax, COMP Sw[], COMP W[], float *prev_Wo); float post_process_sub_multiples(COMP Fw[], int pmin, int pmax, float gmax, int gmax_bin, float *prev_Wo); @@ -129,15 +137,24 @@ float post_process_sub_multiples(COMP Fw[], \*---------------------------------------------------------------------------*/ -void *nlp_create() +void *nlp_create( +int m /* analysis window size */ +) { NLP *nlp; int i; + assert(m <= PMAX_M); + nlp = (NLP*)malloc(sizeof(NLP)); if (nlp == NULL) return NULL; + nlp->m = m; + for(i=0; i<m/DEC; i++) { + nlp->w[i] = 0.5 - 0.5*cosf(2*PI*i/(m/DEC-1)); + } + for(i=0; i<PMAX_M; i++) nlp->sq[i] = 0.0; nlp->mem_x = 0.0; @@ -145,20 +162,27 @@ void *nlp_create() for(i=0; i<NLP_NTAP; i++) nlp->mem_fir[i] = 0.0; + nlp->fft_cfg = kiss_fft_alloc (PE_FFT_SIZE, 0, NULL, NULL); + assert(nlp->fft_cfg != NULL); + return (void*)nlp; } /*---------------------------------------------------------------------------*\ - nlp_destory() + nlp_destroy() - Initialisation function for NLP pitch estimator. + Shut down function for NLP pitch estimator. \*---------------------------------------------------------------------------*/ void nlp_destroy(void *nlp_state) { + NLP *nlp; assert(nlp_state != NULL); + nlp = (NLP*)nlp_state; + + KISS_FFT_FREE(nlp->fft_cfg); free(nlp_state); } @@ -196,28 +220,33 @@ float nlp( void *nlp_state, float Sn[], /* input speech vector */ int n, /* frames shift (no. new samples in Sn[]) */ - int m, /* analysis window size */ - int pmin, /* minimum pitch value */ + int pmin, /* minimum pitch value */ int pmax, /* maximum pitch value */ float *pitch, /* estimated pitch period in samples */ COMP Sw[], /* Freq domain version of Sn[] */ + COMP W[], /* Freq domain window */ float *prev_Wo ) { NLP *nlp; - float notch; /* current notch filter output */ - COMP Fw[PE_FFT_SIZE]; /* DFT of squared signal */ + float notch; /* current notch filter output */ + COMP fw[PE_FFT_SIZE]; /* DFT of squared signal (input) */ + COMP Fw[PE_FFT_SIZE]; /* DFT of squared signal (output) */ float gmax; int gmax_bin; - int i,j; - float best_f0; + int m, i,j; + float best_f0; + TIMER_VAR(start, tnotch, filter, peakpick, window, fft, magsq, shiftmem); assert(nlp_state != NULL); nlp = (NLP*)nlp_state; + m = nlp->m; + + TIMER_SAMPLE(start); /* Square, notch filter at DC, and LP filter vector */ - for(i=m-n; i<M; i++) /* square latest speech samples */ + for(i=m-n; i<m; i++) /* square latest speech samples */ nlp->sq[i] = Sn[i]*Sn[i]; for(i=m-n; i<m; i++) { /* notch filter at DC */ @@ -225,9 +254,18 @@ float nlp( notch += COEFF*nlp->mem_y; nlp->mem_x = nlp->sq[i]; nlp->mem_y = notch; - nlp->sq[i] = notch; + nlp->sq[i] = notch + 1.0; /* With 0 input vectors to codec, + kiss_fft() would take a long + time to execute when running in + real time. Problem was traced + to kiss_fft function call in + this function. Adding this small + constant fixed problem. Not + exactly sure why. */ } + TIMER_SAMPLE_AND_LOG(tnotch, start, " square and notch"); + for(i=m-n; i<m; i++) { /* FIR filter vector */ for(j=0; j<NLP_NTAP-1; j++) @@ -239,26 +277,33 @@ float nlp( nlp->sq[i] += nlp->mem_fir[j]*nlp_fir[j]; } + TIMER_SAMPLE_AND_LOG(filter, tnotch, " filter"); + /* Decimate and DFT */ for(i=0; i<PE_FFT_SIZE; i++) { - Fw[i].real = 0.0; - Fw[i].imag = 0.0; + fw[i].real = 0.0; + fw[i].imag = 0.0; } for(i=0; i<m/DEC; i++) { - Fw[i].real = nlp->sq[i*DEC]*(0.5 - 0.5*cos(2*PI*i/(m/DEC-1))); + fw[i].real = nlp->sq[i*DEC]*nlp->w[i]; } -#ifdef DUMP + TIMER_SAMPLE_AND_LOG(window, filter, " window"); + #ifdef DUMP dump_dec(Fw); -#endif - fft(&Fw[0].real,PE_FFT_SIZE,1); + #endif + + kiss_fft(nlp->fft_cfg, (kiss_fft_cpx *)fw, (kiss_fft_cpx *)Fw); + TIMER_SAMPLE_AND_LOG(fft, window, " fft"); + for(i=0; i<PE_FFT_SIZE; i++) Fw[i].real = Fw[i].real*Fw[i].real + Fw[i].imag*Fw[i].imag; -#ifdef DUMP + TIMER_SAMPLE_AND_LOG(magsq, fft, " mag sq"); + #ifdef DUMP dump_sq(nlp->sq); dump_Fw(Fw); -#endif + #endif /* find global peak */ @@ -271,8 +316,16 @@ float nlp( } } - best_f0 = post_process_sub_multiples(Fw, pmin, pmax, gmax, gmax_bin, - prev_Wo); + TIMER_SAMPLE_AND_LOG(peakpick, magsq, " peak pick"); + + //#define POST_PROCESS_MBE + #ifdef POST_PROCESS_MBE + best_f0 = post_process_mbe(Fw, pmin, pmax, gmax, Sw, W, prev_Wo); + #else + best_f0 = post_process_sub_multiples(Fw, pmin, pmax, gmax, gmax_bin, prev_Wo); + #endif + + TIMER_SAMPLE_AND_LOG(shiftmem, peakpick, " post process"); /* Shift samples in buffer to make room for new samples */ @@ -282,6 +335,11 @@ float nlp( /* return pitch and F0 estimate */ *pitch = (float)SAMPLE_RATE/best_f0; + + TIMER_SAMPLE_AND_LOG2(shiftmem, " shift mem"); + + TIMER_SAMPLE_AND_LOG2(start, " nlp int"); + return(best_f0); } @@ -289,7 +347,7 @@ float nlp( post_process_sub_multiples() - Given the global maximma of Fw[] we search interger submultiples for + Given the global maximma of Fw[] we search integer submultiples for local maxima. If local maxima exist and they are above an experimentally derived threshold (OK a magic number I pulled out of the air) we choose the submultiple as the F0 estimate. @@ -314,7 +372,7 @@ float post_process_sub_multiples(COMP Fw[], int mult; float thresh, best_f0; int b, bmin, bmax, lmax_bin; - float lmax, cmax; + float lmax; int prev_f0_bin; /* post process estimate by searching submultiples */ @@ -342,7 +400,7 @@ float post_process_sub_multiples(COMP Fw[], lmax = 0; lmax_bin = bmin; - for (b=bmin; b<=bmax; b++) /* look for maximum in interval */ + for (b=bmin; b<=bmax; b++) /* look for maximum in interval */ if (Fw[b].real > lmax) { lmax = Fw[b].real; lmax_bin = b; @@ -350,7 +408,6 @@ float post_process_sub_multiples(COMP Fw[], if (lmax > thresh) if ((lmax > Fw[lmax_bin-1].real) && (lmax > Fw[lmax_bin+1].real)) { - cmax = lmax; cmax_bin = lmax_bin; } @@ -362,3 +419,171 @@ float post_process_sub_multiples(COMP Fw[], return best_f0; } +/*---------------------------------------------------------------------------*\ + + post_process_mbe() + + Use the MBE pitch estimation algorithm to evaluate pitch candidates. This + works OK but the accuracy at low F0 is affected by NW, the analysis window + size used for the DFT of the input speech Sw[]. Also favours high F0 in + the presence of background noise which causes periodic artifacts in the + synthesised speech. + +\*---------------------------------------------------------------------------*/ + +float post_process_mbe(COMP Fw[], int pmin, int pmax, float gmax, COMP Sw[], COMP W[], float *prev_Wo) +{ + float candidate_f0; + float f0,best_f0; /* fundamental frequency */ + float e,e_min; /* MBE cost function */ + int i; + #ifdef DUMP + float e_hz[F0_MAX]; + #endif + #if !defined(NDEBUG) || defined(DUMP) + int bin; + #endif + float f0_min, f0_max; + float f0_start, f0_end; + + f0_min = (float)SAMPLE_RATE/pmax; + f0_max = (float)SAMPLE_RATE/pmin; + + /* Now look for local maxima. Each local maxima is a candidate + that we test using the MBE pitch estimation algotithm */ + + #ifdef DUMP + for(i=0; i<F0_MAX; i++) + e_hz[i] = -1; + #endif + e_min = 1E32; + best_f0 = 50; + for(i=PE_FFT_SIZE*DEC/pmax; i<=PE_FFT_SIZE*DEC/pmin; i++) { + if ((Fw[i].real > Fw[i-1].real) && (Fw[i].real > Fw[i+1].real)) { + + /* local maxima found, lets test if it's big enough */ + + if (Fw[i].real > T*gmax) { + + /* OK, sample MBE cost function over +/- 10Hz range in 2.5Hz steps */ + + candidate_f0 = (float)i*SAMPLE_RATE/(PE_FFT_SIZE*DEC); + f0_start = candidate_f0-20; + f0_end = candidate_f0+20; + if (f0_start < f0_min) f0_start = f0_min; + if (f0_end > f0_max) f0_end = f0_max; + + for(f0=f0_start; f0<=f0_end; f0+= 2.5) { + e = test_candidate_mbe(Sw, W, f0); + #if !defined(NDEBUG) || defined(DUMP) + bin = floor(f0); assert((bin > 0) && (bin < F0_MAX)); + #endif + #ifdef DUMP + e_hz[bin] = e; + #endif + if (e < e_min) { + e_min = e; + best_f0 = f0; + } + } + + } + } + } + + /* finally sample MBE cost function around previous pitch estimate + (form of pitch tracking) */ + + candidate_f0 = *prev_Wo * SAMPLE_RATE/TWO_PI; + f0_start = candidate_f0-20; + f0_end = candidate_f0+20; + if (f0_start < f0_min) f0_start = f0_min; + if (f0_end > f0_max) f0_end = f0_max; + + for(f0=f0_start; f0<=f0_end; f0+= 2.5) { + e = test_candidate_mbe(Sw, W, f0); + #if !defined(NDEBUG) || defined(DUMP) + bin = floor(f0); assert((bin > 0) && (bin < F0_MAX)); + #endif + #ifdef DUMP + e_hz[bin] = e; + #endif + if (e < e_min) { + e_min = e; + best_f0 = f0; + } + } + + #ifdef DUMP + dump_e(e_hz); + #endif + + return best_f0; +} + +/*---------------------------------------------------------------------------*\ + + test_candidate_mbe() + + Returns the error of the MBE cost function for the input f0. + + Note: I think a lot of the operations below can be simplified as + W[].imag = 0 and has been normalised such that den always equals 1. + +\*---------------------------------------------------------------------------*/ + +float test_candidate_mbe( + COMP Sw[], + COMP W[], + float f0 +) +{ + COMP Sw_[FFT_ENC]; /* DFT of all voiced synthesised signal */ + int l,al,bl,m; /* loop variables */ + COMP Am; /* amplitude sample for this band */ + int offset; /* centers Hw[] about current harmonic */ + float den; /* denominator of Am expression */ + float error; /* accumulated error between originl and synthesised */ + float Wo; /* current "test" fundamental freq. */ + int L; + + L = floor((SAMPLE_RATE/2.0)/f0); + Wo = f0*(2*PI/SAMPLE_RATE); + + error = 0.0; + + /* Just test across the harmonics in the first 1000 Hz (L/4) */ + + for(l=1; l<L/4; l++) { + Am.real = 0.0; + Am.imag = 0.0; + den = 0.0; + al = ceil((l - 0.5)*Wo*FFT_ENC/TWO_PI); + bl = ceil((l + 0.5)*Wo*FFT_ENC/TWO_PI); + + /* Estimate amplitude of harmonic assuming harmonic is totally voiced */ + + for(m=al; m<bl; m++) { + offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5; + Am.real += Sw[m].real*W[offset].real + Sw[m].imag*W[offset].imag; + Am.imag += Sw[m].imag*W[offset].real - Sw[m].real*W[offset].imag; + den += W[offset].real*W[offset].real + W[offset].imag*W[offset].imag; + } + + Am.real = Am.real/den; + Am.imag = Am.imag/den; + + /* Determine error between estimated harmonic and original */ + + for(m=al; m<bl; m++) { + offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5; + Sw_[m].real = Am.real*W[offset].real - Am.imag*W[offset].imag; + Sw_[m].imag = Am.real*W[offset].imag + Am.imag*W[offset].real; + error += (Sw[m].real - Sw_[m].real)*(Sw[m].real - Sw_[m].real); + error += (Sw[m].imag - Sw_[m].imag)*(Sw[m].imag - Sw_[m].imag); + } + } + + return error; +} + diff --git a/gr-vocoder/lib/codec2/nlp.h b/gr-vocoder/lib/codec2/nlp.h index 5e11f1186e..6e03236c00 100644 --- a/gr-vocoder/lib/codec2/nlp.h +++ b/gr-vocoder/lib/codec2/nlp.h @@ -30,10 +30,9 @@ #include "comp.h" -void *nlp_create(); +void *nlp_create(int m); void nlp_destroy(void *nlp_state); -float nlp(void *nlp_state, float Sn[], int n, int m, int pmin, int pmax, - float *pitch, COMP Sw[], float *prev_Wo); -float test_candidate_mbe(COMP Sw[], float f0, COMP Sw_[]); +float nlp(void *nlp_state, float Sn[], int n, int pmin, int pmax, + float *pitch, COMP Sw[], COMP W[], float *prev_Wo); #endif diff --git a/gr-vocoder/lib/codec2/os.h b/gr-vocoder/lib/codec2/os.h new file mode 100644 index 0000000000..0dae9bfd24 --- /dev/null +++ b/gr-vocoder/lib/codec2/os.h @@ -0,0 +1,53 @@ +/* Generate using fir1(47,1/6) in Octave */ + +const float fdmdv_os_filter[]= { + -3.55606818e-04, + -8.98615286e-04, + -1.40119781e-03, + -1.71713852e-03, + -1.56471179e-03, + -6.28128960e-04, + 1.24522223e-03, + 3.83138676e-03, + 6.41309478e-03, + 7.85893186e-03, + 6.93514929e-03, + 2.79361991e-03, + -4.51051400e-03, + -1.36671853e-02, + -2.21034939e-02, + -2.64084653e-02, + -2.31425052e-02, + -9.84218694e-03, + 1.40648474e-02, + 4.67316298e-02, + 8.39615986e-02, + 1.19925275e-01, + 1.48381174e-01, + 1.64097819e-01, + 1.64097819e-01, + 1.48381174e-01, + 1.19925275e-01, + 8.39615986e-02, + 4.67316298e-02, + 1.40648474e-02, + -9.84218694e-03, + -2.31425052e-02, + -2.64084653e-02, + -2.21034939e-02, + -1.36671853e-02, + -4.51051400e-03, + 2.79361991e-03, + 6.93514929e-03, + 7.85893186e-03, + 6.41309478e-03, + 3.83138676e-03, + 1.24522223e-03, + -6.28128960e-04, + -1.56471179e-03, + -1.71713852e-03, + -1.40119781e-03, + -8.98615286e-04, + -3.55606818e-04 +}; + diff --git a/gr-vocoder/lib/codec2/pack.c b/gr-vocoder/lib/codec2/pack.c index e04c9378cf..3f8f93e422 100644 --- a/gr-vocoder/lib/codec2/pack.c +++ b/gr-vocoder/lib/codec2/pack.c @@ -1,20 +1,20 @@ /* Copyright (C) 2010 Perens LLC <bruce@perens.com> - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. + All rights reserved. - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ - */ #include "defines.h" #include "quantise.h" #include <stdio.h> diff --git a/gr-vocoder/lib/codec2/phase.c b/gr-vocoder/lib/codec2/phase.c index 69cc6697fc..a9c1c06b9a 100644 --- a/gr-vocoder/lib/codec2/phase.c +++ b/gr-vocoder/lib/codec2/phase.c @@ -27,17 +27,16 @@ #include "defines.h" #include "phase.h" -#include "fft.h" +#include "kiss_fft.h" #include "comp.h" -#include "glottal.c" +#include "sine.h" #include <assert.h> +#include <ctype.h> #include <math.h> #include <string.h> #include <stdlib.h> -#define GLOTTAL_FFT_SIZE 512 - /*---------------------------------------------------------------------------*\ aks_to_H() @@ -48,6 +47,7 @@ \*---------------------------------------------------------------------------*/ void aks_to_H( + kiss_fft_cfg fft_fwd_cfg, MODEL *model, /* model parameters */ float aks[], /* LPC's */ float G, /* energy term */ @@ -55,7 +55,8 @@ void aks_to_H( int order ) { - COMP Pw[FFT_DEC]; /* power spectrum */ + COMP pw[FFT_ENC]; /* power spectrum (input) */ + COMP Pw[FFT_ENC]; /* power spectrum (output) */ int i,m; /* loop variables */ int am,bm; /* limits of current band */ float r; /* no. rads/bin */ @@ -64,35 +65,35 @@ void aks_to_H( int b; /* centre bin of harmonic */ float phi_; /* phase of LPC spectra */ - r = TWO_PI/(FFT_DEC); + r = TWO_PI/(FFT_ENC); /* Determine DFT of A(exp(jw)) ------------------------------------------*/ - for(i=0; i<FFT_DEC; i++) { - Pw[i].real = 0.0; - Pw[i].imag = 0.0; + for(i=0; i<FFT_ENC; i++) { + pw[i].real = 0.0; + pw[i].imag = 0.0; } for(i=0; i<=order; i++) - Pw[i].real = aks[i]; + pw[i].real = aks[i]; - fft(&Pw[0].real,FFT_DEC,-1); + kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)pw, (kiss_fft_cpx *)Pw); /* Sample magnitude and phase at harmonics */ for(m=1; m<=model->L; m++) { - am = floor((m - 0.5)*model->Wo/r + 0.5); - bm = floor((m + 0.5)*model->Wo/r + 0.5); - b = floor(m*model->Wo/r + 0.5); - - Em = 0.0; - for(i=am; i<bm; i++) - Em += G/(Pw[i].real*Pw[i].real + Pw[i].imag*Pw[i].imag); - Am = sqrt(fabs(Em/(bm-am))); - - phi_ = -atan2(Pw[b].imag,Pw[b].real); - H[m].real = Am*cos(phi_); - H[m].imag = Am*sin(phi_); + am = (int)((m - 0.5)*model->Wo/r + 0.5); + bm = (int)((m + 0.5)*model->Wo/r + 0.5); + b = (int)(m*model->Wo/r + 0.5); + + Em = 0.0; + for(i=am; i<bm; i++) + Em += G/(Pw[i].real*Pw[i].real + Pw[i].imag*Pw[i].imag); + Am = sqrtf(fabsf(Em/(bm-am))); + + phi_ = -atan2f(Pw[b].imag,Pw[b].real); + H[m].real = Am*cosf(phi_); + H[m].imag = Am*sinf(phi_); } } @@ -188,6 +189,7 @@ void aks_to_H( \*---------------------------------------------------------------------------*/ void phase_synth_zero_order( + kiss_fft_cfg fft_fwd_cfg, MODEL *model, float aks[], float *ex_phase, /* excitation phase of fundamental */ @@ -196,16 +198,13 @@ void phase_synth_zero_order( { int m; float new_phi; - COMP Ex[MAX_AMP]; /* excitation samples */ - COMP A_[MAX_AMP]; /* synthesised harmonic samples */ - COMP H[MAX_AMP]; /* LPC freq domain samples */ + COMP Ex[MAX_AMP+1]; /* excitation samples */ + COMP A_[MAX_AMP+1]; /* synthesised harmonic samples */ + COMP H[MAX_AMP+1]; /* LPC freq domain samples */ float G; - float jitter = 0.0; - float r; - int b; G = 1.0; - aks_to_H(model, aks, G, H, order); + aks_to_H(fft_fwd_cfg, model, aks, G, H, order); /* Update excitation fundamental phase track, this sets the position @@ -213,50 +212,42 @@ void phase_synth_zero_order( I found that using just this frame's Wo improved quality for UV sounds compared to interpolating two frames Wo like this: - ex_phase[0] += (*prev_Wo+mode->Wo)*N/2; + ex_phase[0] += (*prev_Wo+model->Wo)*N/2; */ ex_phase[0] += (model->Wo)*N; - ex_phase[0] -= TWO_PI*floor(ex_phase[0]/TWO_PI + 0.5); - r = TWO_PI/GLOTTAL_FFT_SIZE; + ex_phase[0] -= TWO_PI*floorf(ex_phase[0]/TWO_PI + 0.5); for(m=1; m<=model->L; m++) { - /* generate excitation */ + /* generate excitation */ if (model->voiced) { - /* I think adding a little jitter helps improve low pitch - males like hts1a. This moves the onset of each harmonic - over at +/- 0.25 of a sample. - */ - jitter = 0.25*(1.0 - 2.0*rand()/RAND_MAX); - b = floor(m*model->Wo/r + 0.5); - if (b > ((GLOTTAL_FFT_SIZE/2)-1)) { - b = (GLOTTAL_FFT_SIZE/2)-1; - } - Ex[m].real = cos(ex_phase[0]*m - jitter*model->Wo*m + glottal[b]); - Ex[m].imag = sin(ex_phase[0]*m - jitter*model->Wo*m + glottal[b]); - } - else { - - /* When a few samples were tested I found that LPC filter - phase is not needed in the unvoiced case, but no harm in - keeping it. - */ - float phi = TWO_PI*(float)rand()/RAND_MAX; - Ex[m].real = cos(phi); - Ex[m].imag = sin(phi); - } - - /* filter using LPC filter */ - - A_[m].real = H[m].real*Ex[m].real - H[m].imag*Ex[m].imag; - A_[m].imag = H[m].imag*Ex[m].real + H[m].real*Ex[m].imag; - - /* modify sinusoidal phase */ - - new_phi = atan2(A_[m].imag, A_[m].real+1E-12); - model->phi[m] = new_phi; + + Ex[m].real = cosf(ex_phase[0]*m); + Ex[m].imag = sinf(ex_phase[0]*m); + } + else { + + /* When a few samples were tested I found that LPC filter + phase is not needed in the unvoiced case, but no harm in + keeping it. + */ + float phi = TWO_PI*(float)codec2_rand()/CODEC2_RAND_MAX; + Ex[m].real = cosf(phi); + Ex[m].imag = sinf(phi); + } + + /* filter using LPC filter */ + + A_[m].real = H[m].real*Ex[m].real - H[m].imag*Ex[m].imag; + A_[m].imag = H[m].imag*Ex[m].real + H[m].real*Ex[m].imag; + + /* modify sinusoidal phase */ + + new_phi = atan2f(A_[m].imag, A_[m].real+1E-12); + model->phi[m] = new_phi; } } + diff --git a/gr-vocoder/lib/codec2/phase.h b/gr-vocoder/lib/codec2/phase.h index 4f1a620899..2927e912d4 100644 --- a/gr-vocoder/lib/codec2/phase.h +++ b/gr-vocoder/lib/codec2/phase.h @@ -28,7 +28,12 @@ #ifndef __PHASE__ #define __PHASE__ -void phase_synth_zero_order(MODEL *model, float aks[], float *ex_phase, +#include "kiss_fft.h" + +void phase_synth_zero_order(kiss_fft_cfg fft_dec_cfg, + MODEL *model, + float aks[], + float *ex_phase, int order); #endif diff --git a/gr-vocoder/lib/codec2/phaseexp.c b/gr-vocoder/lib/codec2/phaseexp.c new file mode 100644 index 0000000000..61b240df49 --- /dev/null +++ b/gr-vocoder/lib/codec2/phaseexp.c @@ -0,0 +1,1455 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: phaseexp.c + AUTHOR......: David Rowe + DATE CREATED: June 2012 + + Experimental functions for quantising, modelling and synthesising phase. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not,see <http://www.gnu.org/licenses/>. +*/ + +#include "defines.h" +#include "phase.h" +#include "kiss_fft.h" +#include "comp.h" + +#include <assert.h> +#include <ctype.h> +#include <math.h> +#include <string.h> +#include <stdlib.h> + +/* Bruce Perens' funcs to load codebook files */ + +struct codebook { + unsigned int k; + unsigned int log2m; + unsigned int m; + COMP *cb; + unsigned int offset; +}; + +static const char format[] = +"The table format must be:\n" +"\tTwo integers describing the dimensions of the codebook.\n" +"\tThen, enough numbers to fill the specified dimensions.\n"; + +float get_float(FILE * in, const char * name, char * * cursor, char * buffer, int size) +{ + for ( ; ; ) { + char * s = *cursor; + char c; + + while ( (c = *s) != '\0' && !isdigit(c) && c != '-' && c != '.' ) + s++; + + /* Comments start with "#" and continue to the end of the line. */ + if ( c != '\0' && c != '#' ) { + char * end = 0; + float f = 0; + + f = strtod(s, &end); + + if ( end != s ) + *cursor = end; + return f; + } + + if ( fgets(buffer, size, in) == NULL ) { + fprintf(stderr, "%s: Format error. %s\n", name, format); + exit(1); + } + *cursor = buffer; + } +} + +static struct codebook *load(const char * name) +{ + FILE *file; + char line[2048]; + char *cursor = line; + struct codebook *b = malloc(sizeof(struct codebook)); + int i; + int size; + float angle; + + file = fopen(name, "rt"); + assert(file != NULL); + + *cursor = '\0'; + + b->k = (int)get_float(file, name, &cursor, line, sizeof(line)); + b->m = (int)get_float(file, name ,&cursor, line, sizeof(line)); + size = b->k * b->m; + + b->cb = (COMP *)malloc(size * sizeof(COMP)); + + for ( i = 0; i < size; i++ ) { + angle = get_float(file, name, &cursor, line, sizeof(line)); + b->cb[i].real = cos(angle); + b->cb[i].imag = sin(angle); + } + + fclose(file); + + return b; +} + + +/* states for phase experiments */ + +struct PEXP { + float phi1; + float phi_prev[MAX_AMP]; + float Wo_prev; + int frames; + float snr; + float var; + int var_n; + struct codebook *vq1,*vq2,*vq3,*vq4,*vq5; + float vq_var; + int vq_var_n; + MODEL prev_model; + int state; +}; + + +/*---------------------------------------------------------------------------* \ + + phase_experiment_create() + + Inits states for phase quantisation experiments. + +\*---------------------------------------------------------------------------*/ + +struct PEXP * phase_experiment_create() { + struct PEXP *pexp; + int i; + + pexp = (struct PEXP *)malloc(sizeof(struct PEXP)); + assert (pexp != NULL); + + pexp->phi1 = 0; + for(i=0; i<MAX_AMP; i++) + pexp->phi_prev[i] = 0.0; + pexp->Wo_prev = 0.0; + pexp->frames = 0; + pexp->snr = 0.0; + pexp->var = 0.0; + pexp->var_n = 0; + + /* smoothed 10th order for 1st 1 khz */ + //pexp->vq1 = load("../unittest/ph1_10_1024.txt"); + //pexp->vq1->offset = 0; + + /* load experimental phase VQ */ + + //pexp->vq1 = load("../unittest/testn1_20_1024.txt"); + pexp->vq1 = load("../unittest/test.txt"); + //pexp->vq2 = load("../unittest/testn21_40_1024.txt"); + pexp->vq2 = load("../unittest/test11_20_1024.txt"); + pexp->vq3 = load("../unittest/test21_30_1024.txt"); + pexp->vq4 = load("../unittest/test31_40_1024.txt"); + pexp->vq5 = load("../unittest/test41_60_1024.txt"); + pexp->vq1->offset = 0; + pexp->vq2->offset = 10; + pexp->vq3->offset = 20; + pexp->vq4->offset = 30; + pexp->vq5->offset = 40; + + pexp->vq_var = 0.0; + pexp->vq_var_n = 0; + + pexp->state = 0; + + return pexp; +} + + +/*---------------------------------------------------------------------------* \ + + phase_experiment_destroy() + +\*---------------------------------------------------------------------------*/ + +void phase_experiment_destroy(struct PEXP *pexp) { + assert(pexp != NULL); + if (pexp->snr != 0.0) + printf("snr: %4.2f dB\n", pexp->snr/pexp->frames); + if (pexp->var != 0.0) + printf("var...: %4.3f std dev...: %4.3f (%d non zero phases)\n", + pexp->var/pexp->var_n, sqrt(pexp->var/pexp->var_n), pexp->var_n); + if (pexp->vq_var != 0.0) + printf("vq var: %4.3f vq std dev: %4.3f (%d non zero phases)\n", + pexp->vq_var/pexp->vq_var_n, sqrt(pexp->vq_var/pexp->vq_var_n), pexp->vq_var_n); + free(pexp); +} + + +/*---------------------------------------------------------------------------* \ + + Various test and experimental functions ................ + +\*---------------------------------------------------------------------------*/ + +/* Bubblesort to find highest amplitude harmonics */ + +struct AMPINDEX { + float amp; + int index; +}; + +static void bubbleSort(struct AMPINDEX numbers[], int array_size) +{ + int i, j; + struct AMPINDEX temp; + + for (i = (array_size - 1); i > 0; i--) + { + for (j = 1; j <= i; j++) + { + //printf("i %d j %d %f %f \n", i, j, numbers[j-1].amp, numbers[j].amp); + if (numbers[j-1].amp < numbers[j].amp) + { + temp = numbers[j-1]; + numbers[j-1] = numbers[j]; + numbers[j] = temp; + } + } + } +} + + +static void print_pred_error(struct PEXP *pexp, MODEL *model, int start, int end, float mag_thresh) { + int i; + float mag; + + mag = 0.0; + for(i=start; i<=end; i++) + mag += model->A[i]*model->A[i]; + mag = 10*log10(mag/(end-start)); + + if (mag > mag_thresh) { + for(i=start; i<=end; i++) { + float pred = pexp->phi_prev[i] + N*i*(model->Wo + pexp->Wo_prev)/2.0; + float err = pred - model->phi[i]; + err = atan2(sin(err),cos(err)); + printf("%f\n",err); + } + //printf("\n"); + } + +} + + +static void predict_phases(struct PEXP *pexp, MODEL *model, int start, int end) { + int i; + + for(i=start; i<=end; i++) { + model->phi[i] = pexp->phi_prev[i] + N*i*model->Wo; + } + +} +static float refine_Wo(struct PEXP *pexp, + MODEL *model, + int start, + int end); + +/* Fancy state based phase prediction. Actually works OK on most utterances, + but could use some tuning. Breaks down a bit on mmt1. */ + +static void predict_phases_state(struct PEXP *pexp, MODEL *model, int start, int end) { + int i, next_state; + float best_Wo, dWo; + + //best_Wo = refine_Wo(pexp, model, start, end); + //best_Wo = (model->Wo + pexp->Wo_prev)/2.0; + best_Wo = model->Wo; + + dWo = fabs(model->Wo - pexp->Wo_prev)/model->Wo; + next_state = pexp->state; + switch(pexp->state) { + case 0: + if (dWo < 0.1) { + /* UV -> V transition, so start with phases in lock. They will + drift a bit over voiced track which is kinda what we want, so + we don't get clicky speech. + */ + next_state = 1; + for(i=start; i<=end; i++) + pexp->phi_prev[i] = i*pexp->phi1; + } + + break; + case 1: + if (dWo > 0.1) + next_state = 0; + break; + } + pexp->state = next_state; + + if (pexp->state == 0) + for(i=start; i<=end; i++) { + model->phi[i] = PI*(1.0 - 2.0*rand()/RAND_MAX); + } + else + for(i=start; i<=end; i++) { + model->phi[i] = pexp->phi_prev[i] + N*i*best_Wo; + } + printf("state %d\n", pexp->state); +} + +static void struct_phases(struct PEXP *pexp, MODEL *model, int start, int end) { + int i; + + for(i=start; i<=end; i++) + model->phi[i] = pexp->phi1*i; + +} + + +static void predict_phases2(struct PEXP *pexp, MODEL *model, int start, int end) { + int i; + float pred, str, diff; + + for(i=start; i<=end; i++) { + pred = pexp->phi_prev[i] + N*i*model->Wo; + str = pexp->phi1*i; + diff = str - pred; + diff = atan2(sin(diff), cos(diff)); + if (diff > 0) + pred += PI/16; + else + pred -= PI/16; + model->phi[i] = pred; + } + +} + +static void rand_phases(MODEL *model, int start, int end) { + int i; + + for(i=start; i<=end; i++) + model->phi[i] = PI*(1.0 - 2.0*(float)rand()/RAND_MAX); + +} + +static void quant_phase(float *phase, float min, float max, int bits) { + int levels = 1 << bits; + int index; + float norm, step; + + norm = (*phase - min)/(max - min); + index = floor(levels*norm); + + //printf("phase %f norm %f index %d ", *phase, norm, index); + if (index < 0 ) index = 0; + if (index > (levels-1)) index = levels-1; + //printf("index %d ", index); + step = (max - min)/levels; + *phase = min + step*index + 0.5*step; + //printf("step %f phase %f\n", step, *phase); +} + +static void quant_phases(MODEL *model, int start, int end, int bits) { + int i; + + for(i=start; i<=end; i++) { + quant_phase(&model->phi[i], -PI, PI, bits); + } +} + +static void fixed_bits_per_frame(struct PEXP *pexp, MODEL *model, int m, int budget) { + int res, finished; + + res = 3; + finished = 0; + + while(!finished) { + if (m > model->L/2) + res = 2; + if (((budget - res) < 0) || (m > model->L)) + finished = 1; + else { + quant_phase(&model->phi[m], -PI, PI, res); + budget -= res; + m++; + } + } + printf("m: %d L: %d budget: %d\n", m, model->L, budget); + predict_phases(pexp, model, m, model->L); + //rand_phases(model, m, model->L); +} + +/* used to plot histogram of quantisation error, for 3 bits, 8 levels, + should be uniform between +/- PI/8 */ + +static void check_phase_quant(MODEL *model, float tol) +{ + int m; + float phi_before[MAX_AMP]; + + for(m=1; m<=model->L; m++) + phi_before[m] = model->phi[m]; + + quant_phases(model, 1, model->L, 3); + + for(m=1; m<=model->L; m++) { + float err = phi_before[m] - model->phi[m]; + printf("%f\n", err); + if (fabs(err) > tol) + exit(0); + } +} + + +static float est_phi1(MODEL *model, int start, int end) +{ + int m; + float delta, s, c, phi1_est; + + if (end > model->L) + end = model->L; + + s = c = 0.0; + for(m=start; m<end; m++) { + delta = model->phi[m+1] - model->phi[m]; + s += sin(delta); + c += cos(delta); + } + + phi1_est = atan2(s,c); + + return phi1_est; +} + +static void print_phi1_pred_error(MODEL *model, int start, int end) +{ + int m; + float phi1_est; + + phi1_est = est_phi1(model, start, end); + + for(m=start; m<end; m++) { + float err = model->phi[m+1] - model->phi[m] - phi1_est; + err = atan2(sin(err),cos(err)); + printf("%f\n", err); + } +} + + +static void first_order_band(MODEL *model, int start, int end, float phi1_est) +{ + int m; + float pred_err, av_pred_err; + float c,s; + + s = c = 0.0; + for(m=start; m<end; m++) { + pred_err = model->phi[m] - phi1_est*m; + s += sin(pred_err); + c += cos(pred_err); + } + + av_pred_err = atan2(s,c); + for(m=start; m<end; m++) { + model->phi[m] = av_pred_err + phi1_est*m; + model->phi[m] = atan2(sin(model->phi[m]), cos(model->phi[m])); + } + +} + + +static void sub_linear(MODEL *model, int start, int end, float phi1_est) +{ + int m; + + for(m=start; m<end; m++) { + model->phi[m] = m*phi1_est; + } +} + + +static void top_amp(struct PEXP *pexp, MODEL *model, int start, int end, int n_harm, int pred) +{ + int removed = 0, not_removed = 0; + int top, i, j; + struct AMPINDEX sorted[MAX_AMP]; + + /* sort into ascending order of amplitude */ + + printf("\n"); + for(i=start,j=0; i<end; i++,j++) { + sorted[j].amp = model->A[i]; + sorted[j].index = i; + printf("%f ", model->A[i]); + } + bubbleSort(sorted, end-start); + + printf("\n"); + for(j=0; j<n_harm; j++) + printf("%d %f\n", j, sorted[j].amp); + + /* keep phase of top n_harm, predict others */ + + for(i=start; i<end; i++) { + top = 0; + for(j=0; j<n_harm; j++) { + if (model->A[i] == sorted[j].amp) { + top = 1; + assert(i == sorted[j].index); + } + } + + #define ALTTOP + #ifdef ALTTOP + model->phi[i] = 0.0; /* make sure */ + if (top) { + model->phi[i] = i*pexp->phi1; + removed++; + } + else { + model->phi[i] = PI*(1.0 - 2.0*(float)rand()/RAND_MAX); // note: try rand for higher harms + removed++; + } + #else + if (!top) { + model->phi[i] = 0.0; /* make sure */ + if (pred) { + //model->phi[i] = pexp->phi_prev[i] + i*N*(model->Wo + pexp->Wo_prev)/2.0; + model->phi[i] = i*model->phi[1]; + } + else + model->phi[i] = PI*(1.0 - 2.0*(float)rand()/RAND_MAX); // note: try rand for higher harms + removed++; + } + else { + /* need to make this work thru budget of bits */ + quant_phase(&model->phi[i], -PI, PI, 3); + not_removed++; + } + #endif + } + printf("dim: %d rem %d not_rem %d\n", end-start, removed, not_removed); + +} + + +static void limit_prediction_error(struct PEXP *pexp, MODEL *model, int start, int end, float limit) +{ + int i; + float pred, pred_error, error; + + for(i=start; i<=end; i++) { + pred = pexp->phi_prev[i] + N*i*(model->Wo + pexp->Wo_prev)/2.0; + pred_error = pred - model->phi[i]; + pred_error -= TWO_PI*floor((pred_error+PI)/TWO_PI); + quant_phase(&pred_error, -limit, limit, 2); + + error = pred - pred_error - model->phi[i]; + error -= TWO_PI*floor((error+PI)/TWO_PI); + printf("%f\n", pred_error); + model->phi[i] = pred - pred_error; + } +} + + +static void quant_prediction_error(struct PEXP *pexp, MODEL *model, int start, int end, float limit) +{ + int i; + float pred, pred_error; + + for(i=start; i<=end; i++) { + pred = pexp->phi_prev[i] + N*i*(model->Wo + pexp->Wo_prev)/2.0; + pred_error = pred - model->phi[i]; + pred_error -= TWO_PI*floor((pred_error+PI)/TWO_PI); + + printf("%f\n", pred_error); + model->phi[i] = pred - pred_error; + } +} + + +static void print_sparse_pred_error(struct PEXP *pexp, MODEL *model, int start, int end, float mag_thresh) +{ + int i, index; + float mag, pred, error; + float sparse_pe[MAX_AMP]; + + mag = 0.0; + for(i=start; i<=end; i++) + mag += model->A[i]*model->A[i]; + mag = 10*log10(mag/(end-start)); + + if (mag > mag_thresh) { + for(i=0; i<MAX_AMP; i++) { + sparse_pe[i] = 0.0; + } + + for(i=start; i<=end; i++) { + pred = pexp->phi_prev[i] + N*i*(model->Wo + pexp->Wo_prev)/2.0; + error = pred - model->phi[i]; + error = atan2(sin(error),cos(error)); + + index = MAX_AMP*i*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe[index] = error; + } + + /* dump spare phase vector in polar format */ + + for(i=0; i<MAX_AMP; i++) + printf("%f ", sparse_pe[i]); + printf("\n"); + } +} + + +static void update_snr_calc(struct PEXP *pexp, MODEL *model, float before[]) +{ + int m; + float signal, noise, diff; + + signal = 0.0; noise = 0.0; + for(m=1; m<=model->L; m++) { + signal += model->A[m]*model->A[m]; + diff = cos(model->phi[m]) - cos(before[m]); + noise += pow(model->A[m]*diff, 2.0); + diff = sin(model->phi[m]) - sin(before[m]); + noise += pow(model->A[m]*diff, 2.0); + //printf("%f %f\n", before[m], model->phi[m]); + } + //printf("%f %f snr = %f\n", signal, noise, 10.0*log10(signal/noise)); + pexp->snr += 10.0*log10(signal/noise); +} + + +static void update_variance_calc(struct PEXP *pexp, MODEL *model, float before[]) +{ + int m; + float diff; + + for(m=1; m<model->L; m++) { + diff = model->phi[m] - before[m]; + diff = atan2(sin(diff), cos(diff)); + pexp->var += diff*diff; + } + pexp->var_n += model->L; +} + +void print_vec(COMP cb[], int d, int e) +{ + int i,j; + + for(j=0; j<e; j++) { + for(i=0; i<d; i++) + printf("%f %f ", cb[j*d+i].real, cb[j*d+i].imag); + printf("\n"); + } +} + +static COMP cconj(COMP a) +{ + COMP res; + + res.real = a.real; + res.imag = -a.imag; + + return res; +} + +static COMP cadd(COMP a, COMP b) +{ + COMP res; + + res.real = a.real + b.real; + res.imag = a.imag + b.imag; + + return res; +} + +static COMP cmult(COMP a, COMP b) +{ + COMP res; + + res.real = a.real*b.real - a.imag*b.imag; + res.imag = a.real*b.imag + a.imag*b.real; + + return res; +} + +static int vq_phase(COMP cb[], COMP vec[], float weights[], int d, int e, float *se) +{ + float error; /* current error */ + int besti; /* best index so far */ + float best_error; /* best error so far */ + int i,j; + int ignore; + COMP diffr; + float diffp, metric, best_metric; + + besti = 0; + best_metric = best_error = 1E32; + for(j=0; j<e; j++) { + error = 0.0; + metric = 0.0; + for(i=0; i<d; i++) { + ignore = (vec[i].real == 0.0) && (vec[i].imag == 0.0); + if (!ignore) { + diffr = cmult(cb[j*d+i], cconj(vec[i])); + diffp = atan2(diffr.imag, diffr.real); + error += diffp*diffp; + metric += weights[i]*weights[i]*diffp*diffp; + //metric += weights[i]*diffp*diffp; + //metric = log10(weights[i]*fabs(diffp)); + //printf("diffp %f metric %f\n", diffp, metric); + //if (metric < log10(PI/(8.0*sqrt(3.0)))) + // metric = log10(PI/(8.0*sqrt(3.0))); + } + } + if (metric < best_metric) { + best_metric = metric; + best_error = error; + besti = j; + } + } + + *se += best_error; + + return(besti); +} + + +static float refine_Wo(struct PEXP *pexp, + MODEL *model, + int start, + int end) + +{ + int i; + float Wo_est, best_var, Wo, var, pred, error, best_Wo; + + /* test variance over a range of Wo values */ + + Wo_est = (model->Wo + pexp->Wo_prev)/2.0; + best_var = 1E32; + for(Wo=0.97*Wo_est; Wo<=1.03*Wo_est; Wo+=0.001*Wo_est) { + + /* predict phase and sum differences between harmonics */ + + var = 0.0; + for(i=start; i<=end; i++) { + pred = pexp->phi_prev[i] + N*i*Wo; + error = pred - model->phi[i]; + error = atan2(sin(error),cos(error)); + var += error*error; + } + + if (var < best_var) { + best_var = var; + best_Wo = Wo; + } + } + + return best_Wo; +} + + +static void split_vq(COMP sparse_pe_out[], struct PEXP *pexp, struct codebook *vq, float weights[], COMP sparse_pe_in[]) +{ + int i, j, non_zero, vq_ind; + + //printf("\n offset %d k %d m %d j: ", vq->offset, vq->k, vq->m); + vq_ind = vq_phase(vq->cb, &sparse_pe_in[vq->offset], &weights[vq->offset], vq->k, vq->m, &pexp->vq_var); + + non_zero = 0; + for(i=0, j=vq->offset; i<vq->k; i++,j++) { + //printf("%f ", atan2(sparse_pe[i].imag, sparse_pe[i].real)); + if ((sparse_pe_in[j].real != 0.0) && (sparse_pe_in[j].imag != 0.0)) { + //printf("%d ", j); + sparse_pe_out[j] = vq->cb[vq->k * vq_ind + i]; + non_zero++; + } + } + pexp->vq_var_n += non_zero; +} + + +static void sparse_vq_pred_error(struct PEXP *pexp, + MODEL *model +) +{ + int i, index; + float pred, error, error_q_angle, best_Wo; + COMP sparse_pe_in[MAX_AMP], sparse_pe_out[MAX_AMP]; + float weights[MAX_AMP]; + COMP error_q_rect; + + best_Wo = refine_Wo(pexp, model, 1, model->L); + //best_Wo = (model->Wo + pexp->Wo_prev)/2.0; + + /* transform to sparse pred error vector */ + + for(i=0; i<MAX_AMP; i++) { + sparse_pe_in[i].real = 0.0; + sparse_pe_in[i].imag = 0.0; + sparse_pe_out[i].real = 0.0; + sparse_pe_out[i].imag = 0.0; + } + + //printf("\n"); + for(i=1; i<=model->L; i++) { + pred = pexp->phi_prev[i] + N*i*best_Wo; + error = pred - model->phi[i]; + + index = MAX_AMP*i*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_in[index].real = cos(error); + sparse_pe_in[index].imag = sin(error); + sparse_pe_out[index] = sparse_pe_in[index]; + weights[index] = model->A[i]; + //printf("%d ", index); + } + + /* vector quantise */ + + split_vq(sparse_pe_out, pexp, pexp->vq1, weights, sparse_pe_in); + split_vq(sparse_pe_out, pexp, pexp->vq2, weights, sparse_pe_in); + split_vq(sparse_pe_out, pexp, pexp->vq3, weights, sparse_pe_in); + split_vq(sparse_pe_out, pexp, pexp->vq4, weights, sparse_pe_in); + split_vq(sparse_pe_out, pexp, pexp->vq5, weights, sparse_pe_in); + + /* transform quantised phases back */ + + for(i=1; i<=model->L; i++) { + pred = pexp->phi_prev[i] + N*i*best_Wo; + + index = MAX_AMP*i*model->Wo/PI; + assert(index < MAX_AMP); + error_q_rect = sparse_pe_out[index]; + error_q_angle = atan2(error_q_rect.imag, error_q_rect.real); + model->phi[i] = pred - error_q_angle; + model->phi[i] = atan2(sin(model->phi[i]), cos(model->phi[i])); + } +} + + +static void predict_phases1(struct PEXP *pexp, MODEL *model, int start, int end) { + int i; + float best_Wo; + + best_Wo = refine_Wo(pexp, model, 1, model->L); + + for(i=start; i<=end; i++) { + model->phi[i] = pexp->phi_prev[i] + N*i*best_Wo; + } +} + + +/* + This functions tests theory that some bands can be combined together + due to less frequency resolution at higher frequencies. This will + reduce the amount of information we need to encode. +*/ + +void smooth_phase(struct PEXP *pexp, MODEL *model, int mode) +{ + int m, i, j, index, step, v, en, nav, st; + COMP sparse_pe_in[MAX_AMP], av; + COMP sparse_pe_out[MAX_AMP]; + COMP smoothed[MAX_AMP]; + float best_Wo, pred, err; + float weights[MAX_AMP]; + float avw, smoothed_weights[MAX_AMP]; + COMP smoothed_in[MAX_AMP], smoothed_out[MAX_AMP]; + + best_Wo = refine_Wo(pexp, model, 1, model->L); + + for(m=0; m<MAX_AMP; m++) { + sparse_pe_in[m].real = sparse_pe_in[m].imag = 0.0; + sparse_pe_out[m].real = sparse_pe_out[m].imag = 0.0; + } + + /* set up sparse array */ + + for(m=1; m<=model->L; m++) { + pred = pexp->phi_prev[m] + N*m*best_Wo; + err = model->phi[m] - pred; + err = atan2(sin(err),cos(err)); + + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + sparse_pe_in[index].real = model->A[m]*cos(err); + sparse_pe_in[index].imag = model->A[m]*sin(err); + sparse_pe_out[index] = sparse_pe_in[index]; + weights[index] = model->A[m]; + } + + /* now combine samples at high frequencies to reduce dimension */ + + step = 2; + st = 0; + for(i=st,v=0; i<MAX_AMP; i+=step,v++) { + + /* average over one band */ + + av.real = 0.0; av.imag = 0.0; avw = 0.0; nav = 0; + en = i+step; + if (en > (MAX_AMP-1)) + en = MAX_AMP-1; + for(j=i; j<en; j++) { + if ((sparse_pe_in[j].real != 0.0) &&(sparse_pe_in[j].imag != 0.0) ) { + av = cadd(av, sparse_pe_in[j]); + avw += weights[j]; + nav++; + } + } + if (nav) { + smoothed[v] = av; + smoothed_weights[v] = avw/nav; + } + else + smoothed[v].real = smoothed[v].imag = 0.0; + } + + if (mode == 2) { + for(i=0; i<MAX_AMP; i++) { + smoothed_in[i] = smoothed[i]; + smoothed_out[i] = smoothed_in[i]; + } + split_vq(smoothed_out, pexp, pexp->vq1, smoothed_weights, smoothed_in); + for(i=0; i<MAX_AMP; i++) + smoothed[i] = smoothed_out[i]; + } + + /* set all samples to smoothed average */ + + for(i=st,v=0; i<MAX_AMP; i+=step,v++) { + en = i+step; + if (en > (MAX_AMP-1)) + en = MAX_AMP-1; + for(j=i; j<en; j++) + sparse_pe_out[j] = smoothed[v]; + if (mode == 1) + printf("%f ", atan2(smoothed[v].imag, smoothed[v].real)); + } + if (mode == 1) + printf("\n"); + + /* convert back to Am */ + + for(m=1; m<=model->L; m++) { + index = MAX_AMP*m*model->Wo/PI; + assert(index < MAX_AMP); + pred = pexp->phi_prev[m] + N*m*best_Wo; + err = atan2(sparse_pe_out[index].imag, sparse_pe_out[index].real); + model->phi[m] = pred + err; + } + +} + +/* + Another version of a functions that tests the theory that some bands + can be combined together due to less frequency resolution at higher + frequencies. This will reduce the amount of information we need to + encode. +*/ + +void smooth_phase2(struct PEXP *pexp, MODEL *model) { + float m; + float step; + int a,b,h,i; + float best_Wo, pred, err, s,c, phi1_; + + best_Wo = refine_Wo(pexp, model, 1, model->L); + + step = (float)model->L/30; + printf("\nL: %d step: %3.2f am,bm: ", model->L, step); + for(m=(float)model->L/4; m<=model->L; m+=step) { + a = floor(m); + b = floor(m+step); + if (b > model->L) b = model->L; + h = b-a; + + printf("%d,%d,(%d) ", a, b, h); + c = s = 0.0; + if (h>1) { + for(i=a; i<b; i++) { + pred = pexp->phi_prev[i] + N*i*best_Wo; + err = model->phi[i] - pred; + c += cos(err); s += sin(err); + } + phi1_ = atan2(s,c); + for(i=a; i<b; i++) { + pred = pexp->phi_prev[i] + N*i*best_Wo; + printf("%d: %4.3f -> ", i, model->phi[i]); + model->phi[i] = pred + phi1_; + model->phi[i] = atan2(sin(model->phi[i]),cos(model->phi[i])); + printf("%4.3f ", model->phi[i]); + } + } + } +} + + +#define MAX_BINS 40 +//static float bins[] = {2600.0, 2800.0, 3000.0, 3200.0, 3400.0, 3600.0, 3800.0, 4000.0}; +static float bins[] = {/* + + 1000.0, 1100.0, 1200.0, 1300.0, 1400.0, + 1500.0, 1600.0, 1700.0, 1800.0, 1900.0,*/ + + 2000.0, 2400.0, 2800.0, + 3000.0, 3400.0, 3600.0, 4000.0}; + +void smooth_phase3(struct PEXP *pexp, MODEL *model) { + int m, i; + int nbins; + int b; + float f, best_Wo, pred, err; + COMP av[MAX_BINS]; + + nbins = sizeof(bins)/sizeof(float); + best_Wo = refine_Wo(pexp, model, 1, model->L); + + /* clear all bins */ + + for(i=0; i<MAX_BINS; i++) { + av[i].real = 0.0; + av[i].imag = 0.0; + } + + /* add phases into each bin */ + + for(m=1; m<=model->L; m++) { + f = m*model->Wo*FS/TWO_PI; + if (f > bins[0]) { + + /* find bin */ + + for(i=0; i<nbins; i++) + if ((f > bins[i]) && (f <= bins[i+1])) + b = i; + assert(b < MAX_BINS); + + /* est predicted phase from average */ + + pred = pexp->phi_prev[m] + N*m*best_Wo; + err = model->phi[m] - pred; + av[b].real += cos(err); av[b].imag += sin(err); + } + + } + + /* use averages to est phases */ + + for(m=1; m<=model->L; m++) { + f = m*model->Wo*FS/TWO_PI; + if (f > bins[0]) { + + /* find bin */ + + for(i=0; i<nbins; i++) + if ((f > bins[i]) && (f <= bins[i+1])) + b = i; + assert(b < MAX_BINS); + + /* add predicted phase error to this bin */ + + printf("L %d m %d f %4.f b %d\n", model->L, m, f, b); + + pred = pexp->phi_prev[m] + N*m*best_Wo; + err = atan2(av[b].imag, av[b].real); + printf(" %d: %4.3f -> ", m, model->phi[m]); + model->phi[m] = pred + err; + model->phi[m] = atan2(sin(model->phi[m]),cos(model->phi[m])); + printf("%4.3f\n", model->phi[m]); + } + } + printf("\n"); +} + + +/* + Try to code the phase of the largest amplitude in each band. Randomise the + phase of the other harmonics. The theory is that only the largest harmonic + will be audible. +*/ + +void cb_phase1(struct PEXP *pexp, MODEL *model) { + int m, i; + int nbins; + int b; + float f, best_Wo; + float max_val[MAX_BINS]; + int max_ind[MAX_BINS]; + + nbins = sizeof(bins)/sizeof(float); + best_Wo = refine_Wo(pexp, model, 1, model->L); + + for(i=0; i<nbins; i++) + max_val[i] = 0.0; + + /* determine max amplitude for each bin */ + + for(m=1; m<=model->L; m++) { + f = m*model->Wo*FS/TWO_PI; + if (f > bins[0]) { + + /* find bin */ + + for(i=0; i<nbins; i++) + if ((f > bins[i]) && (f <= bins[i+1])) + b = i; + assert(b < MAX_BINS); + + if (model->A[m] > max_val[b]) { + max_val[b] = model->A[m]; + max_ind[b] = m; + } + } + + } + + /* randomise phase of other harmonics */ + + for(m=1; m<=model->L; m++) { + f = m*model->Wo*FS/TWO_PI; + if (f > bins[0]) { + + /* find bin */ + + for(i=0; i<nbins; i++) + if ((f > bins[i]) && (f <= bins[i+1])) + b = i; + assert(b < MAX_BINS); + + if (m != max_ind[b]) + model->phi[m] = pexp->phi_prev[m] + N*m*best_Wo; + } + } +} + + +/* + Theory is only the phase of the envelope of signal matters within a + Critical Band. So we estimate the position of an impulse that + approximates the envelope of the signal. +*/ + +void cb_phase2(struct PEXP *pexp, MODEL *model) { + int st, m, i, a, b, step; + float diff,w,c,s,phi1_; + float A[MAX_AMP]; + + for(m=1; m<=model->L; m++) { + A[m] = model->A[m]; + model->A[m] = 0; + } + + st = 2*model->L/4; + step = 3; + model->phi[1] = pexp->phi_prev[1] + (pexp->Wo_prev+model->Wo)*N/2.0; + + printf("L=%d ", model->L); + for(m=st; m<st+step*2; m+=step) { + a = m; b=a+step; + if (b > model->L) + b = model->L; + + c = s = 0; + for(i=a; i<b-1; i++) { + printf("diff %d,%d ", i, i+1); + diff = model->phi[i+1] - model->phi[i]; + //w = (model->A[i+1] + model->A[i])/2; + w = 1.0; + c += w*cos(diff); s += w*sin(diff); + } + phi1_ = atan2(s,c); + printf("replacing: "); + for(i=a; i<b; i++) { + //model->phi[i] = i*phi1_; + //model->phi[i] = i*model->phi[1]; + //model->phi[i] = m*(pexp->Wo_prev+model->Wo)*N/2.0; + model->A[m] = A[m]; + printf("%d ", i); + } + printf(" . "); + } + printf("\n"); +} + + +static void smooth_phase4(MODEL *model) { + int m; + float phi_m, phi_m_1; + + if (model->L > 25) { + printf("\nL %d\n", model->L); + for(m=model->L/2; m<=model->L; m+=2) { + if ((m+1) <= model->L) { + phi_m = (model->phi[m] - model->phi[m+1])/2.0; + phi_m_1 = (model->phi[m+1] - model->phi[m])/2.0; + model->phi[m] = phi_m; + model->phi[m+1] = phi_m_1; + printf("%d %4.3f %4.3f ", m, phi_m, phi_m_1); + } + } + } + +} + +/* try repeating last frame, just advance phases to account for time shift */ + +static void repeat_phases(struct PEXP *pexp, MODEL *model) { + int m; + + *model = pexp->prev_model; + for(m=1; m<=model->L; m++) + model->phi[m] += N*m*model->Wo; + +} + +/*---------------------------------------------------------------------------*\ + + phase_experiment() + + Phase quantisation experiments. + +\*---------------------------------------------------------------------------*/ + +void phase_experiment(struct PEXP *pexp, MODEL *model, char *arg) { + int m; + float before[MAX_AMP]; + + assert(pexp != NULL); + memcpy(before, &model->phi[0], sizeof(float)*MAX_AMP); + + if (strcmp(arg,"q3") == 0) { + quant_phases(model, 1, model->L, 3); + update_snr_calc(pexp, model, before); + update_variance_calc(pexp, model, before); + } + + if (strcmp(arg,"dec2") == 0) { + if ((pexp->frames % 2) != 0) { + predict_phases(pexp, model, 1, model->L); + update_snr_calc(pexp, model, before); + update_variance_calc(pexp, model, before); + } + } + + if (strcmp(arg,"repeat") == 0) { + if ((pexp->frames % 2) != 0) { + repeat_phases(pexp, model); + update_snr_calc(pexp, model, before); + update_variance_calc(pexp, model, before); + } + } + + if (strcmp(arg,"vq") == 0) { + sparse_vq_pred_error(pexp, model); + update_snr_calc(pexp, model, before); + update_variance_calc(pexp, model, before); + } + + if (strcmp(arg,"pred") == 0) + predict_phases_state(pexp, model, 1, model->L); + + if (strcmp(arg,"pred1k") == 0) + predict_phases(pexp, model, 1, model->L/4); + + if (strcmp(arg,"smooth") == 0) { + smooth_phase(pexp, model,0); + update_snr_calc(pexp, model, before); + } + if (strcmp(arg,"smoothtrain") == 0) + smooth_phase(pexp, model,1); + if (strcmp(arg,"smoothvq") == 0) { + smooth_phase(pexp, model,2); + update_snr_calc(pexp, model, before); + } + + if (strcmp(arg,"smooth2") == 0) + smooth_phase2(pexp, model); + if (strcmp(arg,"smooth3") == 0) + smooth_phase3(pexp, model); + if (strcmp(arg,"smooth4") == 0) + smooth_phase4(model); + if (strcmp(arg,"vqsmooth3") == 0) { + sparse_vq_pred_error(pexp, model); + smooth_phase3(pexp, model); + } + + if (strcmp(arg,"cb1") == 0) { + cb_phase1(pexp, model); + update_snr_calc(pexp, model, before); + } + + if (strcmp(arg,"top") == 0) { + //top_amp(pexp, model, 1, model->L/4, 4, 1); + //top_amp(pexp, model, model->L/4, model->L/3, 4, 1); + //top_amp(pexp, model, model->L/3+1, model->L/2, 4, 1); + //top_amp(pexp, model, model->L/2, model->L, 6, 1); + //rand_phases(model, model->L/2, 3*model->L/4); + //struct_phases(pexp, model, model->L/2, 3*model->L/4); + //update_snr_calc(pexp, model, before); + } + + if (strcmp(arg,"pred23") == 0) { + predict_phases2(pexp, model, model->L/2, model->L); + update_snr_calc(pexp, model, before); + } + + if (strcmp(arg,"struct23") == 0) { + struct_phases(pexp, model, model->L/2, 3*model->L/4 ); + update_snr_calc(pexp, model, before); + } + + if (strcmp(arg,"addnoise") == 0) { + int m; + float max; + + max = 0; + for(m=1; m<=model->L; m++) + if (model->A[m] > max) + max = model->A[m]; + max = 20.0*log10(max); + for(m=1; m<=model->L; m++) + if (20.0*log10(model->A[m]) < (max-20)) { + model->phi[m] += (PI/4)*(1.0 -2.0*rand()/RAND_MAX); + //printf("m %d\n", m); + } + } + + /* normalise phases */ + + for(m=1; m<=model->L; m++) + model->phi[m] = atan2(sin(model->phi[m]), cos(model->phi[m])); + + /* update states */ + + //best_Wo = refine_Wo(pexp, model, model->L/2, model->L); + pexp->phi1 += N*model->Wo; + + for(m=1; m<=model->L; m++) + pexp->phi_prev[m] = model->phi[m]; + pexp->Wo_prev = model->Wo; + pexp->frames++; + pexp->prev_model = *model; +} + +#ifdef OLD_STUFF + //quant_phases(model, 1, model->L, 3); + //update_variance_calc(pexp, model, before); + //print_sparse_pred_error(pexp, model, 1, model->L, 40.0); + + //sparse_vq_pred_error(pexp, model); + + //quant_phases(model, model->L/4+1, model->L, 3); + + //predict_phases1(pexp, model, 1, model->L/4); + //quant_phases(model, model->L/4+1, model->L, 3); + + //quant_phases(model, 1, model->L/8, 3); + + //update_snr_calc(pexp, model, before); + //update_variance_calc(pexp, model, before); + + //fixed_bits_per_frame(pexp, model, 40); + //struct_phases(pexp, model, 1, model->L/4); + //rand_phases(model, 10, model->L); + //for(m=1; m<=model->L; m++) + // model->A[m] = 0.0; + //model->A[model->L/2] = 1000; + //repeat_phases(model, 20); + //predict_phases(pexp, model, 1, model->L/4); + //quant_phases(model, 1, 10, 3); + //quant_phases(model, 10, 20, 2); + //repeat_phases(model, 20); + //rand_phases(model, 3*model->L/4, model->L); + // print_phi1_pred_error(model, 1, model->L); + //predict_phases(pexp, model, 1, model->L/4); + //first_order_band(model, model->L/4, model->L/2); + //first_order_band(model, model->L/2, 3*model->L/4); + //if (fabs(model->Wo - pexp->Wo_prev)< 0.1*model->Wo) + + //print_pred_error(pexp, model, 1, model->L, 40.0); + //print_sparse_pred_error(pexp, model, 1, model->L, 40.0); + + //phi1_est = est_phi1(model, 1, model->L/4); + //print_phi1_pred_error(model, 1, model->L/4); + + //first_order_band(model, 1, model->L/4, phi1_est); + //sub_linear(model, 1, model->L/4, phi1_est); + + //top_amp(pexp, model, 1, model->L/4, 4); + //top_amp(pexp, model, model->L/4, model->L/2, 4); + + //first_order_band(model, 1, model->L/4, phi1_est); + //first_order_band(model, model->L/4, model->L/2, phi1_est); + + //if (fabs(model->Wo - pexp->Wo_prev) > 0.2*model->Wo) + // rand_phases(model, model->L/2, model->L); + + //top_amp(pexp, model, 1, model->L/4, 4); + //top_amp(pexp, model, model->L/4, model->L/2, 8); + //top_amp(pexp, model, model->L/4+1, model->L/2, 10, 1); + //top_amp(pexp, model, 1, model->L/4, 10, 1); + //top_amp(pexp, model, model->L/4+1, 3*model->L/4, 10, 1); + //top_amp(pexp, model, 1, 3*model->L/4, 20, 1); + + #ifdef REAS_CAND1 + predict_phases(pexp, model, 1, model->L/4); + top_amp(pexp, model, model->L/4+1, 3*model->L/4, 10, 1); + rand_phases(model, 3*model->L/4+1, model->L); + #endif + + #ifdef REAS_CAND2 + if ((pexp->frames % 2) == 0) { + //printf("quant\n"); + predict_phases(pexp, model, 1, model->L/4); + //top_amp(pexp, model, model->L/4+1, 3*model->L/4, 20, 1); + top_amp(pexp, model, model->L/4+1, 7*model->L/8, 20, 1); + rand_phases(model, 7*model->L/8+1, model->L); + } + else { + //printf("predict\n"); + predict_phases(pexp, model, 1, model->L); + } + #endif + + //#define REAS_CAND3 + #ifdef REAS_CAND3 + if ((pexp->frames % 3) != 0) { + printf("pred\n"); + predict_phases(pexp, model, 1, model->L); + } + else { + predict_phases(pexp, model, 1, model->L/4); + fixed_bits_per_frame(pexp, model, model->L/4+1, 60); + } + #endif + //predict_phases(pexp, model, model->L/4, model->L); + + + //print_pred_error(pexp, model, 1, model->L); + //limit_prediction_error(pexp, model, model->L/2, model->L, PI/2); +#endif diff --git a/gr-vocoder/lib/codec2/phaseexp.h b/gr-vocoder/lib/codec2/phaseexp.h new file mode 100644 index 0000000000..865e8aede1 --- /dev/null +++ b/gr-vocoder/lib/codec2/phaseexp.h @@ -0,0 +1,39 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: phaseexp.h + AUTHOR......: David Rowe + DATE CREATED: June 2012 + + Experimental functions for quantising, modelling and synthesising phase. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +#ifndef __PHASEEXP__ +#define __PHASEEXP__ + +#include "kiss_fft.h" + +struct PEXP; + +struct PEXP * phase_experiment_create(); +void phase_experiment_destroy(struct PEXP *pexp); +void phase_experiment(struct PEXP *pexp, MODEL *model, char *arg); + +#endif diff --git a/gr-vocoder/lib/codec2/pilot_coeff.h b/gr-vocoder/lib/codec2/pilot_coeff.h new file mode 100644 index 0000000000..66e7501d8f --- /dev/null +++ b/gr-vocoder/lib/codec2/pilot_coeff.h @@ -0,0 +1,34 @@ +/* Generated by pilot_coeff_file() Octave function */ + +const float pilot_coeff[]={ + 0.00204705, + 0.00276339, + 0.00432595, + 0.00697042, + 0.0108452, + 0.0159865, + 0.0223035, + 0.029577, + 0.0374709, + 0.045557, + 0.0533491, + 0.0603458, + 0.0660751, + 0.070138, + 0.0722452, + 0.0722452, + 0.070138, + 0.0660751, + 0.0603458, + 0.0533491, + 0.045557, + 0.0374709, + 0.029577, + 0.0223035, + 0.0159865, + 0.0108452, + 0.00697042, + 0.00432595, + 0.00276339, + 0.00204705 +}; diff --git a/gr-vocoder/lib/codec2/postfilter.c b/gr-vocoder/lib/codec2/postfilter.c index 05d77c8450..7c1a6061a0 100644 --- a/gr-vocoder/lib/codec2/postfilter.c +++ b/gr-vocoder/lib/codec2/postfilter.c @@ -27,6 +27,7 @@ along with this program; if not, see <http://www.gnu.org/licenses/>. */ +#include <assert.h> #include <stdlib.h> #include <stdio.h> #include <math.h> @@ -34,6 +35,7 @@ #include "defines.h" #include "comp.h" #include "dump.h" +#include "sine.h" #include "postfilter.h" /*---------------------------------------------------------------------------*\ @@ -44,6 +46,11 @@ #define BG_THRESH 40.0 /* only consider low levels signals for bg_est */ #define BG_BETA 0.1 /* averaging filter constant */ +#define BG_MARGIN 6.0 /* harmonics this far above BG noise are + randomised. Helped make bg noise less + spikey (impulsive) for mmt1, but speech was + perhaps a little rougher. + */ /*---------------------------------------------------------------------------*\ @@ -61,7 +68,7 @@ (5-12) are required to transmit the frequency selective voicing information. Mixed excitation also requires accurate voicing estimation (parameter estimators always break occasionally under - exceptional condition). + exceptional conditions). In our case we use a post filter approach which requires no additional bits to be transmitted. The decoder measures the average @@ -97,15 +104,16 @@ void postfilter( ) { int m, uv; - float e; + float e, thresh; /* determine average energy across spectrum */ - e = 0.0; + e = 1E-12; for(m=1; m<=model->L; m++) e += model->A[m]*model->A[m]; - e = 10.0*log10(e/model->L); + assert(e > 0.0); + e = 10.0*log10f(e/model->L); /* If beneath threhold, update bg estimate. The idea of the threshold is to prevent updating during high level @@ -119,10 +127,11 @@ void postfilter( */ uv = 0; + thresh = powf(10.0, (*bg_est + BG_MARGIN)/20.0); if (model->voiced) for(m=1; m<=model->L; m++) - if (20.0*log10(model->A[m]) < *bg_est) { - model->phi[m] = TWO_PI*(float)rand()/RAND_MAX; + if (model->A[m] < thresh) { + model->phi[m] = TWO_PI*(float)codec2_rand()/CODEC2_RAND_MAX; uv++; } diff --git a/gr-vocoder/lib/codec2/quantise.c b/gr-vocoder/lib/codec2/quantise.c index 25f26066ed..6423dc83df 100644 --- a/gr-vocoder/lib/codec2/quantise.c +++ b/gr-vocoder/lib/codec2/quantise.c @@ -36,7 +36,9 @@ #include "quantise.h" #include "lpc.h" #include "lsp.h" -#include "fft.h" +#include "kiss_fft.h" +#undef TIMER +#include "machdep.h" #define LSP_DELTA1 0.01 /* grid spacing for LSP root searches */ @@ -59,38 +61,20 @@ int lsp_bits(int i) { return lsp_cb[i].log2m; } -#if VECTOR_QUANTISATION -/*---------------------------------------------------------------------------*\ - - quantise_uniform - - Simulates uniform quantising of a float. - -\*---------------------------------------------------------------------------*/ - -void quantise_uniform(float *val, float min, float max, int bits) -{ - int levels = 1 << (bits-1); - float norm; - int index; - - /* hard limit to quantiser range */ - - printf("min: %f max: %f val: %f ", min, max, val[0]); - if (val[0] < min) val[0] = min; - if (val[0] > max) val[0] = max; - - norm = (*val - min)/(max-min); - printf("%f norm: %f ", val[0], norm); - index = fabs(levels*norm + 0.5); - - *val = min + index*(max-min)/levels; - - printf("index %d val_: %f\n", index, val[0]); +int lspd_bits(int i) { + return lsp_cbd[i].log2m; } +#ifdef __EXPERIMENTAL__ +int lspdt_bits(int i) { + return lsp_cbdt[i].log2m; +} #endif +int lsp_pred_vq_bits(int i) { + return lsp_cbjvm[i].log2m; +} + /*---------------------------------------------------------------------------*\ quantise_init @@ -127,13 +111,16 @@ long quantise(const float * cb, float vec[], float w[], int k, int m, float *se) float beste; /* best error so far */ long j; int i; + float diff; besti = 0; beste = 1E32; for(j=0; j<m; j++) { e = 0.0; - for(i=0; i<k; i++) - e += pow((cb[j*k+i]-vec[i])*w[i],2.0); + for(i=0; i<k; i++) { + diff = cb[j*k+i]-vec[i]; + e += powf(diff*w[i],2.0); + } if (e < beste) { beste = e; besti = j; @@ -147,16 +134,16 @@ long quantise(const float * cb, float vec[], float w[], int k, int m, float *se) /*---------------------------------------------------------------------------*\ - lspd_quantise + encode_lspds_scalar() - Scalar lsp difference quantiser. + Scalar/VQ LSP difference quantiser. \*---------------------------------------------------------------------------*/ -void lspd_quantise( - float lsp[], - float lsp_[], - int order +void encode_lspds_scalar( + int indexes[], + float lsp[], + int order ) { int i,k,m; @@ -164,10 +151,15 @@ void lspd_quantise( float lsp__hz[LPC_MAX]; float dlsp[LPC_MAX]; float dlsp_[LPC_MAX]; - float wt[1]; + float wt[LPC_MAX]; const float *cb; - float se = 0.0; - int indexes[LPC_MAX]; + float se; + + assert(order == LPC_ORD); + + for(i=0; i<order; i++) { + wt[i] = 1.0; + } /* convert from radians to Hz so we can use human readable frequencies */ @@ -175,14 +167,13 @@ void lspd_quantise( for(i=0; i<order; i++) lsp_hz[i] = (4000.0/PI)*lsp[i]; - dlsp[0] = lsp_hz[0]; - for(i=1; i<order; i++) - dlsp[i] = lsp_hz[i] - lsp_hz[i-1]; - - /* simple uniform scalar quantisers */ + //printf("\n"); wt[0] = 1.0; for(i=0; i<order; i++) { + + /* find difference from previous qunatised lsp */ + if (i) dlsp[i] = lsp_hz[i] - lsp__hz[i-1]; else @@ -194,129 +185,565 @@ void lspd_quantise( indexes[i] = quantise(cb, &dlsp[i], wt, k, m, &se); dlsp_[i] = cb[indexes[i]*k]; + if (i) lsp__hz[i] = lsp__hz[i-1] + dlsp_[i]; else lsp__hz[0] = dlsp_[0]; + + //printf("%d lsp %3.2f dlsp %3.2f dlsp_ %3.2f lsp_ %3.2f\n", i, lsp_hz[i], dlsp[i], dlsp_[i], lsp__hz[i]); } - for(; i<order; i++) - lsp__hz[i] = lsp__hz[i-1] + dlsp[i]; - /* convert back to radians */ +} + +void decode_lspds_scalar( + float lsp_[], + int indexes[], + int order +) +{ + int i,k; + float lsp__hz[LPC_MAX]; + float dlsp_[LPC_MAX]; + const float *cb; + + assert(order == LPC_ORD); + + for(i=0; i<order; i++) { + + k = lsp_cbd[i].k; + cb = lsp_cbd[i].cb; + dlsp_[i] = cb[indexes[i]*k]; + + if (i) + lsp__hz[i] = lsp__hz[i-1] + dlsp_[i]; + else + lsp__hz[0] = dlsp_[0]; - for(i=0; i<order; i++) lsp_[i] = (PI/4000.0)*lsp__hz[i]; + + //printf("%d dlsp_ %3.2f lsp_ %3.2f\n", i, dlsp_[i], lsp__hz[i]); + } + } +#ifdef __EXPERIMENTAL__ /*---------------------------------------------------------------------------*\ - lspd_vq_quantise + lspvq_quantise - Vector lsp difference quantiser. + Vector LSP quantiser. \*---------------------------------------------------------------------------*/ -void lspdvq_quantise( +void lspvq_quantise( float lsp[], float lsp_[], int order ) { int i,k,m,ncb, nlsp; - float dlsp[LPC_MAX]; - float dlsp_[LPC_MAX]; - float wt[LPC_ORD]; + float wt[LPC_ORD], lsp_hz[LPC_ORD]; const float *cb; - float se = 0.0; + float se; int index; - dlsp[0] = lsp[0]; - for(i=1; i<order; i++) - dlsp[i] = lsp[i] - lsp[i-1]; + for(i=0; i<LPC_ORD; i++) { + wt[i] = 1.0; + lsp_hz[i] = 4000.0*lsp[i]/PI; + } - for(i=0; i<order; i++) - dlsp_[i] = dlsp[i]; + /* scalar quantise LSPs 1,2,3,4 */ - for(i=0; i<order; i++) + /* simple uniform scalar quantisers */ + + for(i=0; i<4; i++) { + k = lsp_cb[i].k; + m = lsp_cb[i].m; + cb = lsp_cb[i].cb; + index = quantise(cb, &lsp_hz[i], wt, k, m, &se); + lsp_[i] = cb[index*k]*PI/4000.0; + } + + //#define WGHT +#ifdef WGHT + for(i=4; i<9; i++) { + wt[i] = 1.0/(lsp[i]-lsp[i-1]) + 1.0/(lsp[i+1]-lsp[i]); + //printf("wt[%d] = %f\n", i, wt[i]); + } + wt[9] = 1.0/(lsp[i]-lsp[i-1]); +#endif + + /* VQ LSPs 5,6,7,8,9,10 */ + + ncb = 4; + nlsp = 4; + k = lsp_cbjnd[ncb].k; + m = lsp_cbjnd[ncb].m; + cb = lsp_cbjnd[ncb].cb; + index = quantise(cb, &lsp_hz[nlsp], &wt[nlsp], k, m, &se); + for(i=4; i<LPC_ORD; i++) { + lsp_[i] = cb[index*k+i-4]*(PI/4000.0); + //printf("%4.f (%4.f) ", lsp_hz[i], cb[index*k+i-4]); + } +} + +/*---------------------------------------------------------------------------*\ + + lspjnd_quantise + + Experimental JND LSP quantiser. + +\*---------------------------------------------------------------------------*/ + +void lspjnd_quantise(float lsps[], float lsps_[], int order) +{ + int i,k,m; + float wt[LPC_ORD], lsps_hz[LPC_ORD]; + const float *cb; + float se = 0.0; + int index; + + for(i=0; i<LPC_ORD; i++) { wt[i] = 1.0; + } - /* scalar quantise dLSPs 1,2,3,4,5 */ + /* convert to Hz */ - for(i=0; i<5; i++) { - if (i) - dlsp[i] = (lsp[i] - lsp_[i-1])*4000.0/PI; - else - dlsp[0] = lsp[0]*4000.0/PI; + for(i=0; i<LPC_ORD; i++) { + lsps_hz[i] = lsps[i]*(4000.0/PI); + lsps_[i] = lsps[i]; + } - k = lsp_cbdvq[i].k; - m = lsp_cbdvq[i].m; - cb = lsp_cbdvq[i].cb; - index = quantise(cb, &dlsp[i], wt, k, m, &se); - dlsp_[i] = cb[index*k]*PI/4000.0; + /* simple uniform scalar quantisers */ - if (i) - lsp_[i] = lsp_[i-1] + dlsp_[i]; - else - lsp_[0] = dlsp_[0]; - } - dlsp[i] = lsp[i] - lsp_[i-1]; - dlsp_[i] = dlsp[i]; - - //printf("lsp[0] %f lsp_[0] %f\n", lsp[0], lsp_[0]); - //printf("lsp[1] %f lsp_[1] %f\n", lsp[1], lsp_[1]); - -#ifdef TT - /* VQ dLSPs 3,4,5 */ - - ncb = 2; - nlsp = 2; - k = lsp_cbdvq[ncb].k; - m = lsp_cbdvq[ncb].m; - cb = lsp_cbdvq[ncb].cb; - index = quantise(cb, &dlsp[nlsp], wt, k, m, &se); - dlsp_[nlsp] = cb[index*k]; - dlsp_[nlsp+1] = cb[index*k+1]; - dlsp_[nlsp+2] = cb[index*k+2]; - - lsp_[0] = dlsp_[0]; - for(i=1; i<5; i++) - lsp_[i] = lsp_[i-1] + dlsp_[i]; - dlsp[i] = lsp[i] - lsp_[i-1]; - dlsp_[i] = dlsp[i]; + for(i=0; i<4; i++) { + k = lsp_cbjnd[i].k; + m = lsp_cbjnd[i].m; + cb = lsp_cbjnd[i].cb; + index = quantise(cb, &lsps_hz[i], wt, k, m, &se); + lsps_[i] = cb[index*k]*(PI/4000.0); + } + + /* VQ LSPs 5,6,7,8,9,10 */ + + k = lsp_cbjnd[4].k; + m = lsp_cbjnd[4].m; + cb = lsp_cbjnd[4].cb; + index = quantise(cb, &lsps_hz[4], &wt[4], k, m, &se); + //printf("k = %d m = %d c[0] %f cb[k] %f\n", k,m,cb[0],cb[k]); + //printf("index = %4d: ", index); + for(i=4; i<LPC_ORD; i++) { + lsps_[i] = cb[index*k+i-4]*(PI/4000.0); + //printf("%4.f (%4.f) ", lsps_hz[i], cb[index*k+i-4]); + } + //printf("\n"); +} + +void compute_weights(const float *x, float *w, int ndim); + +/*---------------------------------------------------------------------------*\ + + lspdt_quantise + + LSP difference in time quantiser. Split VQ, encoding LSPs 1-4 with + one VQ, and LSPs 5-10 with a second. Update of previous lsp memory + is done outside of this function to handle dT between 10 or 20ms + frames. + + mode action + ------------------ + + LSPDT_ALL VQ LSPs 1-4 and 5-10 + LSPDT_LOW Just VQ LSPs 1-4, for LSPs 5-10 just copy previous + LSPDT_HIGH Just VQ LSPs 5-10, for LSPs 1-4 just copy previous + +\*---------------------------------------------------------------------------*/ + +void lspdt_quantise(float lsps[], float lsps_[], float lsps__prev[], int mode) +{ + int i; + float wt[LPC_ORD]; + float lsps_dt[LPC_ORD]; +#ifdef TRY_LSPDT_VQ + int k,m; + int index; + const float *cb; + float se = 0.0; +#endif // TRY_LSPDT_VQ + + //compute_weights(lsps, wt, LPC_ORD); + for(i=0; i<LPC_ORD; i++) { + wt[i] = 1.0; + } + + //compute_weights(lsps, wt, LPC_ORD ); + + for(i=0; i<LPC_ORD; i++) { + lsps_dt[i] = lsps[i] - lsps__prev[i]; + lsps_[i] = lsps__prev[i]; + } + + //#define TRY_LSPDT_VQ +#ifdef TRY_LSPDT_VQ + /* this actually improves speech a bit, but 40ms updates works surprsingly well.... */ + k = lsp_cbdt[0].k; + m = lsp_cbdt[0].m; + cb = lsp_cbdt[0].cb; + index = quantise(cb, lsps_dt, wt, k, m, &se); + for(i=0; i<LPC_ORD; i++) { + lsps_[i] += cb[index*k + i]; + } #endif - /* VQ dLSPs 6,7,8,9,10 */ - ncb = 5; - nlsp = 5; - k = lsp_cbdvq[ncb].k; - m = lsp_cbdvq[ncb].m; - cb = lsp_cbdvq[ncb].cb; - index = quantise(cb, &dlsp[nlsp], wt, k, m, &se); - dlsp_[nlsp] = cb[index*k]; - dlsp_[nlsp+1] = cb[index*k+1]; - dlsp_[nlsp+2] = cb[index*k+2]; - dlsp_[nlsp+3] = cb[index*k+3]; - dlsp_[nlsp+4] = cb[index*k+4]; +} +#endif + +#define MIN(a,b) ((a)<(b)?(a):(b)) +#define MAX_ENTRIES 16384 + +void compute_weights(const float *x, float *w, int ndim) +{ + int i; + w[0] = MIN(x[0], x[1]-x[0]); + for (i=1;i<ndim-1;i++) + w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]); + w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]); + + for (i=0;i<ndim;i++) + w[i] = 1./(.01+w[i]); + //w[0]*=3; + //w[1]*=2; +} + +/* LSP weight calculation ported from m-file function kindly submitted + by Anssi, OH3GDD */ + +void compute_weights_anssi_mode2(const float *x, float *w, int ndim) +{ + int i; + float d[LPC_ORD]; + + assert(ndim == LPC_ORD); + + for(i=0; i<LPC_ORD; i++) + d[i] = 1.0; + + d[0] = x[1]; + for (i=1; i<LPC_ORD-1; i++) + d[i] = x[i+1] - x[i-1]; + d[LPC_ORD-1] = PI - x[8]; + for (i=0; i<LPC_ORD; i++) { + if (x[i]<((400.0/4000.0)*PI)) + w[i]=5.0/(0.01+d[i]); + else if (x[i]<((700.0/4000.0)*PI)) + w[i]=4.0/(0.01+d[i]); + else if (x[i]<((1200.0/4000.0)*PI)) + w[i]=3.0/(0.01+d[i]); + else if (x[i]<((2000.0/4000.0)*PI)) + w[i]=2.0/(0.01+d[i]); + else + w[i]=1.0/(0.01+d[i]); + + w[i]=pow(w[i]+0.3, 0.66); + } +} + +int find_nearest(const float *codebook, int nb_entries, float *x, int ndim) +{ + int i, j; + float min_dist = 1e15; + int nearest = 0; + + for (i=0;i<nb_entries;i++) + { + float dist=0; + for (j=0;j<ndim;j++) + dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]); + if (dist<min_dist) + { + min_dist = dist; + nearest = i; + } + } + return nearest; +} + +int find_nearest_weighted(const float *codebook, int nb_entries, float *x, const float *w, int ndim) +{ + int i, j; + float min_dist = 1e15; + int nearest = 0; + + for (i=0;i<nb_entries;i++) + { + float dist=0; + for (j=0;j<ndim;j++) + dist += w[j]*(x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]); + if (dist<min_dist) + { + min_dist = dist; + nearest = i; + } + } + return nearest; +} + +void lspjvm_quantise(float *x, float *xq, int ndim) +{ + int i, n1, n2, n3; + float err[LPC_ORD], err2[LPC_ORD], err3[LPC_ORD]; + float w[LPC_ORD], w2[LPC_ORD], w3[LPC_ORD]; + const float *codebook1 = lsp_cbjvm[0].cb; + const float *codebook2 = lsp_cbjvm[1].cb; + const float *codebook3 = lsp_cbjvm[2].cb; + + w[0] = MIN(x[0], x[1]-x[0]); + for (i=1;i<ndim-1;i++) + w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]); + w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]); + + compute_weights(x, w, ndim); + + n1 = find_nearest(codebook1, lsp_cbjvm[0].m, x, ndim); + + for (i=0;i<ndim;i++) + { + xq[i] = codebook1[ndim*n1+i]; + err[i] = x[i] - xq[i]; + } + for (i=0;i<ndim/2;i++) + { + err2[i] = err[2*i]; + err3[i] = err[2*i+1]; + w2[i] = w[2*i]; + w3[i] = w[2*i+1]; + } + n2 = find_nearest_weighted(codebook2, lsp_cbjvm[1].m, err2, w2, ndim/2); + n3 = find_nearest_weighted(codebook3, lsp_cbjvm[2].m, err3, w3, ndim/2); + + for (i=0;i<ndim/2;i++) + { + xq[2*i] += codebook2[ndim*n2/2+i]; + xq[2*i+1] += codebook3[ndim*n3/2+i]; + } +} + +#ifdef __EXPERIMENTAL__ + +#define MBEST_STAGES 4 + +struct MBEST_LIST { + int index[MBEST_STAGES]; /* index of each stage that lead us to this error */ + float error; +}; + +struct MBEST { + int entries; /* number of entries in mbest list */ + struct MBEST_LIST *list; +}; + + +static struct MBEST *mbest_create(int entries) { + int i,j; + struct MBEST *mbest; + + assert(entries > 0); + mbest = (struct MBEST *)malloc(sizeof(struct MBEST)); + assert(mbest != NULL); + + mbest->entries = entries; + mbest->list = (struct MBEST_LIST *)malloc(entries*sizeof(struct MBEST_LIST)); + assert(mbest->list != NULL); + + for(i=0; i<mbest->entries; i++) { + for(j=0; j<MBEST_STAGES; j++) + mbest->list[i].index[j] = 0; + mbest->list[i].error = 1E32; + } + + return mbest; +} + + +static void mbest_destroy(struct MBEST *mbest) { + assert(mbest != NULL); + free(mbest->list); + free(mbest); +} + + +/*---------------------------------------------------------------------------*\ + + mbest_insert + + Insert the results of a vector to codebook entry comparison. The + list is ordered in order or error, so those entries with the + smallest error will be first on the list. + +\*---------------------------------------------------------------------------*/ + +static void mbest_insert(struct MBEST *mbest, int index[], float error) { + int i, j, found; + struct MBEST_LIST *list = mbest->list; + int entries = mbest->entries; + + found = 0; + for(i=0; i<entries && !found; i++) + if (error < list[i].error) { + found = 1; + for(j=entries-1; j>i; j--) + list[j] = list[j-1]; + for(j=0; j<MBEST_STAGES; j++) + list[i].index[j] = index[j]; + list[i].error = error; + } +} + - /* rebuild LSPs for dLSPs */ +static void mbest_print(char title[], struct MBEST *mbest) { + int i,j; - lsp_[0] = dlsp_[0]; - for(i=1; i<order; i++) - lsp_[i] = lsp_[i-1] + dlsp_[i]; + printf("%s\n", title); + for(i=0; i<mbest->entries; i++) { + for(j=0; j<MBEST_STAGES; j++) + printf(" %4d ", mbest->list[i].index[j]); + printf(" %f\n", mbest->list[i].error); + } } -void check_lsp_order(float lsp[], int lpc_order) + +/*---------------------------------------------------------------------------*\ + + mbest_search + + Searches vec[] to a codebbook of vectors, and maintains a list of the mbest + closest matches. + +\*---------------------------------------------------------------------------*/ + +static void mbest_search( + const float *cb, /* VQ codebook to search */ + float vec[], /* target vector */ + float w[], /* weighting vector */ + int k, /* dimension of vector */ + int m, /* number on entries in codebook */ + struct MBEST *mbest, /* list of closest matches */ + int index[] /* indexes that lead us here */ +) +{ + float e; + int i,j; + float diff; + + for(j=0; j<m; j++) { + e = 0.0; + for(i=0; i<k; i++) { + diff = cb[j*k+i]-vec[i]; + e += pow(diff*w[i],2.0); + } + index[0] = j; + mbest_insert(mbest, index, e); + } +} + + +/* 3 stage VQ LSP quantiser. Design and guidance kindly submitted by Anssi, OH3GDD */ + +void lspanssi_quantise(float *x, float *xq, int ndim, int mbest_entries) +{ + int i, j, n1, n2, n3, n4; + float w[LPC_ORD]; + const float *codebook1 = lsp_cbvqanssi[0].cb; + const float *codebook2 = lsp_cbvqanssi[1].cb; + const float *codebook3 = lsp_cbvqanssi[2].cb; + const float *codebook4 = lsp_cbvqanssi[3].cb; + struct MBEST *mbest_stage1, *mbest_stage2, *mbest_stage3, *mbest_stage4; + float target[LPC_ORD]; + int index[MBEST_STAGES]; + + mbest_stage1 = mbest_create(mbest_entries); + mbest_stage2 = mbest_create(mbest_entries); + mbest_stage3 = mbest_create(mbest_entries); + mbest_stage4 = mbest_create(mbest_entries); + for(i=0; i<MBEST_STAGES; i++) + index[i] = 0; + + compute_weights_anssi_mode2(x, w, ndim); + + #ifdef DUMP + dump_weights(w, ndim); + #endif + + /* Stage 1 */ + + mbest_search(codebook1, x, w, ndim, lsp_cbvqanssi[0].m, mbest_stage1, index); + mbest_print("Stage 1:", mbest_stage1); + + /* Stage 2 */ + + for (j=0; j<mbest_entries; j++) { + index[1] = n1 = mbest_stage1->list[j].index[0]; + for(i=0; i<ndim; i++) + target[i] = x[i] - codebook1[ndim*n1+i]; + mbest_search(codebook2, target, w, ndim, lsp_cbvqanssi[1].m, mbest_stage2, index); + } + mbest_print("Stage 2:", mbest_stage2); + + /* Stage 3 */ + + for (j=0; j<mbest_entries; j++) { + index[2] = n1 = mbest_stage2->list[j].index[1]; + index[1] = n2 = mbest_stage2->list[j].index[0]; + for(i=0; i<ndim; i++) + target[i] = x[i] - codebook1[ndim*n1+i] - codebook2[ndim*n2+i]; + mbest_search(codebook3, target, w, ndim, lsp_cbvqanssi[2].m, mbest_stage3, index); + } + mbest_print("Stage 3:", mbest_stage3); + + /* Stage 4 */ + + for (j=0; j<mbest_entries; j++) { + index[3] = n1 = mbest_stage3->list[j].index[2]; + index[2] = n2 = mbest_stage3->list[j].index[1]; + index[1] = n3 = mbest_stage3->list[j].index[0]; + for(i=0; i<ndim; i++) + target[i] = x[i] - codebook1[ndim*n1+i] - codebook2[ndim*n2+i] - codebook3[ndim*n3+i]; + mbest_search(codebook4, target, w, ndim, lsp_cbvqanssi[3].m, mbest_stage4, index); + } + mbest_print("Stage 4:", mbest_stage4); + + n1 = mbest_stage4->list[0].index[3]; + n2 = mbest_stage4->list[0].index[2]; + n3 = mbest_stage4->list[0].index[1]; + n4 = mbest_stage4->list[0].index[0]; + for (i=0;i<ndim;i++) + xq[i] = codebook1[ndim*n1+i] + codebook2[ndim*n2+i] + codebook3[ndim*n3+i] + codebook4[ndim*n4+i]; + + mbest_destroy(mbest_stage1); + mbest_destroy(mbest_stage2); + mbest_destroy(mbest_stage3); + mbest_destroy(mbest_stage4); +} +#endif + +int check_lsp_order(float lsp[], int lpc_order) { int i; float tmp; + int swaps = 0; for(i=1; i<lpc_order; i++) if (lsp[i] < lsp[i-1]) { - printf("swap %d\n",i); + //fprintf(stderr, "swap %d\n",i); + swaps++; tmp = lsp[i-1]; - lsp[i-1] = lsp[i]-0.05; - lsp[i] = tmp+0.05; + lsp[i-1] = lsp[i]-0.1; + lsp[i] = tmp+0.1; + i = 1; /* start check again, as swap may have caused out of order */ } + + return swaps; } void force_min_lsp_dist(float lsp[], int lpc_order) @@ -329,131 +756,159 @@ void force_min_lsp_dist(float lsp[], int lpc_order) } } + /*---------------------------------------------------------------------------*\ - lpc_model_amplitudes + lpc_post_filter() + + Applies a post filter to the LPC synthesis filter power spectrum + Pw, which supresses the inter-formant energy. + + The algorithm is from p267 (Section 8.6) of "Digital Speech", + edited by A.M. Kondoz, 1994 published by Wiley and Sons. Chapter 8 + of this text is on the MBE vocoder, and this is a freq domain + adaptation of post filtering commonly used in CELP. - Derive a LPC model for amplitude samples then estimate amplitude samples - from this model with optional LSP quantisation. + I used the Octave simulation lpcpf.m to get an understaing of the + algorithm. - Returns the spectral distortion for this frame. + Requires two more FFTs which is significantly more MIPs. However + it should be possible to implement this more efficiently in the + time domain. Just not sure how to handle relative time delays + between the synthesis stage and updating these coeffs. A smaller + FFT size might also be accetable to save CPU. + + TODO: + [ ] sync var names between Octave and C version + [ ] doc gain normalisation + [ ] I think the first FFT is not rqd as we do the same + thing in aks_to_M2(). \*---------------------------------------------------------------------------*/ -float lpc_model_amplitudes( - float Sn[], /* Input frame of speech samples */ - float w[], - MODEL *model, /* sinusoidal model parameters */ - int order, /* LPC model order */ - int lsp_quant, /* optional LSP quantisation if non-zero */ - float ak[] /* output aks */ -) +void lpc_post_filter(kiss_fft_cfg fft_fwd_cfg, MODEL *model, COMP Pw[], float ak[], + int order, int dump, float beta, float gamma, int bass_boost) { - float Wn[M]; - float R[LPC_MAX+1]; - float E; - int i,j; - float snr; - float lsp[LPC_MAX]; - float lsp_hz[LPC_MAX]; - float lsp_[LPC_MAX]; - int roots; /* number of LSP roots found */ - int index; - float se = 0.0; - int k,m; - const float * cb; - float wt[LPC_MAX]; - - for(i=0; i<M; i++) - Wn[i] = Sn[i]*w[i]; - autocorrelate(Wn,R,M,order); - levinson_durbin(R,ak,order); - - E = 0.0; - for(i=0; i<=order; i++) - E += ak[i]*R[i]; + int i; + COMP x[FFT_ENC]; /* input to FFTs */ + COMP Aw[FFT_ENC]; /* LPC analysis filter spectrum */ + COMP Ww[FFT_ENC]; /* weighting spectrum */ + float Rw[FFT_ENC]; /* R = WA */ + float e_before, e_after, gain; + float Pfw[FFT_ENC]; /* Post filter mag spectrum */ + float max_Rw, min_Rw; + float coeff; + TIMER_VAR(tstart, tfft1, taw, tfft2, tww, tr); + + TIMER_SAMPLE(tstart); + + /* Determine LPC inverse filter spectrum 1/A(exp(jw)) -----------*/ + + /* we actually want the synthesis filter A(exp(jw)) but the + inverse (analysis) filter is easier to find as it's FIR, we + just use the inverse of 1/A to get the synthesis filter + A(exp(jw)) */ + + for(i=0; i<FFT_ENC; i++) { + x[i].real = 0.0; + x[i].imag = 0.0; + } - for(i=0; i<order; i++) - wt[i] = 1.0; + for(i=0; i<=order; i++) + x[i].real = ak[i]; + kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)x, (kiss_fft_cpx *)Aw); - if (lsp_quant) { - roots = lpc_to_lsp(ak, order, lsp, 5, LSP_DELTA1); - if (roots != order) - printf("LSP roots not found\n"); + TIMER_SAMPLE_AND_LOG(tfft1, tstart, " fft1"); - /* convert from radians to Hz to make quantisers more - human readable */ + for(i=0; i<FFT_ENC/2; i++) { + Aw[i].real = 1.0/(Aw[i].real*Aw[i].real + Aw[i].imag*Aw[i].imag); + } - for(i=0; i<order; i++) - lsp_hz[i] = (4000.0/PI)*lsp[i]; + TIMER_SAMPLE_AND_LOG(taw, tfft1, " Aw"); - /* simple uniform scalar quantisers */ + /* Determine weighting filter spectrum W(exp(jw)) ---------------*/ - for(i=0; i<10; i++) { - k = lsp_cb[i].k; - m = lsp_cb[i].m; - cb = lsp_cb[i].cb; - index = quantise(cb, &lsp_hz[i], wt, k, m, &se); - lsp_hz[i] = cb[index*k]; + for(i=0; i<FFT_ENC; i++) { + x[i].real = 0.0; + x[i].imag = 0.0; } - /* experiment: simulating uniform quantisation error - for(i=0; i<order; i++) - lsp[i] += PI*(12.5/4000.0)*(1.0 - 2.0*(float)rand()/RAND_MAX); - */ - - for(i=0; i<order; i++) - lsp[i] = (PI/4000.0)*lsp_hz[i]; + x[0].real = ak[0]; + coeff = gamma; + for(i=1; i<=order; i++) { + x[i].real = ak[i] * coeff; + coeff *= gamma; + } + kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)x, (kiss_fft_cpx *)Ww); - /* Bandwidth Expansion (BW). Prevents any two LSPs getting too - close together after quantisation. We know from experiment - that LSP quantisation errors < 12.5Hz (25Hz setp size) are - inaudible so we use that as the minimum LSP separation. - */ + TIMER_SAMPLE_AND_LOG(tfft2, taw, " fft2"); - for(i=1; i<5; i++) { - if (lsp[i] - lsp[i-1] < PI*(12.5/4000.0)) - lsp[i] = lsp[i-1] + PI*(12.5/4000.0); + for(i=0; i<FFT_ENC/2; i++) { + Ww[i].real = Ww[i].real*Ww[i].real + Ww[i].imag*Ww[i].imag; } - /* as quantiser gaps increased, larger BW expansion was required - to prevent twinkly noises */ + TIMER_SAMPLE_AND_LOG(tww, tfft2, " Ww"); + + /* Determined combined filter R = WA ---------------------------*/ + + max_Rw = 0.0; min_Rw = 1E32; + for(i=0; i<FFT_ENC/2; i++) { + Rw[i] = sqrtf(Ww[i].real * Aw[i].real); + if (Rw[i] > max_Rw) + max_Rw = Rw[i]; + if (Rw[i] < min_Rw) + min_Rw = Rw[i]; - for(i=5; i<8; i++) { - if (lsp[i] - lsp[i-1] < PI*(25.0/4000.0)) - lsp[i] = lsp[i-1] + PI*(25.0/4000.0); } - for(i=8; i<order; i++) { - if (lsp[i] - lsp[i-1] < PI*(75.0/4000.0)) - lsp[i] = lsp[i-1] + PI*(75.0/4000.0); + + TIMER_SAMPLE_AND_LOG(tr, tww, " R"); + + #ifdef DUMP + if (dump) + dump_Rw(Rw); + #endif + + /* create post filter mag spectrum and apply ------------------*/ + + /* measure energy before post filtering */ + + e_before = 1E-4; + for(i=0; i<FFT_ENC/2; i++) + e_before += Pw[i].real; + + /* apply post filter and measure energy */ + + #ifdef DUMP + if (dump) + dump_Pwb(Pw); + #endif + + e_after = 1E-4; + for(i=0; i<FFT_ENC/2; i++) { + Pfw[i] = powf(Rw[i], beta); + Pw[i].real *= Pfw[i] * Pfw[i]; + e_after += Pw[i].real; } + gain = e_before/e_after; - for(j=0; j<order; j++) - lsp_[j] = lsp[j]; + /* apply gain factor to normalise energy */ - lsp_to_lpc(lsp_, ak, order); -#ifdef DUMP - dump_lsp(lsp); -#endif - } + for(i=0; i<FFT_ENC/2; i++) { + Pw[i].real *= gain; + } -#ifdef DUMP - dump_E(E); -#endif - #ifdef SIM_QUANT - /* simulated LPC energy quantisation */ - { - float e = 10.0*log10(E); - e += 2.0*(1.0 - 2.0*(float)rand()/RAND_MAX); - E = pow(10.0,e/10.0); - } - #endif + if (bass_boost) { + /* add 3dB to first 1 kHz to account for LP effect of PF */ - aks_to_M2(ak,order,model,E,&snr, 1); /* {ak} -> {Am} LPC decode */ + for(i=0; i<FFT_ENC/8; i++) { + Pw[i].real *= 1.4*1.4; + } + } - return snr; + TIMER_SAMPLE_AND_LOG2(tr, " filt"); } + /*---------------------------------------------------------------------------*\ aks_to_M2() @@ -465,61 +920,103 @@ float lpc_model_amplitudes( \*---------------------------------------------------------------------------*/ void aks_to_M2( - float ak[], /* LPC's */ - int order, - MODEL *model, /* sinusoidal model parameters for this frame */ - float E, /* energy term */ - float *snr, /* signal to noise ratio for this frame in dB */ - int dump /* true to dump sample to dump file */ + kiss_fft_cfg fft_fwd_cfg, + float ak[], /* LPC's */ + int order, + MODEL *model, /* sinusoidal model parameters for this frame */ + float E, /* energy term */ + float *snr, /* signal to noise ratio for this frame in dB */ + int dump, /* true to dump sample to dump file */ + int sim_pf, /* true to simulate a post filter */ + int pf, /* true to LPC post filter */ + int bass_boost, /* enable LPC filter 0-1khz 3dB boost */ + float beta, + float gamma /* LPC post filter parameters */ ) { - COMP Pw[FFT_DEC]; /* power spectrum */ + COMP pw[FFT_ENC]; /* input to FFT for power spectrum */ + COMP Pw[FFT_ENC]; /* output power spectrum */ int i,m; /* loop variables */ int am,bm; /* limits of current band */ float r; /* no. rads/bin */ float Em; /* energy in band */ float Am; /* spectral amplitude sample */ float signal, noise; + TIMER_VAR(tstart, tfft, tpw, tpf); + + TIMER_SAMPLE(tstart); - r = TWO_PI/(FFT_DEC); + r = TWO_PI/(FFT_ENC); /* Determine DFT of A(exp(jw)) --------------------------------------------*/ - for(i=0; i<FFT_DEC; i++) { - Pw[i].real = 0.0; - Pw[i].imag = 0.0; + for(i=0; i<FFT_ENC; i++) { + pw[i].real = 0.0; + pw[i].imag = 0.0; } for(i=0; i<=order; i++) - Pw[i].real = ak[i]; - fft(&Pw[0].real,FFT_DEC,1); + pw[i].real = ak[i]; + kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)pw, (kiss_fft_cpx *)Pw); + + TIMER_SAMPLE_AND_LOG(tfft, tstart, " fft"); /* Determine power spectrum P(w) = E/(A(exp(jw))^2 ------------------------*/ - for(i=0; i<FFT_DEC/2; i++) + for(i=0; i<FFT_ENC/2; i++) Pw[i].real = E/(Pw[i].real*Pw[i].real + Pw[i].imag*Pw[i].imag); -#ifdef DUMP + + TIMER_SAMPLE_AND_LOG(tpw, tfft, " Pw"); + + if (pf) + lpc_post_filter(fft_fwd_cfg, model, Pw, ak, order, dump, beta, gamma, bass_boost); + + TIMER_SAMPLE_AND_LOG(tpf, tpw, " LPC post filter"); + + #ifdef DUMP if (dump) dump_Pw(Pw); -#endif + #endif - /* Determine magnitudes by linear interpolation of P(w) -------------------*/ + /* Determine magnitudes from P(w) ----------------------------------------*/ - signal = noise = 0.0; - for(m=1; m<=model->L; m++) { - am = floor((m - 0.5)*model->Wo/r + 0.5); - bm = floor((m + 0.5)*model->Wo/r + 0.5); - Em = 0.0; + /* when used just by decoder {A} might be all zeroes so init signal + and noise to prevent log(0) errors */ - for(i=am; i<bm; i++) - Em += Pw[i].real; - Am = sqrt(Em); + signal = 1E-30; noise = 1E-32; - signal += pow(model->A[m],2.0); - noise += pow(model->A[m] - Am,2.0); - model->A[m] = Am; + for(m=1; m<=model->L; m++) { + am = (int)((m - 0.5)*model->Wo/r + 0.5); + bm = (int)((m + 0.5)*model->Wo/r + 0.5); + Em = 0.0; + + for(i=am; i<bm; i++) + Em += Pw[i].real; + Am = sqrtf(Em); + + signal += model->A[m]*model->A[m]; + noise += (model->A[m] - Am)*(model->A[m] - Am); + + /* This code significantly improves perf of LPC model, in + particular when combined with phase0. The LPC spectrum tends + to track just under the peaks of the spectral envelope, and + just above nulls. This algorithm does the reverse to + compensate - raising the amplitudes of spectral peaks, while + attenuating the null. This enhances the formants, and + supresses the energy between formants. */ + + if (sim_pf) { + if (Am > model->A[m]) + Am *= 0.7; + if (Am < model->A[m]) + Am *= 1.4; + } + + model->A[m] = Am; } - *snr = 10.0*log10(signal/noise); + *snr = 10.0*log10f(signal/noise); + + TIMER_SAMPLE_AND_LOG2(tpf, " rec"); } /*---------------------------------------------------------------------------*\ @@ -540,7 +1037,7 @@ int encode_Wo(float Wo) float norm; norm = (Wo - Wo_min)/(Wo_max - Wo_min); - index = floor(WO_LEVELS * norm + 0.5); + index = floorf(WO_LEVELS * norm + 0.5); if (index < 0 ) index = 0; if (index > (WO_LEVELS-1)) index = WO_LEVELS-1; @@ -572,6 +1069,84 @@ float decode_Wo(int index) /*---------------------------------------------------------------------------*\ + FUNCTION....: encode_Wo_dt() + AUTHOR......: David Rowe + DATE CREATED: 6 Nov 2011 + + Encodes Wo difference from last frame. + +\*---------------------------------------------------------------------------*/ + +int encode_Wo_dt(float Wo, float prev_Wo) +{ + int index, mask, max_index, min_index; + float Wo_min = TWO_PI/P_MAX; + float Wo_max = TWO_PI/P_MIN; + float norm; + + norm = (Wo - prev_Wo)/(Wo_max - Wo_min); + index = floor(WO_LEVELS * norm + 0.5); + //printf("ENC index: %d ", index); + + /* hard limit */ + + max_index = (1 << (WO_DT_BITS-1)) - 1; + min_index = - (max_index+1); + if (index > max_index) index = max_index; + if (index < min_index) index = min_index; + //printf("max_index: %d min_index: %d hard index: %d ", + // max_index, min_index, index); + + /* mask so that only LSB WO_DT_BITS remain, bit WO_DT_BITS is the sign bit */ + + mask = ((1 << WO_DT_BITS) - 1); + index &= mask; + //printf("mask: 0x%x index: 0x%x\n", mask, index); + + return index; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: decode_Wo_dt() + AUTHOR......: David Rowe + DATE CREATED: 6 Nov 2011 + + Decodes Wo using WO_DT_BITS difference from last frame. + +\*---------------------------------------------------------------------------*/ + +float decode_Wo_dt(int index, float prev_Wo) +{ + float Wo_min = TWO_PI/P_MAX; + float Wo_max = TWO_PI/P_MIN; + float step; + float Wo; + int mask; + + /* sign extend index */ + + //printf("DEC index: %d "); + if (index & (1 << (WO_DT_BITS-1))) { + mask = ~((1 << WO_DT_BITS) - 1); + index |= mask; + } + //printf("DEC mask: 0x%x index: %d \n", mask, index); + + step = (Wo_max - Wo_min)/WO_LEVELS; + Wo = prev_Wo + step*(index); + + /* bit errors can make us go out of range leading to all sorts of + probs like seg faults */ + + if (Wo > Wo_max) Wo = Wo_max; + if (Wo < Wo_min) Wo = Wo_min; + + return Wo; +} + +/*---------------------------------------------------------------------------*\ + FUNCTION....: speech_to_uq_lsps() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 @@ -592,10 +1167,22 @@ float speech_to_uq_lsps(float lsp[], int i, roots; float Wn[M]; float R[LPC_MAX+1]; - float E; + float e, E; - for(i=0; i<M; i++) + e = 0.0; + for(i=0; i<M; i++) { Wn[i] = Sn[i]*w[i]; + e += Wn[i]*Wn[i]; + } + + /* trap 0 energy case as LPC analysis will fail */ + + if (e == 0.0) { + for(i=0; i<order; i++) + lsp[i] = (PI/order)*(float)i; + return 0.0; + } + autocorrelate(Wn, R, M, order); levinson_durbin(R, ak, order); @@ -603,15 +1190,17 @@ float speech_to_uq_lsps(float lsp[], for(i=0; i<=order; i++) E += ak[i]*R[i]; + /* 15 Hz BW expansion as I can't hear the difference and it may help + help occasional fails in the LSP root finding. Important to do this + after energy calculation to avoid -ve energy values. + */ + + for(i=0; i<=order; i++) + ak[i] *= powf(0.994,(float)i); + roots = lpc_to_lsp(ak, order, lsp, 5, LSP_DELTA1); if (roots != order) { - /* for some reason LSP roots could not be found */ - /* some alpha testers are reporting this condition */ - fprintf(stderr, "LSP roots not found!\nroots = %d\n", roots); - for(i=0; i<=order; i++) - fprintf(stderr, "a[%d] = %f\n", i, ak[i]); - - /* some benign LSP values we can use instead */ + /* if root finding fails use some benign LSP values instead */ for(i=0; i<order; i++) lsp[i] = (PI/order)*(float)i; } @@ -621,22 +1210,22 @@ float speech_to_uq_lsps(float lsp[], /*---------------------------------------------------------------------------*\ - FUNCTION....: encode_lsps() + FUNCTION....: encode_lsps_scalar() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 - From a vector of unquantised (floating point) LSPs finds the quantised - LSP indexes. + Thirty-six bit sclar LSP quantiser. From a vector of unquantised + (floating point) LSPs finds the quantised LSP indexes. \*---------------------------------------------------------------------------*/ -void encode_lsps(int indexes[], float lsp[], int order) +void encode_lsps_scalar(int indexes[], float lsp[], int order) { int i,k,m; float wt[1]; float lsp_hz[LPC_MAX]; const float * cb; - float se = 0.0; + float se; /* convert from radians to Hz so we can use human readable frequencies */ @@ -644,7 +1233,7 @@ void encode_lsps(int indexes[], float lsp[], int order) for(i=0; i<order; i++) lsp_hz[i] = (4000.0/PI)*lsp[i]; - /* simple uniform scalar quantisers */ + /* scalar quantisers */ wt[0] = 1.0; for(i=0; i<order; i++) { @@ -657,7 +1246,7 @@ void encode_lsps(int indexes[], float lsp[], int order) /*---------------------------------------------------------------------------*\ - FUNCTION....: decode_lsps() + FUNCTION....: decode_lsps_scalar() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 @@ -666,7 +1255,7 @@ void encode_lsps(int indexes[], float lsp[], int order) \*---------------------------------------------------------------------------*/ -void decode_lsps(float lsp[], int indexes[], int order) +void decode_lsps_scalar(float lsp[], int indexes[], int order) { int i,k; float lsp_hz[LPC_MAX]; @@ -684,6 +1273,273 @@ void decode_lsps(float lsp[], int indexes[], int order) lsp[i] = (PI/4000.0)*lsp_hz[i]; } + +#ifdef __EXPERIMENTAL__ + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: encode_lsps_diff_freq_vq() + AUTHOR......: David Rowe + DATE CREATED: 15 November 2011 + + Twenty-five bit LSP quantiser. LSPs 1-4 are quantised with scalar + LSP differences (in frequency, i.e difference from the previous + LSP). LSPs 5-10 are quantised with a VQ trained generated using + vqtrainjnd.c + +\*---------------------------------------------------------------------------*/ + +void encode_lsps_diff_freq_vq(int indexes[], float lsp[], int order) +{ + int i,k,m; + float lsp_hz[LPC_MAX]; + float lsp__hz[LPC_MAX]; + float dlsp[LPC_MAX]; + float dlsp_[LPC_MAX]; + float wt[LPC_MAX]; + const float * cb; + float se; + + for(i=0; i<LPC_ORD; i++) { + wt[i] = 1.0; + } + + /* convert from radians to Hz so we can use human readable + frequencies */ + + for(i=0; i<order; i++) + lsp_hz[i] = (4000.0/PI)*lsp[i]; + + /* scalar quantisers for LSP differences 1..4 */ + + wt[0] = 1.0; + for(i=0; i<4; i++) { + if (i) + dlsp[i] = lsp_hz[i] - lsp__hz[i-1]; + else + dlsp[0] = lsp_hz[0]; + + k = lsp_cbd[i].k; + m = lsp_cbd[i].m; + cb = lsp_cbd[i].cb; + indexes[i] = quantise(cb, &dlsp[i], wt, k, m, &se); + dlsp_[i] = cb[indexes[i]*k]; + + if (i) + lsp__hz[i] = lsp__hz[i-1] + dlsp_[i]; + else + lsp__hz[0] = dlsp_[0]; + } + + /* VQ LSPs 5,6,7,8,9,10 */ + + k = lsp_cbjnd[4].k; + m = lsp_cbjnd[4].m; + cb = lsp_cbjnd[4].cb; + indexes[4] = quantise(cb, &lsp_hz[4], &wt[4], k, m, &se); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: decode_lsps_diff_freq_vq() + AUTHOR......: David Rowe + DATE CREATED: 15 Nov 2011 + + From a vector of quantised LSP indexes, returns the quantised + (floating point) LSPs. + +\*---------------------------------------------------------------------------*/ + +void decode_lsps_diff_freq_vq(float lsp_[], int indexes[], int order) +{ + int i,k,m; + float dlsp_[LPC_MAX]; + float lsp__hz[LPC_MAX]; + const float * cb; + + /* scalar LSP differences */ + + for(i=0; i<4; i++) { + cb = lsp_cbd[i].cb; + dlsp_[i] = cb[indexes[i]]; + if (i) + lsp__hz[i] = lsp__hz[i-1] + dlsp_[i]; + else + lsp__hz[0] = dlsp_[0]; + } + + /* VQ */ + + k = lsp_cbjnd[4].k; + m = lsp_cbjnd[4].m; + cb = lsp_cbjnd[4].cb; + for(i=4; i<order; i++) + lsp__hz[i] = cb[indexes[4]*k+i-4]; + + /* convert back to radians */ + + for(i=0; i<order; i++) + lsp_[i] = (PI/4000.0)*lsp__hz[i]; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: encode_lsps_diff_time() + AUTHOR......: David Rowe + DATE CREATED: 12 Sep 2012 + + Encode difference from preious frames's LSPs using + 3,3,2,2,2,2,1,1,1,1 scalar quantisers (18 bits total). + +\*---------------------------------------------------------------------------*/ + +void encode_lsps_diff_time(int indexes[], + float lsps[], + float lsps__prev[], + int order) +{ + int i,k,m; + float lsps_dt[LPC_ORD]; + float wt[LPC_MAX]; + const float * cb; + float se; + + /* Determine difference in time and convert from radians to Hz so + we can use human readable frequencies */ + + for(i=0; i<LPC_ORD; i++) { + lsps_dt[i] = (4000/PI)*(lsps[i] - lsps__prev[i]); + } + + /* scalar quantisers */ + + wt[0] = 1.0; + for(i=0; i<order; i++) { + k = lsp_cbdt[i].k; + m = lsp_cbdt[i].m; + cb = lsp_cbdt[i].cb; + indexes[i] = quantise(cb, &lsps_dt[i], wt, k, m, &se); + } + +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: decode_lsps_diff_time() + AUTHOR......: David Rowe + DATE CREATED: 15 Nov 2011 + + From a quantised LSP indexes, returns the quantised + (floating point) LSPs. + +\*---------------------------------------------------------------------------*/ + +void decode_lsps_diff_time( + float lsps_[], + int indexes[], + float lsps__prev[], + int order) +{ + int i,k,m; + const float * cb; + + for(i=0; i<order; i++) + lsps_[i] = lsps__prev[i]; + + for(i=0; i<order; i++) { + k = lsp_cbdt[i].k; + cb = lsp_cbdt[i].cb; + lsps_[i] += (PI/4000.0)*cb[indexes[i]*k]; + } + +} +#endif + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: encode_lsps_vq() + AUTHOR......: David Rowe + DATE CREATED: 15 Feb 2012 + + Multi-stage VQ LSP quantiser developed by Jean-Marc Valin. + +\*---------------------------------------------------------------------------*/ + +void encode_lsps_vq(int *indexes, float *x, float *xq, int ndim) +{ + int i, n1, n2, n3; + float err[LPC_ORD], err2[LPC_ORD], err3[LPC_ORD]; + float w[LPC_ORD], w2[LPC_ORD], w3[LPC_ORD]; + const float *codebook1 = lsp_cbjvm[0].cb; + const float *codebook2 = lsp_cbjvm[1].cb; + const float *codebook3 = lsp_cbjvm[2].cb; + + assert(ndim <= LPC_ORD); + + w[0] = MIN(x[0], x[1]-x[0]); + for (i=1;i<ndim-1;i++) + w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]); + w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]); + + compute_weights(x, w, ndim); + + n1 = find_nearest(codebook1, lsp_cbjvm[0].m, x, ndim); + + for (i=0;i<ndim;i++) + { + xq[i] = codebook1[ndim*n1+i]; + err[i] = x[i] - xq[i]; + } + for (i=0;i<ndim/2;i++) + { + err2[i] = err[2*i]; + err3[i] = err[2*i+1]; + w2[i] = w[2*i]; + w3[i] = w[2*i+1]; + } + n2 = find_nearest_weighted(codebook2, lsp_cbjvm[1].m, err2, w2, ndim/2); + n3 = find_nearest_weighted(codebook3, lsp_cbjvm[2].m, err3, w3, ndim/2); + + indexes[0] = n1; + indexes[1] = n2; + indexes[2] = n3; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: decode_lsps_vq() + AUTHOR......: David Rowe + DATE CREATED: 15 Feb 2012 + +\*---------------------------------------------------------------------------*/ + +void decode_lsps_vq(int *indexes, float *xq, int ndim) +{ + int i, n1, n2, n3; + const float *codebook1 = lsp_cbjvm[0].cb; + const float *codebook2 = lsp_cbjvm[1].cb; + const float *codebook3 = lsp_cbjvm[2].cb; + + n1 = indexes[0]; + n2 = indexes[1]; + n3 = indexes[2]; + + for (i=0;i<ndim;i++) + { + xq[i] = codebook1[ndim*n1+i]; + } + for (i=0;i<ndim/2;i++) + { + xq[2*i] += codebook2[ndim*n2/2+i]; + xq[2*i+1] += codebook3[ndim*n3/2+i]; + } +} + + /*---------------------------------------------------------------------------*\ FUNCTION....: bw_expand_lsps() @@ -692,20 +1548,44 @@ void decode_lsps(float lsp[], int indexes[], int order) Applies Bandwidth Expansion (BW) to a vector of LSPs. Prevents any two LSPs getting too close together after quantisation. We know - from experiment that LSP quantisation errors < 12.5Hz (25Hz setp + from experiment that LSP quantisation errors < 12.5Hz (25Hz step size) are inaudible so we use that as the minimum LSP separation. \*---------------------------------------------------------------------------*/ -void bw_expand_lsps(float lsp[], +void bw_expand_lsps(float lsp[], int order, float min_sep_low, float min_sep_high) +{ + int i; + + for(i=1; i<4; i++) { + + if ((lsp[i] - lsp[i-1]) < min_sep_low*(PI/4000.0)) + lsp[i] = lsp[i-1] + min_sep_low*(PI/4000.0); + + } + + /* As quantiser gaps increased, larger BW expansion was required + to prevent twinkly noises. This may need more experiment for + different quanstisers. + */ + + for(i=4; i<order; i++) { + if (lsp[i] - lsp[i-1] < min_sep_high*(PI/4000.0)) + lsp[i] = lsp[i-1] + min_sep_high*(PI/4000.0); + } +} + +void bw_expand_lsps2(float lsp[], int order ) { int i; - for(i=1; i<5; i++) { - if (lsp[i] - lsp[i-1] < PI*(12.5/4000.0)) - lsp[i] = lsp[i-1] + PI*(12.5/4000.0); + for(i=1; i<4; i++) { + + if ((lsp[i] - lsp[i-1]) < 100.0*(PI/4000.0)) + lsp[i] = lsp[i-1] + 100.0*(PI/4000.0); + } /* As quantiser gaps increased, larger BW expansion was required @@ -713,16 +1593,84 @@ void bw_expand_lsps(float lsp[], different quanstisers. */ - for(i=5; i<8; i++) { - if (lsp[i] - lsp[i-1] < PI*(25.0/4000.0)) - lsp[i] = lsp[i-1] + PI*(25.0/4000.0); + for(i=4; i<order; i++) { + if (lsp[i] - lsp[i-1] < 200.0*(PI/4000.0)) + lsp[i] = lsp[i-1] + 200.0*(PI/4000.0); } - for(i=8; i<order; i++) { - if (lsp[i] - lsp[i-1] < PI*(75.0/4000.0)) - lsp[i] = lsp[i-1] + PI*(75.0/4000.0); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: locate_lsps_jnd_steps() + AUTHOR......: David Rowe + DATE CREATED: 27/10/2011 + + Applies a form of Bandwidth Expansion (BW) to a vector of LSPs. + Listening tests have determined that "quantising" the position of + each LSP to the non-linear steps below introduces a "just noticable + difference" in the synthesised speech. + + This operation can be used before quantisation to limit the input + data to the quantiser to a number of discrete steps. + + This operation can also be used during quantisation as a form of + hysteresis in the calculation of quantiser error. For example if + the quantiser target of lsp1 is 500 Hz, candidate vectors with lsp1 + of 515 and 495 Hz sound effectively the same. + +\*---------------------------------------------------------------------------*/ + +void locate_lsps_jnd_steps(float lsps[], int order) +{ + int i; + float lsp_hz, step; + + assert(order == 10); + + /* quantise to 25Hz steps */ + + step = 25; + for(i=0; i<2; i++) { + lsp_hz = lsps[i]*4000.0/PI; + lsp_hz = floorf(lsp_hz/step + 0.5)*step; + lsps[i] = lsp_hz*PI/4000.0; + if (i) { + if (lsps[i] == lsps[i-1]) + lsps[i] += step*PI/4000.0; + + } + } + + /* quantise to 50Hz steps */ + + step = 50; + for(i=2; i<4; i++) { + lsp_hz = lsps[i]*4000.0/PI; + lsp_hz = floorf(lsp_hz/step + 0.5)*step; + lsps[i] = lsp_hz*PI/4000.0; + if (i) { + if (lsps[i] == lsps[i-1]) + lsps[i] += step*PI/4000.0; + + } + } + + /* quantise to 100Hz steps */ + + step = 100; + for(i=4; i<10; i++) { + lsp_hz = lsps[i]*4000.0/PI; + lsp_hz = floorf(lsp_hz/step + 0.5)*step; + lsps[i] = lsp_hz*PI/4000.0; + if (i) { + if (lsps[i] == lsps[i-1]) + lsps[i] += step*PI/4000.0; + + } } } + /*---------------------------------------------------------------------------*\ FUNCTION....: apply_lpc_correction() @@ -758,9 +1706,9 @@ int encode_energy(float e) float e_max = E_MAX_DB; float norm; - e = 10.0*log10(e); + e = 10.0*log10f(e); norm = (e - e_min)/(e_max - e_min); - index = floor(E_LEVELS * norm + 0.5); + index = floorf(E_LEVELS * norm + 0.5); if (index < 0 ) index = 0; if (index > (E_LEVELS-1)) index = E_LEVELS-1; @@ -773,7 +1721,7 @@ int encode_energy(float e) AUTHOR......: David Rowe DATE CREATED: 22/8/2010 - Decodes energy using a WO_BITS quantiser. + Decodes energy using a E_LEVELS quantiser. \*---------------------------------------------------------------------------*/ @@ -786,39 +1734,12 @@ float decode_energy(int index) step = (e_max - e_min)/E_LEVELS; e = e_min + step*(index); - e = pow(10.0,e/10.0); + e = powf(10.0,e/10.0); return e; } -/*---------------------------------------------------------------------------*\ - - FUNCTION....: encode_amplitudes() - AUTHOR......: David Rowe - DATE CREATED: 22/8/2010 - - Time domain LPC is used model the amplitudes which are then - converted to LSPs and quantised. So we don't actually encode the - amplitudes directly, rather we derive an equivalent representation - from the time domain speech. - -\*---------------------------------------------------------------------------*/ - -void encode_amplitudes(int lsp_indexes[], - int *energy_index, - MODEL *model, - float Sn[], - float w[]) -{ - float lsps[LPC_ORD]; - float ak[LPC_ORD+1]; - float e; - - e = speech_to_uq_lsps(lsps, ak, Sn, w, LPC_ORD); - encode_lsps(lsp_indexes, lsps, LPC_ORD); - *energy_index = encode_energy(e); -} - +#ifdef NOT_USED /*---------------------------------------------------------------------------*\ FUNCTION....: decode_amplitudes() @@ -830,7 +1751,8 @@ void encode_amplitudes(int lsp_indexes[], \*---------------------------------------------------------------------------*/ -float decode_amplitudes(MODEL *model, +float decode_amplitudes(kiss_fft_cfg fft_fwd_cfg, + MODEL *model, float ak[], int lsp_indexes[], int energy_index, @@ -840,12 +1762,209 @@ float decode_amplitudes(MODEL *model, { float snr; - decode_lsps(lsps, lsp_indexes, LPC_ORD); + decode_lsps_scalar(lsps, lsp_indexes, LPC_ORD); bw_expand_lsps(lsps, LPC_ORD); lsp_to_lpc(lsps, ak, LPC_ORD); *e = decode_energy(energy_index); - aks_to_M2(ak, LPC_ORD, model, *e, &snr, 1); + aks_to_M2(ak, LPC_ORD, model, *e, &snr, 1, 0, 0, 1); apply_lpc_correction(model); return snr; } +#endif + +static float ge_coeff[2] = {0.8, 0.9}; + +void compute_weights2(const float *x, const float *xp, float *w, int ndim) +{ + w[0] = 30; + w[1] = 1; + if (x[1]<0) + { + w[0] *= .6; + w[1] *= .3; + } + if (x[1]<-10) + { + w[0] *= .3; + w[1] *= .3; + } + /* Higher weight if pitch is stable */ + if (fabsf(x[0]-xp[0])<.2) + { + w[0] *= 2; + w[1] *= 1.5; + } else if (fabsf(x[0]-xp[0])>.5) /* Lower if not stable */ + { + w[0] *= .5; + } + + /* Lower weight for low energy */ + if (x[1] < xp[1]-10) + { + w[1] *= .5; + } + if (x[1] < xp[1]-20) + { + w[1] *= .5; + } + + //w[0] = 30; + //w[1] = 1; + + /* Square the weights because it's applied on the squared error */ + w[0] *= w[0]; + w[1] *= w[1]; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: quantise_WoE() + AUTHOR......: Jean-Marc Valin & David Rowe + DATE CREATED: 29 Feb 2012 + + Experimental joint Wo and LPC energy vector quantiser developed by + Jean-Marc Valin. Exploits correlations between the difference in + the log pitch and log energy from frame to frame. For example + both the pitch and energy tend to only change by small amounts + during voiced speech, however it is important that these changes be + coded carefully. During unvoiced speech they both change a lot but + the ear is less sensitve to errors so coarser quantisation is OK. + + The ear is sensitive to log energy and loq pitch so we quantise in + these domains. That way the error measure used to quantise the + values is close to way the ear senses errors. + + See http://jmspeex.livejournal.com/10446.html + +\*---------------------------------------------------------------------------*/ + +void quantise_WoE(MODEL *model, float *e, float xq[]) +{ + int i, n1; + float x[2]; + float err[2]; + float w[2]; + const float *codebook1 = ge_cb[0].cb; + int nb_entries = ge_cb[0].m; + int ndim = ge_cb[0].k; + float Wo_min = TWO_PI/P_MAX; + float Wo_max = TWO_PI/P_MIN; + + x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2); + x[1] = 10.0*log10f(1e-4 + *e); + + compute_weights2(x, xq, w, ndim); + for (i=0;i<ndim;i++) + err[i] = x[i]-ge_coeff[i]*xq[i]; + n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim); + + for (i=0;i<ndim;i++) + { + xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i]; + err[i] -= codebook1[ndim*n1+i]; + } + + /* + x = log2(4000*Wo/(PI*50)); + 2^x = 4000*Wo/(PI*50) + Wo = (2^x)*(PI*50)/4000; + */ + + model->Wo = powf(2.0, xq[0])*(PI*50.0)/4000.0; + + /* bit errors can make us go out of range leading to all sorts of + probs like seg faults */ + + if (model->Wo > Wo_max) model->Wo = Wo_max; + if (model->Wo < Wo_min) model->Wo = Wo_min; + + model->L = PI/model->Wo; /* if we quantise Wo re-compute L */ + + *e = powf(10.0, xq[1]/10.0); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: encode_WoE() + AUTHOR......: Jean-Marc Valin & David Rowe + DATE CREATED: 11 May 2012 + + Joint Wo and LPC energy vector quantiser developed my Jean-Marc + Valin. Returns index, and updated states xq[]. + +\*---------------------------------------------------------------------------*/ + +int encode_WoE(MODEL *model, float e, float xq[]) +{ + int i, n1; + float x[2]; + float err[2]; + float w[2]; + const float *codebook1 = ge_cb[0].cb; + int nb_entries = ge_cb[0].m; + int ndim = ge_cb[0].k; + + assert((1<<WO_E_BITS) == nb_entries); + + if (e < 0.0) e = 0; /* occasional small negative energies due LPC round off I guess */ + + x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2); + x[1] = 10.0*log10f(1e-4 + e); + + compute_weights2(x, xq, w, ndim); + for (i=0;i<ndim;i++) + err[i] = x[i]-ge_coeff[i]*xq[i]; + n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim); + + for (i=0;i<ndim;i++) + { + xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i]; + err[i] -= codebook1[ndim*n1+i]; + } + + //printf("enc: %f %f (%f)(%f) \n", xq[0], xq[1], e, 10.0*log10(1e-4 + e)); + return n1; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: decode_WoE() + AUTHOR......: Jean-Marc Valin & David Rowe + DATE CREATED: 11 May 2012 + + Joint Wo and LPC energy vector quantiser developed my Jean-Marc + Valin. Given index and states xq[], returns Wo & E, and updates + states xq[]. + +\*---------------------------------------------------------------------------*/ + +void decode_WoE(MODEL *model, float *e, float xq[], int n1) +{ + int i; + const float *codebook1 = ge_cb[0].cb; + int ndim = ge_cb[0].k; + float Wo_min = TWO_PI/P_MAX; + float Wo_max = TWO_PI/P_MIN; + + for (i=0;i<ndim;i++) + { + xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i]; + } + + //printf("dec: %f %f\n", xq[0], xq[1]); + model->Wo = powf(2.0, xq[0])*(PI*50.0)/4000.0; + + /* bit errors can make us go out of range leading to all sorts of + probs like seg faults */ + + if (model->Wo > Wo_max) model->Wo = Wo_max; + if (model->Wo < Wo_min) model->Wo = Wo_min; + + model->L = PI/model->Wo; /* if we quantise Wo re-compute L */ + + *e = powf(10.0, xq[1]/10.0); +} + diff --git a/gr-vocoder/lib/codec2/quantise.h b/gr-vocoder/lib/codec2/quantise.h index 42b05f43bd..0932d9d1bd 100644 --- a/gr-vocoder/lib/codec2/quantise.h +++ b/gr-vocoder/lib/codec2/quantise.h @@ -26,47 +26,82 @@ #ifndef __QUANTISE__ #define __QUANTISE__ -#define WO_BITS 7 -#define WO_LEVELS (1<<WO_BITS) -#define E_BITS 5 -#define E_LEVELS (1<<E_BITS) -#define E_MIN_DB -10.0 -#define E_MAX_DB 40.0 +#include "kiss_fft.h" + +#define WO_BITS 7 +#define WO_LEVELS (1<<WO_BITS) +#define WO_DT_BITS 3 + +#define E_BITS 5 +#define E_LEVELS (1<<E_BITS) +#define E_MIN_DB -10.0 +#define E_MAX_DB 40.0 + +#define LSP_SCALAR_INDEXES 10 +#define LSPD_SCALAR_INDEXES 10 +#define LSP_PRED_VQ_INDEXES 3 +#define LSP_DIFF_FREQ_INDEXES 5 +#define LSP_DIFF_TIME_BITS 7 + +#define LSPDT_ALL 0 +#define LSPDT_LOW 1 +#define LSPDT_HIGH 2 + +#define WO_E_BITS 8 + +#define LPCPF_GAMMA 0.5 +#define LPCPF_BETA 0.2 void quantise_init(); float lpc_model_amplitudes(float Sn[], float w[], MODEL *model, int order, int lsp,float ak[]); -void aks_to_M2(float ak[], int order, MODEL *model, float E, float *snr, - int dump); +void aks_to_M2(kiss_fft_cfg fft_fwd_cfg, float ak[], int order, MODEL *model, + float E, float *snr, int dump, int sim_pf, + int pf, int bass_boost, float beta, float gamma); int encode_Wo(float Wo); float decode_Wo(int index); - -void encode_lsps(int indexes[], float lsp[], int order); -void decode_lsps(float lsp[], int indexes[], int order); -void lspd_quantise(float lsp[], float lsp_[], int order); -void lspdvq_quantise(float lsp[], float lsp_[], int order); +int encode_Wo_dt(float Wo, float prev_Wo); +float decode_Wo_dt(int index, float prev_Wo); +void encode_lsps_scalar(int indexes[], float lsp[], int order); +void decode_lsps_scalar(float lsp[], int indexes[], int order); +void encode_lspds_scalar(int indexes[], float lsp[], int order); +void decode_lspds_scalar(float lsp[], int indexes[], int order); +void encode_lsps_diff_freq_vq(int indexes[], float lsp[], int order); +void decode_lsps_diff_freq_vq(float lsp_[], int indexes[], int order); +void encode_lsps_diff_time(int indexes[], + float lsp[], + float lsp__prev[], + int order); +void decode_lsps_diff_time(float lsp_[], + int indexes[], + float lsp__prev[], + int order); + +void encode_lsps_vq(int *indexes, float *x, float *xq, int ndim); +void decode_lsps_vq(int *indexes, float *xq, int ndim); + +long quantise(const float * cb, float vec[], float w[], int k, int m, float *se); +void lspvq_quantise(float lsp[], float lsp_[], int order); +void lspjnd_quantise(float lsp[], float lsp_[], int order); +void lspdt_quantise(float lsps[], float lsps_[], float lsps__prev[], int mode); +void lspjvm_quantise(float lsps[], float lsps_[], int order); +void lspanssi_quantise(float lsps[], float lsps_[], int order, int mbest_entries); + +void quantise_WoE(MODEL *model, float *e, float xq[]); +int encode_WoE(MODEL *model, float e, float xq[]); +void decode_WoE(MODEL *model, float *e, float xq[], int n1); int encode_energy(float e); float decode_energy(int index); -void encode_amplitudes(int lsp_indexes[], - int *energy_index, - MODEL *model, - float Sn[], - float w[]); - -float decode_amplitudes(MODEL *model, - float ak[], - int lsp_indexes[], - int energy_index, - float lsps[], - float *e); - void pack(unsigned char * bits, unsigned int *nbit, int index, unsigned int index_bits); int unpack(const unsigned char * bits, unsigned int *nbit, unsigned int index_bits); int lsp_bits(int i); +int lspd_bits(int i); +int lspdt_bits(int i); +int lsp_pred_vq_bits(int i); void apply_lpc_correction(MODEL *model); float speech_to_uq_lsps(float lsp[], @@ -75,9 +110,15 @@ float speech_to_uq_lsps(float lsp[], float w[], int order ); -void bw_expand_lsps(float lsp[], - int order - ); -void decode_lsps(float lsp[], int indexes[], int order); +int check_lsp_order(float lsp[], int lpc_order); +void bw_expand_lsps(float lsp[], int order, float min_sep_low, float min_sep_high); +void bw_expand_lsps2(float lsp[], int order); +void locate_lsps_jnd_steps(float lsp[], int order); +float decode_amplitudes(MODEL *model, + float ak[], + int lsp_indexes[], + int energy_index, + float lsps[], + float *e); #endif diff --git a/gr-vocoder/lib/codec2/rn.h b/gr-vocoder/lib/codec2/rn.h new file mode 100644 index 0000000000..934f458406 --- /dev/null +++ b/gr-vocoder/lib/codec2/rn.h @@ -0,0 +1,964 @@ +/* Generated by rn_file() Octave function */ + +const float gt_alpha5_root[]={ + 2.86997e-05, + 2.2286e-05, + 1.82863e-05, + 1.42303e-05, + 1.04905e-05, + 6.70859e-06, + 3.05918e-06, + -6.22187e-07, + -4.22748e-06, + -7.85603e-06, + -1.14317e-05, + -1.50227e-05, + -1.85712e-05, + -2.21275e-05, + -2.56455e-05, + -2.91642e-05, + -3.26453e-05, + -3.61199e-05, + -3.95556e-05, + -4.29778e-05, + -4.63581e-05, + -4.97179e-05, + -5.3032e-05, + -5.63184e-05, + -5.95548e-05, + -6.27565e-05, + -6.59032e-05, + -6.90085e-05, + -7.20538e-05, + -7.50509e-05, + -7.7983e-05, + -8.08605e-05, + -8.36678e-05, + -8.64141e-05, + -8.9085e-05, + -9.16888e-05, + -9.42119e-05, + -9.66619e-05, + -9.9026e-05, + -0.000101311, + -0.000103505, + -0.000105614, + -0.000107627, + -0.00010955, + -0.000111372, + -0.000113099, + -0.00011472, + -0.000116241, + -0.000117652, + -0.000118959, + -0.000120152, + -0.000121235, + -0.000122201, + -0.000123053, + -0.000123784, + -0.000124397, + -0.000124884, + -0.00012525, + -0.000125487, + -0.000125598, + -0.000125578, + -0.000125428, + -0.000125145, + -0.000124729, + -0.000124185, + -0.000123518, + -0.000122709, + -0.000121766, + -0.000120685, + -0.000119471, + -0.000118119, + -0.000116633, + -0.000115009, + -0.000113251, + -0.000111356, + -0.000109326, + -0.00010716, + -0.00010486, + -0.000102424, + -9.98553e-05, + -9.71528e-05, + -9.43199e-05, + -9.13551e-05, + -8.82623e-05, + -8.50404e-05, + -8.16936e-05, + -7.82211e-05, + -7.46271e-05, + -7.09109e-05, + -6.70773e-05, + -6.31256e-05, + -5.90607e-05, + -5.48823e-05, + -5.05954e-05, + -4.62001e-05, + -4.17016e-05, + -3.71002e-05, + -3.24015e-05, + -2.7606e-05, + -2.27195e-05, + -1.77428e-05, + -1.2682e-05, + -7.53795e-06, + -2.31702e-06, + 2.97965e-06, + 8.34567e-06, + 1.37796e-05, + 1.9275e-05, + 2.483e-05, + 3.04382e-05, + 3.60975e-05, + 4.18011e-05, + 4.75467e-05, + 5.33273e-05, + 5.91403e-05, + 6.49787e-05, + 7.08393e-05, + 7.67152e-05, + 8.26029e-05, + 8.84957e-05, + 9.43895e-05, + 0.000100278, + 0.000106157, + 0.00011202, + 0.000117864, + 0.000123681, + 0.000129468, + 0.000135218, + 0.000140929, + 0.000146583, + 0.000152183, + 0.000157725, + 0.000163202, + 0.000168608, + 0.000173938, + 0.000179183, + 0.00018434, + 0.0001894, + 0.00019436, + 0.000199211, + 0.000203949, + 0.000208568, + 0.000213063, + 0.000217426, + 0.000221654, + 0.00022574, + 0.000229678, + 0.000233463, + 0.000237089, + 0.000240551, + 0.000243843, + 0.000246959, + 0.000249895, + 0.000252644, + 0.000255202, + 0.000257562, + 0.000259721, + 0.000261672, + 0.000263411, + 0.000264933, + 0.000266234, + 0.000267308, + 0.000268152, + 0.00026876, + 0.000269128, + 0.000269253, + 0.000269129, + 0.000268754, + 0.000268123, + 0.000267232, + 0.000266079, + 0.000264658, + 0.000262968, + 0.000261006, + 0.000258767, + 0.000256251, + 0.000253453, + 0.000250373, + 0.000247007, + 0.000243354, + 0.000239412, + 0.00023518, + 0.000230655, + 0.000225837, + 0.000220723, + 0.000215314, + 0.000209608, + 0.000203605, + 0.000197304, + 0.000190706, + 0.000183812, + 0.000176621, + 0.000169145, + 0.000161363, + 0.000153275, + 0.000144895, + 0.000136224, + 0.000127266, + 0.00011802, + 0.000108491, + 9.8679e-05, + 8.85877e-05, + 7.82196e-05, + 6.7577e-05, + 5.66636e-05, + 4.54822e-05, + 3.40369e-05, + 2.23311e-05, + 1.03695e-05, + -1.844e-06, + -1.43041e-05, + -2.70061e-05, + -3.99444e-05, + -5.31139e-05, + -6.65082e-05, + -8.01218e-05, + -9.39481e-05, + -0.000107981, + -0.000122213, + -0.000136638, + -0.000151248, + -0.000166036, + -0.000180995, + -0.000196115, + -0.00021139, + -0.000226811, + -0.000242369, + -0.000258056, + -0.000273861, + -0.000289776, + -0.000305792, + -0.000321898, + -0.000338084, + -0.000354342, + -0.00037066, + -0.000387027, + -0.000403434, + -0.00041987, + -0.000436324, + -0.000452784, + -0.00046924, + -0.00048568, + -0.000502091, + -0.000518464, + -0.000534785, + -0.000551043, + -0.000567225, + -0.000583319, + -0.000599314, + -0.000615196, + -0.000630955, + -0.000646575, + -0.000662049, + -0.000677361, + -0.000692506, + -0.000707464, + -0.00072229, + -0.000736922, + -0.000751266, + -0.000765372, + -0.000779217, + -0.000792798, + -0.000806094, + -0.000819098, + -0.000831793, + -0.000844168, + -0.000856207, + -0.000867898, + -0.000879227, + -0.00089018, + -0.000900744, + -0.000910906, + -0.000920652, + -0.00092997, + -0.000938844, + -0.000947263, + -0.000955214, + -0.000962682, + -0.000969654, + -0.000976119, + -0.000982062, + -0.00098747, + -0.000992332, + -0.000996634, + -0.00100036, + -0.00100351, + -0.00100606, + -0.001008, + -0.00100932, + -0.00101, + -0.00101005, + -0.00100943, + -0.00100816, + -0.0010062, + -0.00100356, + -0.00100021, + -0.000996162, + -0.000991392, + -0.000985892, + -0.000979654, + -0.000972668, + -0.000964925, + -0.000956415, + -0.000947131, + -0.000937065, + -0.000926208, + -0.000914552, + -0.00090209, + -0.000888816, + -0.000874721, + -0.0008598, + -0.000844046, + -0.000827453, + -0.000810015, + -0.000791726, + -0.000772581, + -0.000752576, + -0.000731704, + -0.000709965, + -0.00068735, + -0.000663865, + -0.000639509, + -0.000614269, + -0.000588146, + -0.000561139, + -0.000533246, + -0.000504468, + -0.000474802, + -0.000444251, + -0.000412813, + -0.00038049, + -0.000347281, + -0.000313189, + -0.000278215, + -0.000242361, + -0.000205629, + -0.000168024, + -0.000129546, + -9.02024e-05, + -4.99954e-05, + -8.93026e-06, + 3.2988e-05, + 7.57537e-05, + 0.000119361, + 0.000163804, + 0.000209075, + 0.000255167, + 0.000302074, + 0.000349786, + 0.000398297, + 0.000447596, + 0.000497676, + 0.000548526, + 0.000600136, + 0.000652497, + 0.000705598, + 0.000759427, + 0.000813972, + 0.000869223, + 0.000925166, + 0.000981789, + 0.00103908, + 0.00109702, + 0.00115561, + 0.00121482, + 0.00127464, + 0.00133505, + 0.00139605, + 0.00145762, + 0.00151973, + 0.00158238, + 0.00164555, + 0.00170922, + 0.00177337, + 0.00183799, + 0.00190305, + 0.00196854, + 0.00203445, + 0.00210075, + 0.00216742, + 0.00223445, + 0.00230181, + 0.00236949, + 0.00243747, + 0.00250572, + 0.00257423, + 0.00264296, + 0.00271192, + 0.00278107, + 0.00285039, + 0.00291986, + 0.00298947, + 0.00305918, + 0.00312898, + 0.00319884, + 0.00326874, + 0.00333866, + 0.00340857, + 0.00347846, + 0.00354831, + 0.00361808, + 0.00368775, + 0.00375731, + 0.00382673, + 0.00389599, + 0.00396506, + 0.00403393, + 0.00410256, + 0.00417094, + 0.00423904, + 0.00430684, + 0.00437431, + 0.00444144, + 0.0045082, + 0.00457457, + 0.00464052, + 0.00470603, + 0.00477108, + 0.00483565, + 0.00489972, + 0.00496325, + 0.00502623, + 0.00508865, + 0.00515046, + 0.00521166, + 0.00527223, + 0.00533213, + 0.00539135, + 0.00544987, + 0.00550766, + 0.00556472, + 0.005621, + 0.00567651, + 0.00573121, + 0.00578508, + 0.00583811, + 0.00589028, + 0.00594157, + 0.00599196, + 0.00604143, + 0.00608996, + 0.00613754, + 0.00618415, + 0.00622977, + 0.00627439, + 0.00631798, + 0.00636054, + 0.00640204, + 0.0064425, + 0.00648186, + 0.00652009, + 0.00655722, + 0.00659322, + 0.00662808, + 0.00666179, + 0.00669433, + 0.00672571, + 0.00675589, + 0.00678488, + 0.00681266, + 0.00683921, + 0.00686454, + 0.00688863, + 0.00691147, + 0.00693305, + 0.00695336, + 0.0069724, + 0.00699016, + 0.00700663, + 0.00702181, + 0.00703569, + 0.00704826, + 0.00705952, + 0.00706947, + 0.00707809, + 0.0070854, + 0.00709138, + 0.00709604, + 0.00709937, + 0.00710136, + 0.00710203, + 0.00710136, + 0.00709937, + 0.00709604, + 0.00709138, + 0.0070854, + 0.00707809, + 0.00706947, + 0.00705952, + 0.00704826, + 0.00703569, + 0.00702181, + 0.00700663, + 0.00699016, + 0.0069724, + 0.00695336, + 0.00693305, + 0.00691147, + 0.00688863, + 0.00686454, + 0.00683921, + 0.00681266, + 0.00678488, + 0.00675589, + 0.00672571, + 0.00669433, + 0.00666179, + 0.00662808, + 0.00659322, + 0.00655722, + 0.00652009, + 0.00648186, + 0.0064425, + 0.00640204, + 0.00636054, + 0.00631798, + 0.00627439, + 0.00622977, + 0.00618415, + 0.00613754, + 0.00608996, + 0.00604143, + 0.00599196, + 0.00594157, + 0.00589028, + 0.00583811, + 0.00578508, + 0.00573121, + 0.00567651, + 0.005621, + 0.00556472, + 0.00550766, + 0.00544987, + 0.00539135, + 0.00533213, + 0.00527223, + 0.00521166, + 0.00515046, + 0.00508865, + 0.00502623, + 0.00496325, + 0.00489972, + 0.00483565, + 0.00477108, + 0.00470603, + 0.00464052, + 0.00457457, + 0.0045082, + 0.00444144, + 0.00437431, + 0.00430684, + 0.00423904, + 0.00417094, + 0.00410256, + 0.00403393, + 0.00396506, + 0.00389599, + 0.00382673, + 0.00375731, + 0.00368775, + 0.00361808, + 0.00354831, + 0.00347846, + 0.00340857, + 0.00333866, + 0.00326874, + 0.00319884, + 0.00312898, + 0.00305918, + 0.00298947, + 0.00291986, + 0.00285039, + 0.00278107, + 0.00271192, + 0.00264296, + 0.00257423, + 0.00250572, + 0.00243747, + 0.00236949, + 0.00230181, + 0.00223445, + 0.00216742, + 0.00210075, + 0.00203445, + 0.00196854, + 0.00190305, + 0.00183799, + 0.00177337, + 0.00170922, + 0.00164555, + 0.00158238, + 0.00151973, + 0.00145762, + 0.00139605, + 0.00133505, + 0.00127464, + 0.00121482, + 0.00115561, + 0.00109702, + 0.00103908, + 0.000981789, + 0.000925166, + 0.000869223, + 0.000813972, + 0.000759427, + 0.000705598, + 0.000652497, + 0.000600136, + 0.000548526, + 0.000497676, + 0.000447596, + 0.000398297, + 0.000349786, + 0.000302074, + 0.000255167, + 0.000209075, + 0.000163804, + 0.000119361, + 7.57537e-05, + 3.2988e-05, + -8.93026e-06, + -4.99954e-05, + -9.02024e-05, + -0.000129546, + -0.000168024, + -0.000205629, + -0.000242361, + -0.000278215, + -0.000313189, + -0.000347281, + -0.00038049, + -0.000412813, + -0.000444251, + -0.000474802, + -0.000504468, + -0.000533246, + -0.000561139, + -0.000588146, + -0.000614269, + -0.000639509, + -0.000663865, + -0.00068735, + -0.000709965, + -0.000731704, + -0.000752576, + -0.000772581, + -0.000791726, + -0.000810015, + -0.000827453, + -0.000844046, + -0.0008598, + -0.000874721, + -0.000888816, + -0.00090209, + -0.000914552, + -0.000926208, + -0.000937065, + -0.000947131, + -0.000956415, + -0.000964925, + -0.000972668, + -0.000979654, + -0.000985892, + -0.000991392, + -0.000996162, + -0.00100021, + -0.00100356, + -0.0010062, + -0.00100816, + -0.00100943, + -0.00101005, + -0.00101, + -0.00100932, + -0.001008, + -0.00100606, + -0.00100351, + -0.00100036, + -0.000996634, + -0.000992332, + -0.00098747, + -0.000982062, + -0.000976119, + -0.000969654, + -0.000962682, + -0.000955214, + -0.000947263, + -0.000938844, + -0.00092997, + -0.000920652, + -0.000910906, + -0.000900744, + -0.00089018, + -0.000879227, + -0.000867898, + -0.000856207, + -0.000844168, + -0.000831793, + -0.000819098, + -0.000806094, + -0.000792798, + -0.000779217, + -0.000765372, + -0.000751266, + -0.000736922, + -0.00072229, + -0.000707464, + -0.000692506, + -0.000677361, + -0.000662049, + -0.000646575, + -0.000630955, + -0.000615196, + -0.000599314, + -0.000583319, + -0.000567225, + -0.000551043, + -0.000534785, + -0.000518464, + -0.000502091, + -0.00048568, + -0.00046924, + -0.000452784, + -0.000436324, + -0.00041987, + -0.000403434, + -0.000387027, + -0.00037066, + -0.000354342, + -0.000338084, + -0.000321898, + -0.000305792, + -0.000289776, + -0.000273861, + -0.000258056, + -0.000242369, + -0.000226811, + -0.00021139, + -0.000196115, + -0.000180995, + -0.000166036, + -0.000151248, + -0.000136638, + -0.000122213, + -0.000107981, + -9.39481e-05, + -8.01218e-05, + -6.65082e-05, + -5.31139e-05, + -3.99444e-05, + -2.70061e-05, + -1.43041e-05, + -1.844e-06, + 1.03695e-05, + 2.23311e-05, + 3.40369e-05, + 4.54822e-05, + 5.66636e-05, + 6.7577e-05, + 7.82196e-05, + 8.85877e-05, + 9.8679e-05, + 0.000108491, + 0.00011802, + 0.000127266, + 0.000136224, + 0.000144895, + 0.000153275, + 0.000161363, + 0.000169145, + 0.000176621, + 0.000183812, + 0.000190706, + 0.000197304, + 0.000203605, + 0.000209608, + 0.000215314, + 0.000220723, + 0.000225837, + 0.000230655, + 0.00023518, + 0.000239412, + 0.000243354, + 0.000247007, + 0.000250373, + 0.000253453, + 0.000256251, + 0.000258767, + 0.000261006, + 0.000262968, + 0.000264658, + 0.000266079, + 0.000267232, + 0.000268123, + 0.000268754, + 0.000269129, + 0.000269253, + 0.000269128, + 0.00026876, + 0.000268152, + 0.000267308, + 0.000266234, + 0.000264933, + 0.000263411, + 0.000261672, + 0.000259721, + 0.000257562, + 0.000255202, + 0.000252644, + 0.000249895, + 0.000246959, + 0.000243843, + 0.000240551, + 0.000237089, + 0.000233463, + 0.000229678, + 0.00022574, + 0.000221654, + 0.000217426, + 0.000213063, + 0.000208568, + 0.000203949, + 0.000199211, + 0.00019436, + 0.0001894, + 0.00018434, + 0.000179183, + 0.000173938, + 0.000168608, + 0.000163202, + 0.000157725, + 0.000152183, + 0.000146583, + 0.000140929, + 0.000135218, + 0.000129468, + 0.000123681, + 0.000117864, + 0.00011202, + 0.000106157, + 0.000100278, + 9.43895e-05, + 8.84957e-05, + 8.26029e-05, + 7.67152e-05, + 7.08393e-05, + 6.49787e-05, + 5.91403e-05, + 5.33273e-05, + 4.75467e-05, + 4.18011e-05, + 3.60975e-05, + 3.04382e-05, + 2.483e-05, + 1.9275e-05, + 1.37796e-05, + 8.34567e-06, + 2.97965e-06, + -2.31702e-06, + -7.53795e-06, + -1.2682e-05, + -1.77428e-05, + -2.27195e-05, + -2.7606e-05, + -3.24015e-05, + -3.71002e-05, + -4.17016e-05, + -4.62001e-05, + -5.05954e-05, + -5.48823e-05, + -5.90607e-05, + -6.31256e-05, + -6.70773e-05, + -7.09109e-05, + -7.46271e-05, + -7.82211e-05, + -8.16936e-05, + -8.50404e-05, + -8.82623e-05, + -9.13551e-05, + -9.43199e-05, + -9.71528e-05, + -9.98553e-05, + -0.000102424, + -0.00010486, + -0.00010716, + -0.000109326, + -0.000111356, + -0.000113251, + -0.000115009, + -0.000116633, + -0.000118119, + -0.000119471, + -0.000120685, + -0.000121766, + -0.000122709, + -0.000123518, + -0.000124185, + -0.000124729, + -0.000125145, + -0.000125428, + -0.000125578, + -0.000125598, + -0.000125487, + -0.00012525, + -0.000124884, + -0.000124397, + -0.000123784, + -0.000123053, + -0.000122201, + -0.000121235, + -0.000120152, + -0.000118959, + -0.000117652, + -0.000116241, + -0.00011472, + -0.000113099, + -0.000111372, + -0.00010955, + -0.000107627, + -0.000105614, + -0.000103505, + -0.000101311, + -9.9026e-05, + -9.66619e-05, + -9.42119e-05, + -9.16888e-05, + -8.9085e-05, + -8.64141e-05, + -8.36678e-05, + -8.08605e-05, + -7.7983e-05, + -7.50509e-05, + -7.20538e-05, + -6.90085e-05, + -6.59032e-05, + -6.27565e-05, + -5.95548e-05, + -5.63184e-05, + -5.3032e-05, + -4.97179e-05, + -4.63581e-05, + -4.29778e-05, + -3.95556e-05, + -3.61199e-05, + -3.26453e-05, + -2.91642e-05, + -2.56455e-05, + -2.21275e-05, + -1.85712e-05, + -1.50227e-05, + -1.14317e-05, + -7.85603e-06, + -4.22748e-06, + -6.22187e-07, + 3.05918e-06, + 6.70859e-06, + 1.04905e-05, + 1.42303e-05, + 1.82863e-05, + 2.2286e-05 +}; diff --git a/gr-vocoder/lib/codec2/sim.sh b/gr-vocoder/lib/codec2/sim.sh deleted file mode 100755 index 10152d979a..0000000000 --- a/gr-vocoder/lib/codec2/sim.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/sh -# sim.sh -# David Rowe 10 Sep 2009 - -# Process a source file using the codec 2 simulation. An output -# speech file is generated for each major processing step, from the -# unquantised siusoidal model to fully quantised. This way we can -# listen to the effect of each processing step. Use listensim.sh to -# test the output files. - -../src/c2sim ../raw/$1.raw -o $1_uq.raw -../src/c2sim ../raw/$1.raw --phase0 -o $1_phase0.raw --postfilter -../src/c2sim ../raw/$1.raw --lpc 10 -o $1_lpc10.raw --postfilter -../src/c2sim ../raw/$1.raw --phase0 --lpc 10 -o $1_phase0_lpc10.raw --postfilter -../src/c2sim ../raw/$1.raw --phase0 --lpc 10 --dec -o $1_phase0_lpc10_dec.raw --postfilter -../src/c2sim ../raw/$1.raw --phase0 --lpc 10 --lsp --dec -o $1_phase0_lsp_dec.raw --postfilter - -#../src/c2sim ../raw/$1.raw --lpc 10 --lsp -o $1_lsp.raw -#../src/c2sim ../raw/$1.raw --phase0 --lpc 10 -o $1_phase0_lpc10.raw --postfilter -#../src/c2sim ../raw/$1.raw --phase0 --lpc 10 --lsp -o $1_phase0_lsp.raw --postfilter -#../src/c2sim ../raw/$1.raw --phase0 --lpc 10 --lsp -o $1_phase0_lsp_dec.raw --postfilter --dec - diff --git a/gr-vocoder/lib/codec2/sine.c b/gr-vocoder/lib/codec2/sine.c index b30f9abad6..be4df00a6d 100644 --- a/gr-vocoder/lib/codec2/sine.c +++ b/gr-vocoder/lib/codec2/sine.c @@ -37,7 +37,7 @@ #include "defines.h" #include "sine.h" -#include "fft.h" +#include "kiss_fft.h" #define HPF_BETA 0.125 @@ -66,9 +66,10 @@ void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, \*---------------------------------------------------------------------------*/ -void make_analysis_window(float w[],COMP W[]) +void make_analysis_window(kiss_fft_cfg fft_fwd_cfg, float w[], COMP W[]) { float m; + COMP wshift[FFT_ENC]; COMP temp; int i,j; @@ -87,7 +88,7 @@ void make_analysis_window(float w[],COMP W[]) for(i=0; i<M/2-NW/2; i++) w[i] = 0.0; for(i=M/2-NW/2,j=0; i<M/2+NW/2; i++,j++) { - w[i] = 0.5 - 0.5*cos(TWO_PI*j/(NW-1)); + w[i] = 0.5 - 0.5*cosf(TWO_PI*j/(NW-1)); m += w[i]*w[i]; } for(i=M/2+NW/2; i<M; i++) @@ -96,7 +97,7 @@ void make_analysis_window(float w[],COMP W[]) /* Normalise - makes freq domain amplitude estimation straight forward */ - m = 1.0/sqrt(m*FFT_ENC); + m = 1.0/sqrtf(m*FFT_ENC); for(i=0; i<M; i++) { w[i] *= m; } @@ -123,15 +124,15 @@ void make_analysis_window(float w[],COMP W[]) */ for(i=0; i<FFT_ENC; i++) { - W[i].real = 0.0; - W[i].imag = 0.0; + wshift[i].real = 0.0; + wshift[i].imag = 0.0; } for(i=0; i<NW/2; i++) - W[i].real = w[i+M/2]; + wshift[i].real = w[i+M/2]; for(i=FFT_ENC-NW/2,j=M/2-NW/2; i<FFT_ENC; i++,j++) - W[i].real = w[j]; + wshift[i].real = w[j]; - fft(&W[0].real,FFT_ENC,-1); /* "Numerical Recipes in C" FFT */ + kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)wshift, (kiss_fft_cpx *)W); /* Re-arrange W[] to be symmetrical about FFT_ENC/2. Makes later @@ -198,13 +199,14 @@ float hpf(float x, float states[]) \*---------------------------------------------------------------------------*/ -void dft_speech(COMP Sw[], float Sn[], float w[]) +void dft_speech(kiss_fft_cfg fft_fwd_cfg, COMP Sw[], float Sn[], float w[]) { - int i; + int i; + COMP sw[FFT_ENC]; for(i=0; i<FFT_ENC; i++) { - Sw[i].real = 0.0; - Sw[i].imag = 0.0; + sw[i].real = 0.0; + sw[i].imag = 0.0; } /* Centre analysis window on time axis, we need to arrange input @@ -213,14 +215,14 @@ void dft_speech(COMP Sw[], float Sn[], float w[]) /* move 2nd half to start of FFT input vector */ for(i=0; i<NW/2; i++) - Sw[i].real = Sn[i+M/2]*w[i+M/2]; + sw[i].real = Sn[i+M/2]*w[i+M/2]; /* move 1st half to end of FFT input vector */ for(i=0; i<NW/2; i++) - Sw[FFT_ENC-NW/2+i].real = Sn[i+M/2-NW/2]*w[i+M/2-NW/2]; + sw[FFT_ENC-NW/2+i].real = Sn[i+M/2-NW/2]*w[i+M/2-NW/2]; - fft(&Sw[0].real,FFT_ENC,-1); + kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)sw, (kiss_fft_cpx *)Sw); } /*---------------------------------------------------------------------------*\ @@ -287,7 +289,7 @@ void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, float float Wo; /* current "test" fundamental freq. */ float Wom; /* Wo that maximises E */ float Em; /* mamimum energy */ - float r; /* number of rads/bin */ + float r, one_on_r; /* number of rads/bin */ float p; /* current pitch */ /* Initialisation */ @@ -296,6 +298,7 @@ void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, float Wom = model->Wo; Em = 0.0; r = TWO_PI/FFT_ENC; + one_on_r = 1.0/r; /* Determine harmonic sum for a range of Wo values */ @@ -304,12 +307,10 @@ void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, float Wo = TWO_PI/p; /* Sum harmonic magnitudes */ - for(m=1; m<=model->L; m++) { - b = floor(m*Wo/r + 0.5); - E += Sw[b].real*Sw[b].real + Sw[b].imag*Sw[b].imag; + b = (int)(m*Wo*one_on_r + 0.5); + E += Sw[b].real*Sw[b].real + Sw[b].imag*Sw[b].imag; } - /* Compare to see if this is a maximum */ if (E > Em) { @@ -331,40 +332,45 @@ void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, float \*---------------------------------------------------------------------------*/ -void estimate_amplitudes(MODEL *model, COMP Sw[], COMP W[]) +void estimate_amplitudes(MODEL *model, COMP Sw[], COMP W[], int est_phase) { int i,m; /* loop variables */ int am,bm; /* bounds of current harmonic */ int b; /* DFT bin of centre of current harmonic */ float den; /* denominator of amplitude expression */ - float r; /* number of rads/bin */ + float r, one_on_r; /* number of rads/bin */ int offset; COMP Am; r = TWO_PI/FFT_ENC; + one_on_r = 1.0/r; for(m=1; m<=model->L; m++) { den = 0.0; - am = floor((m - 0.5)*model->Wo/r + 0.5); - bm = floor((m + 0.5)*model->Wo/r + 0.5); - b = floor(m*model->Wo/r + 0.5); + am = (int)((m - 0.5)*model->Wo*one_on_r + 0.5); + bm = (int)((m + 0.5)*model->Wo*one_on_r + 0.5); + b = (int)(m*model->Wo/r + 0.5); /* Estimate ampltude of harmonic */ den = 0.0; Am.real = Am.imag = 0.0; + offset = FFT_ENC/2 - (int)(m*model->Wo*one_on_r + 0.5); for(i=am; i<bm; i++) { den += Sw[i].real*Sw[i].real + Sw[i].imag*Sw[i].imag; - offset = i + FFT_ENC/2 - floor(m*model->Wo/r + 0.5); - Am.real += Sw[i].real*W[offset].real; - Am.imag += Sw[i].imag*W[offset].real; + Am.real += Sw[i].real*W[i + offset].real; + Am.imag += Sw[i].imag*W[i + offset].real; } - model->A[m] = sqrt(den); + model->A[m] = sqrtf(den); + + if (est_phase) { - /* Estimate phase of harmonic */ + /* Estimate phase of harmonic, this is expensive in CPU for + embedded devicesso we make it an option */ - model->phi[m] = atan2(Sw[b].imag,Sw[b].real); + model->phi[m] = atan2(Sw[b].imag,Sw[b].real); + } } } @@ -396,9 +402,9 @@ float est_voicing_mbe( float Wo; float sig, snr; float elow, ehigh, eratio; - float dF0, sixty; + float sixty; - sig = 0.0; + sig = 1E-4; for(l=1; l<=model->L/4; l++) { sig += model->A[l]*model->A[l]; } @@ -410,7 +416,7 @@ float est_voicing_mbe( } Wo = model->Wo; - error = 0.0; + error = 1E-4; /* Just test across the harmonics in the first 1000 Hz (L/4) */ @@ -423,11 +429,11 @@ float est_voicing_mbe( /* Estimate amplitude of harmonic assuming harmonic is totally voiced */ + offset = FFT_ENC/2 - l*Wo*FFT_ENC/TWO_PI + 0.5; for(m=al; m<bl; m++) { - offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5; - Am.real += Sw[m].real*W[offset].real + Sw[m].imag*W[offset].imag; - Am.imag += Sw[m].imag*W[offset].real - Sw[m].real*W[offset].imag; - den += W[offset].real*W[offset].real + W[offset].imag*W[offset].imag; + Am.real += Sw[m].real*W[offset+m].real; + Am.imag += Sw[m].imag*W[offset+m].real; + den += W[offset+m].real*W[offset+m].real; } Am.real = Am.real/den; @@ -435,10 +441,10 @@ float est_voicing_mbe( /* Determine error between estimated harmonic and original */ + offset = FFT_ENC/2 - l*Wo*FFT_ENC/TWO_PI + 0.5; for(m=al; m<bl; m++) { - offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5; - Sw_[m].real = Am.real*W[offset].real - Am.imag*W[offset].imag; - Sw_[m].imag = Am.real*W[offset].imag + Am.imag*W[offset].real; + Sw_[m].real = Am.real*W[offset+m].real; + Sw_[m].imag = Am.imag*W[offset+m].real; Ew[m].real = Sw[m].real - Sw_[m].real; Ew[m].imag = Sw[m].imag - Sw_[m].imag; error += Ew[m].real*Ew[m].real; @@ -446,7 +452,7 @@ float est_voicing_mbe( } } - snr = 10.0*log10(sig/error); + snr = 10.0*log10f(sig/error); if (snr > V_THRESH) model->voiced = 1; else @@ -455,21 +461,20 @@ float est_voicing_mbe( /* post processing, helps clean up some voicing errors ------------------*/ /* - Determine the ratio of low freancy to high frequency energy, + Determine the ratio of low freqency to high frequency energy, voiced speech tends to be dominated by low frequency energy, unvoiced by high frequency. This measure can be used to determine if we have made any gross errors. */ - elow = ehigh = 0.0; + elow = ehigh = 1E-4; for(l=1; l<=model->L/2; l++) { elow += model->A[l]*model->A[l]; } for(l=model->L/2; l<=model->L; l++) { ehigh += model->A[l]*model->A[l]; } - eratio = 10.0*log10(elow/ehigh); - dF0 = 0.0; + eratio = 10.0*log10f(elow/ehigh); /* Look for Type 1 errors, strongly V speech that has been accidentally declared UV */ @@ -485,16 +490,10 @@ float est_voicing_mbe( if (eratio < -10.0) model->voiced = 0; - /* If pitch is jumping about it's likely this is UV */ - - dF0 = (model->Wo - prev_Wo)*FS/TWO_PI; - if (fabs(dF0) > 15.0) - model->voiced = 0; - /* A common source of Type 2 errors is the pitch estimator gives a low (50Hz) estimate for UV speech, which gives a good match with noise due to the close harmoonic spacing. - These errors are much more common than people with 50Hz + These errors are much more common than people with 50Hz3 pitch, so we have just a small eratio threshold. */ sixty = 60.0*TWO_PI/FS; @@ -551,6 +550,7 @@ void make_synthesis_window(float Pn[]) \*---------------------------------------------------------------------------*/ void synthesise( + kiss_fft_cfg fft_inv_cfg, float Sn_[], /* time domain synthesised signal */ MODEL *model, /* ptr to model parameters for this frame */ float Pn[], /* time domain Parzen window */ @@ -559,10 +559,10 @@ void synthesise( { int i,l,j,b; /* loop variables */ COMP Sw_[FFT_DEC]; /* DFT of synthesised signal */ + COMP sw_[FFT_DEC]; /* synthesised signal */ if (shift) { /* Update memories */ - for(i=0; i<N-1; i++) { Sn_[i] = Sn_[i+N]; } @@ -578,7 +578,7 @@ void synthesise( Nov 2010 - found that synthesis using time domain cos() functions gives better results for synthesis frames greater than 10ms. Inverse FFT synthesis using a 512 pt FFT works well for 10ms window. I think - (but am not sure) that the problem is realted to the quantisation of + (but am not sure) that the problem is related to the quantisation of the harmonic frequencies to the FFT bin size, e.g. there is a 8000/512 Hz step between FFT bins. For some reason this makes the speech from longer frame > 10ms sound poor. The effect can also @@ -592,19 +592,21 @@ void synthesise( #ifdef FFT_SYNTHESIS /* Now set up frequency domain synthesised speech */ for(l=1; l<=model->L; l++) { - b = floor(l*model->Wo*FFT_DEC/TWO_PI + 0.5); + //for(l=model->L/2; l<=model->L; l++) { + //for(l=1; l<=model->L/4; l++) { + b = (int)(l*model->Wo*FFT_DEC/TWO_PI + 0.5); if (b > ((FFT_DEC/2)-1)) { b = (FFT_DEC/2)-1; } - Sw_[b].real = model->A[l]*cos(model->phi[l]); - Sw_[b].imag = model->A[l]*sin(model->phi[l]); + Sw_[b].real = model->A[l]*cosf(model->phi[l]); + Sw_[b].imag = model->A[l]*sinf(model->phi[l]); Sw_[FFT_DEC-b].real = Sw_[b].real; Sw_[FFT_DEC-b].imag = -Sw_[b].imag; } /* Perform inverse DFT */ - fft(&Sw_[0].real,FFT_DEC,1); + kiss_fft(fft_inv_cfg, (kiss_fft_cpx *)Sw_, (kiss_fft_cpx *)sw_); #else /* Direct time domain synthesis using the cos() function. Works @@ -625,14 +627,22 @@ void synthesise( /* Overlap add to previous samples */ for(i=0; i<N-1; i++) { - Sn_[i] += Sw_[FFT_DEC-N+1+i].real*Pn[i]; + Sn_[i] += sw_[FFT_DEC-N+1+i].real*Pn[i]; } if (shift) for(i=N-1,j=0; i<2*N; i++,j++) - Sn_[i] = Sw_[j].real*Pn[i]; + Sn_[i] = sw_[j].real*Pn[i]; else for(i=N-1,j=0; i<2*N; i++,j++) - Sn_[i] += Sw_[j].real*Pn[i]; + Sn_[i] += sw_[j].real*Pn[i]; +} + + +static unsigned long next = 1; + +int codec2_rand(void) { + next = next * 1103515245 + 12345; + return((unsigned)(next/65536) % 32768); } diff --git a/gr-vocoder/lib/codec2/sine.h b/gr-vocoder/lib/codec2/sine.h index f223e2afca..3a3ce46d62 100644 --- a/gr-vocoder/lib/codec2/sine.h +++ b/gr-vocoder/lib/codec2/sine.h @@ -30,15 +30,19 @@ #include "defines.h" #include "comp.h" +#include "kiss_fft.h" -void make_analysis_window(float w[], COMP W[]); +void make_analysis_window(kiss_fft_cfg fft_fwd_cfg, float w[], COMP W[]); float hpf(float x, float states[]); -void dft_speech(COMP Sw[], float Sn[], float w[]); +void dft_speech(kiss_fft_cfg fft_fwd_cfg, COMP Sw[], float Sn[], float w[]); void two_stage_pitch_refinement(MODEL *model, COMP Sw[]); -void estimate_amplitudes(MODEL *model, COMP Sw[], COMP W[]); +void estimate_amplitudes(MODEL *model, COMP Sw[], COMP W[], int est_phase); float est_voicing_mbe(MODEL *model, COMP Sw[], COMP W[], COMP Sw_[],COMP Ew[], float prev_Wo); void make_synthesis_window(float Pn[]); -void synthesise(float Sn_[], MODEL *model, float Pn[], int shift); +void synthesise(kiss_fft_cfg fft_inv_cfg, float Sn_[], MODEL *model, float Pn[], int shift); + +#define CODEC2_RAND_MAX 32767 +int codec2_rand(void); #endif diff --git a/gr-vocoder/lib/codec2/test_bits.h b/gr-vocoder/lib/codec2/test_bits.h new file mode 100644 index 0000000000..d1c01a03b2 --- /dev/null +++ b/gr-vocoder/lib/codec2/test_bits.h @@ -0,0 +1,164 @@ +/* Generated by test_bits_file() Octave function */ + +const int test_bits[]={ + 0, + 1, + 1, + 0, + 0, + 0, + 1, + 1, + 0, + 0, + 1, + 0, + 1, + 0, + 0, + 1, + 0, + 1, + 1, + 0, + 0, + 1, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 0, + 1, + 1, + 0, + 0, + 1, + 1, + 1, + 0, + 1, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 0, + 0, + 1, + 0, + 0, + 1, + 1, + 1, + 0, + 0, + 1, + 1, + 1, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 0, + 1, + 1, + 1, + 0, + 0, + 1, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0, + 0, + 1, + 1, + 0, + 1, + 0, + 0, + 0, + 1, + 1, + 1, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 0, + 1, + 1, + 0, + 0, + 0, + 1, + 0, + 0, + 1, + 0, + 0, + 0, + 1, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 0, + 1, + 1, + 0, + 0, + 0, + 1, + 0, + 1, + 1, + 1, + 0, + 1 +}; diff --git a/gr-vocoder/lib/codec2_decode_ps_impl.cc b/gr-vocoder/lib/codec2_decode_ps_impl.cc index a4f7cccf82..fa4c1839d0 100644 --- a/gr-vocoder/lib/codec2_decode_ps_impl.cc +++ b/gr-vocoder/lib/codec2_decode_ps_impl.cc @@ -24,12 +24,12 @@ #include "config.h" #endif -#include "codec2_decode_ps_impl.h" - extern "C" { #include "codec2/codec2.h" } +#include "codec2_decode_ps_impl.h" + #include <gnuradio/io_signature.h> #include <stdexcept> #include <assert.h> @@ -38,22 +38,34 @@ namespace gr { namespace vocoder { codec2_decode_ps::sptr - codec2_decode_ps::make() + codec2_decode_ps::make(int mode) { + CODEC2 *codec2; + int samples_per_frame, bits_per_frame; + + // Check the number of input samples and output bits per frame. + codec2 = codec2_create(mode); + samples_per_frame = codec2_samples_per_frame(codec2); + bits_per_frame = codec2_bits_per_frame(codec2); + codec2_destroy(codec2); + return gnuradio::get_initial_sptr - (new codec2_decode_ps_impl()); + (new codec2_decode_ps_impl(mode, samples_per_frame, bits_per_frame)); } - codec2_decode_ps_impl::codec2_decode_ps_impl () + codec2_decode_ps_impl::codec2_decode_ps_impl (int mode, int samples_per_frame, int bits_per_frame) : sync_interpolator("vocoder_codec2_decode_ps", - io_signature::make(1, 1, CODEC2_BITS_PER_FRAME * sizeof(char)), + io_signature::make(1, 1, bits_per_frame * sizeof(char)), io_signature::make (1, 1, sizeof(short)), - CODEC2_SAMPLES_PER_FRAME), - d_frame_buf(CODEC2_BYTES_PER_FRAME, 0) + samples_per_frame), + d_frame_buf((bits_per_frame + 7) / 8, 0) { - if((d_codec2 = codec2_create()) == 0) + if((d_codec2 = codec2_create(mode)) == 0) throw std::runtime_error("codec2_decode_ps_impl: codec2_create failed"); + d_samples_per_frame = samples_per_frame; + d_bits_per_frame = bits_per_frame; + d_bytes_per_frame = (bits_per_frame + 7) / 8; } codec2_decode_ps_impl::~codec2_decode_ps_impl() @@ -69,13 +81,13 @@ namespace gr { const unsigned char *in = (const unsigned char*)input_items[0]; short *out = (short *) output_items[0]; - assert((noutput_items % CODEC2_SAMPLES_PER_FRAME) == 0); + assert((noutput_items % d_samples_per_frame) == 0); - for(int i = 0; i < noutput_items; i += CODEC2_SAMPLES_PER_FRAME) { + for(int i = 0; i < noutput_items; i += d_samples_per_frame) { pack_frame(in, &d_frame_buf[0]); - codec2_decode (d_codec2, out, const_cast<unsigned char*>(&d_frame_buf[0])); - in += CODEC2_BITS_PER_FRAME * sizeof (char); - out += CODEC2_SAMPLES_PER_FRAME; + codec2_decode (d_codec2, out, const_cast<unsigned char*>(&d_frame_buf[0]), 0.0); + in += d_bits_per_frame * sizeof (char); + out += d_samples_per_frame; } return noutput_items; @@ -84,10 +96,10 @@ namespace gr { void codec2_decode_ps_impl::pack_frame(const unsigned char *in_unpacked, unsigned char *out_packed) { - memset((void *) &d_frame_buf[0], 0x00, CODEC2_BYTES_PER_FRAME); + memset((void *) &d_frame_buf[0], 0x00, d_bytes_per_frame); int byte_idx = 0, bit_idx = 0; - for(int k = 0; k < CODEC2_BITS_PER_FRAME; k++) { + for(int k = 0; k < d_bits_per_frame; k++) { out_packed[byte_idx] |= ((in_unpacked[k] & 0x01) << (7-bit_idx)); bit_idx = (bit_idx + 1) % 8; if (bit_idx == 0) { diff --git a/gr-vocoder/lib/codec2_decode_ps_impl.h b/gr-vocoder/lib/codec2_decode_ps_impl.h index b9591dce74..db5ba2eef1 100644 --- a/gr-vocoder/lib/codec2_decode_ps_impl.h +++ b/gr-vocoder/lib/codec2_decode_ps_impl.h @@ -31,13 +31,14 @@ namespace gr { class codec2_decode_ps_impl : public codec2_decode_ps { private: - void *d_codec2; + CODEC2 *d_codec2; + int d_samples_per_frame, d_bits_per_frame, d_bytes_per_frame; std::vector<unsigned char> d_frame_buf; //!< Store 1 packed frame for decoding void pack_frame(const unsigned char *in_unpacked, unsigned char *out_packed); //!< Pack the bytes from unpacked bits for codec2 public: - codec2_decode_ps_impl(); + codec2_decode_ps_impl(int mode, int samples_per_frame, int bits_per_frame); ~codec2_decode_ps_impl(); int work(int noutput_items, diff --git a/gr-vocoder/lib/codec2_encode_sp_impl.cc b/gr-vocoder/lib/codec2_encode_sp_impl.cc index fc0b3eee19..ae76b09472 100644 --- a/gr-vocoder/lib/codec2_encode_sp_impl.cc +++ b/gr-vocoder/lib/codec2_encode_sp_impl.cc @@ -24,12 +24,12 @@ #include "config.h" #endif -#include "codec2_encode_sp_impl.h" - extern "C" { #include "codec2/codec2.h" } +#include "codec2_encode_sp_impl.h" + #include <gnuradio/io_signature.h> #include <stdexcept> #include <iostream> @@ -39,21 +39,32 @@ namespace gr { namespace vocoder { codec2_encode_sp::sptr - codec2_encode_sp::make() + codec2_encode_sp::make(int mode) { + CODEC2 *codec2; + int samples_per_frame, bits_per_frame; + + // Check the number of input samples and output bits per frame. + codec2 = codec2_create(mode); + samples_per_frame = codec2_samples_per_frame(codec2); + bits_per_frame = codec2_bits_per_frame(codec2); + codec2_destroy(codec2); + return gnuradio::get_initial_sptr - (new codec2_encode_sp_impl()); + (new codec2_encode_sp_impl(mode, samples_per_frame, bits_per_frame)); } - codec2_encode_sp_impl::codec2_encode_sp_impl() + codec2_encode_sp_impl::codec2_encode_sp_impl(int mode, int samples_per_frame, int bits_per_frame) : sync_decimator("vocoder_codec2_encode_sp", io_signature::make(1, 1, sizeof(short)), - io_signature::make(1, 1, CODEC2_BITS_PER_FRAME * sizeof(char)), - CODEC2_SAMPLES_PER_FRAME), - d_frame_buf(CODEC2_BYTES_PER_FRAME, 0) + io_signature::make(1, 1, bits_per_frame * sizeof(char)), + samples_per_frame), + d_frame_buf((bits_per_frame + 7) / 8, 0) { - if((d_codec2 = codec2_create()) == 0) + if((d_codec2 = codec2_create(mode)) == 0) throw std::runtime_error("codec2_encode_sp_impl: codec2_create failed"); + d_samples_per_frame = samples_per_frame; + d_bits_per_frame = bits_per_frame; } codec2_encode_sp_impl::~codec2_encode_sp_impl() @@ -72,8 +83,8 @@ namespace gr { for(int i = 0; i < noutput_items; i++) { codec2_encode(d_codec2, &d_frame_buf[0], const_cast<short*>(in)); unpack_frame((const unsigned char *) &d_frame_buf[0], out); - in += CODEC2_SAMPLES_PER_FRAME; - out += CODEC2_BITS_PER_FRAME * sizeof(char); + in += d_samples_per_frame; + out += d_bits_per_frame * sizeof(char); } return noutput_items; @@ -83,7 +94,7 @@ namespace gr { codec2_encode_sp_impl::unpack_frame(const unsigned char *packed, unsigned char *out) { int byte_idx = 0, bit_idx = 0; - for(int k = 0; k < CODEC2_BITS_PER_FRAME; k++) { + for(int k = 0; k < d_bits_per_frame; k++) { out[k] = (packed[byte_idx] >> (7-bit_idx)) & 0x01; bit_idx = (bit_idx + 1) % 8; if (bit_idx == 0) { diff --git a/gr-vocoder/lib/codec2_encode_sp_impl.h b/gr-vocoder/lib/codec2_encode_sp_impl.h index 7402d09f90..17d6f4e2a1 100644 --- a/gr-vocoder/lib/codec2_encode_sp_impl.h +++ b/gr-vocoder/lib/codec2_encode_sp_impl.h @@ -31,13 +31,14 @@ namespace gr { class codec2_encode_sp_impl : public codec2_encode_sp { private: - void *d_codec2; + CODEC2 *d_codec2; + int d_samples_per_frame, d_bits_per_frame; std::vector<unsigned char> d_frame_buf; //!< Save 1 CODEC2 frame void unpack_frame(const unsigned char *packed, unsigned char *out); //!< Unpack the bytes from codec2 into unpacked bits public: - codec2_encode_sp_impl(); + codec2_encode_sp_impl(int mode, int samples_per_frame, int bits_per_frame); ~codec2_encode_sp_impl(); int work(int noutput_items, diff --git a/gr-vocoder/python/vocoder/qa_codec2_vocoder.py b/gr-vocoder/python/vocoder/qa_codec2_vocoder.py index 0e29401c7a..8fe3ac56b5 100755 --- a/gr-vocoder/python/vocoder/qa_codec2_vocoder.py +++ b/gr-vocoder/python/vocoder/qa_codec2_vocoder.py @@ -21,6 +21,7 @@ # from gnuradio import gr, gr_unittest, vocoder, blocks +from gnuradio.vocoder import codec2 class test_codec2_vocoder (gr_unittest.TestCase): @@ -31,27 +32,18 @@ class test_codec2_vocoder (gr_unittest.TestCase): self.tb = None def test001_module_load (self): - data = 20*(100,200,300,400,500,600,700,800) - expected_data = (0,0,0,3,2,0,1,5,6,7,1,-1,0,-5,-11,-10,-20,-22, - -20,-20,-27,-26,-36,-48,-59,-24,5,-7,-12,-27,-22, - -22,-16,13,20,39,23,25,8,-6,15,44,97,135,145,125, - 94,102,126,129,165,192,180,132,99,79,73,83,72,47, - 40,0,-32,-46,-67,-99,-123,-114,-87,-108,-131,-152, - -181,-245,-348,-294,-101,-71,-85,-26,99,123,15,2,77, - 13,-117,-145,-105,-39,-50,-89,-59,-77,-134,-95,-51, - -22,17,-19,-59,-74,-103,-78,4,77,113,60,18,13,-67, - -49,24,88,179,190,89,18,-90,-102,-50,-5,123,135,57, - 31,-82,-98,-51,6,93,104,44,-5,-84,-107,-44,45,102,104, - 15,-47,-107,-126,-87,-11,89,93,13,-95,-136,-187,-70, - -167,216,-70,-103,175,-284,-486) + data = 40*(100,200,300,400,500,600,700,800) + expected_data = (0, 5, 10, 14, 15, 13, 14, 20, 40, 46, 39, 36, 35, 33, 22, 17, 31, 34, 29, 24, 24, 15, -3, -8, -7, 1, -4, -11, -14, -22, -39, -53, -51, -52, -58, -58, -59, -58, -61, -74, -73, -79, -75, -61, -73, -76, -72, -75, -62, -74, -75, -64, -64, -59, -61, -49, -68, -60, -23, -46, -48, -33, -48, 2, 20, -3, 2, -8, 9, 38, 9, 16, 23, 16, 44, 65, 37, 24, 25, 55, 61, 57, 52, 39, 47, 57, 66, 73, 50, 46, 47, 55, 55, 45, 73, 86, 63, 66, 60, 55, 60, 55, 71, 59, 46, 58, 46, 2, 38, 50, 33, 41, 32, 0, -16, -11, 10, 16, -13, 0, -5, -33, -45, -38, -28, -24, -41, 21, -2, -53, -55, -74, -66, -64, -64, -41, -46, -94, -122, -130, -92, -126, -104, -90, -74, -118, -162, -154, -130, -133, -163, -18, -23, -155, -95, -145, -60, -63, 156, 864, 882, 607, 449, 163, 204, 17, 47, 612, 447, 200, -59, -188, -175, -418, -192, 170, 14, -73, -258, -276, -267, -335, -117, 96, 34, -28, -152, -130, -124, -187, 42, 176, 131, 78, -52, -2, -57, -75, 104, 130, 111, 29, -50, -46, -107, -64, 66, 36, 33, -39, -129, -91, -157, -39, 69, 1, -12, -84, -99, -52, -61, 86, 147, 58, 21, -63, -60, -100, -48, 68, 76, 6, -65, -79, -108, -159, -71, 89, 171, 183, 216, 152, 26, -35, 0, 87, 126, 143, 182, 151, 95, 106, 115, 155, 103, 86, 127, 12, -41, -91, -87, -32, -52, -41, -32, -123, -147, -154, -156, -61, -37, -8, -51, -127, -132, -127, -107, -54, 1, 26, -17, -100, -61, -9, 3, 57, 117, 102, 58, -47, 24, 67, 42, 116, 141, 113, 39, -15, 63, 68, 41, 118, 80, 24, -46, -72, 12, 5, -17, 18, -43, -61, -110, -119, -42, -40, -16, 2, -11, -50) + src = blocks.vector_source_s(data) - enc = vocoder.codec2_encode_sp() - dec = vocoder.codec2_decode_ps() + enc = vocoder.codec2_encode_sp(codec2.MODE_2400) + dec = vocoder.codec2_decode_ps(codec2.MODE_2400) snk = blocks.vector_sink_s() self.tb.connect(src, enc, dec, snk) self.tb.run() actual_result = snk.data() self.assertEqual(expected_data, actual_result) + self.tb.disconnect(src, enc, dec, snk) if __name__ == '__main__': # Note: The Vocoder is stateful, which means this test will produce failure when removing the xml option. diff --git a/gr-vocoder/swig/vocoder_swig.i b/gr-vocoder/swig/vocoder_swig.i index c404ea22d5..dac35c9cd4 100644 --- a/gr-vocoder/swig/vocoder_swig.i +++ b/gr-vocoder/swig/vocoder_swig.i @@ -30,6 +30,7 @@ %{ #include "gnuradio/vocoder/alaw_decode_bs.h" #include "gnuradio/vocoder/alaw_encode_sb.h" +#include "gnuradio/vocoder/codec2.h" #include "gnuradio/vocoder/codec2_decode_ps.h" #include "gnuradio/vocoder/codec2_encode_sp.h" #include "gnuradio/vocoder/cvsd_decode_bs.h" @@ -48,6 +49,7 @@ %include "gnuradio/vocoder/alaw_decode_bs.h" %include "gnuradio/vocoder/alaw_encode_sb.h" +%include "gnuradio/vocoder/codec2.h" %include "gnuradio/vocoder/codec2_decode_ps.h" %include "gnuradio/vocoder/codec2_encode_sp.h" %include "gnuradio/vocoder/cvsd_decode_bs.h" |