summaryrefslogtreecommitdiff
path: root/gr-vocoder/lib/codec2/fdmdv.c
diff options
context:
space:
mode:
Diffstat (limited to 'gr-vocoder/lib/codec2/fdmdv.c')
-rw-r--r--gr-vocoder/lib/codec2/fdmdv.c1569
1 files changed, 1569 insertions, 0 deletions
diff --git a/gr-vocoder/lib/codec2/fdmdv.c b/gr-vocoder/lib/codec2/fdmdv.c
new file mode 100644
index 0000000000..6af1cf4c6d
--- /dev/null
+++ b/gr-vocoder/lib/codec2/fdmdv.c
@@ -0,0 +1,1569 @@
+/*---------------------------------------------------------------------------*\
+
+ FILE........: fdmdv.c
+ AUTHOR......: David Rowe
+ DATE CREATED: April 14 2012
+
+ Functions that implement the FDMDV modem.
+
+\*---------------------------------------------------------------------------*/
+
+/*
+ Copyright (C) 2012 David Rowe
+
+ All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License version 2.1, as
+ published by the Free Software Foundation. This program is
+ distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program; if not, see <http://www.gnu.org/licenses/>.
+*/
+
+/*---------------------------------------------------------------------------*\
+
+ INCLUDES
+
+\*---------------------------------------------------------------------------*/
+
+#include <assert.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+
+#include "fdmdv_internal.h"
+#include "codec2_fdmdv.h"
+#include "rn.h"
+#include "test_bits.h"
+#include "pilot_coeff.h"
+#include "kiss_fft.h"
+#include "hanning.h"
+#include "os.h"
+
+static int sync_uw[] = {1,-1,1,-1,1,-1};
+
+/*---------------------------------------------------------------------------* \
+
+ FUNCTIONS
+
+\*---------------------------------------------------------------------------*/
+
+static COMP cneg(COMP a)
+{
+ COMP res;
+
+ res.real = -a.real;
+ res.imag = -a.imag;
+
+ return res;
+}
+
+static COMP cconj(COMP a)
+{
+ COMP res;
+
+ res.real = a.real;
+ res.imag = -a.imag;
+
+ return res;
+}
+
+static COMP cmult(COMP a, COMP b)
+{
+ COMP res;
+
+ res.real = a.real*b.real - a.imag*b.imag;
+ res.imag = a.real*b.imag + a.imag*b.real;
+
+ return res;
+}
+
+static COMP fcmult(float a, COMP b)
+{
+ COMP res;
+
+ res.real = a*b.real;
+ res.imag = a*b.imag;
+
+ return res;
+}
+
+static COMP cadd(COMP a, COMP b)
+{
+ COMP res;
+
+ res.real = a.real + b.real;
+ res.imag = a.imag + b.imag;
+
+ return res;
+}
+
+static float cabsolute(COMP a)
+{
+ return sqrt(pow(a.real, 2.0) + pow(a.imag, 2.0));
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_create
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Create and initialise an instance of the modem. Returns a pointer
+ to the modem states or NULL on failure. One set of states is
+ sufficient for a full duplex modem.
+
+\*---------------------------------------------------------------------------*/
+
+struct FDMDV * CODEC2_WIN32SUPPORT fdmdv_create(int Nc)
+{
+ struct FDMDV *f;
+ int c, i, k;
+
+ assert(NC == FDMDV_NC_MAX); /* check public and private #defines match */
+ assert(Nc <= NC);
+ assert(FDMDV_NOM_SAMPLES_PER_FRAME == M);
+ assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M+M/P));
+
+ f = (struct FDMDV*)malloc(sizeof(struct FDMDV));
+ if (f == NULL)
+ return NULL;
+
+ f->Nc = Nc;
+
+ f->ntest_bits = Nc*NB*4;
+ f->current_test_bit = 0;
+ f->rx_test_bits_mem = (int*)malloc(sizeof(int)*f->ntest_bits);
+ assert(f->rx_test_bits_mem != NULL);
+ for(i=0; i<f->ntest_bits; i++)
+ f->rx_test_bits_mem[i] = 0;
+ assert((sizeof(test_bits)/sizeof(int)) >= f->ntest_bits);
+
+ f->old_qpsk_mapping = 0;
+
+ f->tx_pilot_bit = 0;
+
+ for(c=0; c<Nc+1; c++) {
+ f->prev_tx_symbols[c].real = 1.0;
+ f->prev_tx_symbols[c].imag = 0.0;
+ f->prev_rx_symbols[c].real = 1.0;
+ f->prev_rx_symbols[c].imag = 0.0;
+
+ for(k=0; k<NSYM; k++) {
+ f->tx_filter_memory[c][k].real = 0.0;
+ f->tx_filter_memory[c][k].imag = 0.0;
+ }
+
+ for(k=0; k<NFILTER; k++) {
+ f->rx_filter_memory[c][k].real = 0.0;
+ f->rx_filter_memory[c][k].imag = 0.0;
+ }
+
+ /* Spread initial FDM carrier phase out as far as possible.
+ This helped PAPR for a few dB. We don't need to adjust rx
+ phase as DQPSK takes care of that. */
+
+ f->phase_tx[c].real = cos(2.0*PI*c/(Nc+1));
+ f->phase_tx[c].imag = sin(2.0*PI*c/(Nc+1));
+
+ f->phase_rx[c].real = 1.0;
+ f->phase_rx[c].imag = 0.0;
+
+ for(k=0; k<NT*P; k++) {
+ f->rx_filter_mem_timing[c][k].real = 0.0;
+ f->rx_filter_mem_timing[c][k].imag = 0.0;
+ }
+ for(k=0; k<NFILTERTIMING; k++) {
+ f->rx_baseband_mem_timing[c][k].real = 0.0;
+ f->rx_baseband_mem_timing[c][k].imag = 0.0;
+ }
+ }
+
+ fdmdv_set_fsep(f, FSEP);
+ f->freq[Nc].real = cos(2.0*PI*FDMDV_FCENTRE/FS);
+ f->freq[Nc].imag = sin(2.0*PI*FDMDV_FCENTRE/FS);
+
+ /* Generate DBPSK pilot Look Up Table (LUT) */
+
+ generate_pilot_lut(f->pilot_lut, &f->freq[Nc]);
+
+ /* freq Offset estimation states */
+
+ f->fft_pilot_cfg = kiss_fft_alloc (MPILOTFFT, 0, NULL, NULL);
+ assert(f->fft_pilot_cfg != NULL);
+
+ for(i=0; i<NPILOTBASEBAND; i++) {
+ f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0;
+ f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0;
+ }
+ f->pilot_lut_index = 0;
+ f->prev_pilot_lut_index = 3*M;
+
+ for(i=0; i<NPILOTLPF; i++) {
+ f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0;
+ f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0;
+ }
+
+ f->foff = 0.0;
+ f->foff_rect.real = 1.0;
+ f->foff_rect.imag = 0.0;
+ f->foff_phase_rect.real = 1.0;
+ f->foff_phase_rect.imag = 0.0;
+
+ f->fest_state = 0;
+ f->sync = 0;
+ f->timer = 0;
+ for(i=0; i<NSYNC_MEM; i++)
+ f->sync_mem[i] = 0;
+
+ for(c=0; c<Nc+1; c++) {
+ f->sig_est[c] = 0.0;
+ f->noise_est[c] = 0.0;
+ }
+
+ for(i=0; i<2*FDMDV_NSPEC; i++)
+ f->fft_buf[i] = 0.0;
+ f->fft_cfg = kiss_fft_alloc (2*FDMDV_NSPEC, 0, NULL, NULL);
+ assert(f->fft_cfg != NULL);
+
+
+ return f;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_destroy
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Destroy an instance of the modem.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_destroy(struct FDMDV *fdmdv)
+{
+ assert(fdmdv != NULL);
+ KISS_FFT_FREE(fdmdv->fft_pilot_cfg);
+ KISS_FFT_FREE(fdmdv->fft_cfg);
+ free(fdmdv->rx_test_bits_mem);
+ free(fdmdv);
+}
+
+
+void CODEC2_WIN32SUPPORT fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) {
+ fdmdv->old_qpsk_mapping = 1;
+}
+
+
+int CODEC2_WIN32SUPPORT fdmdv_bits_per_frame(struct FDMDV *fdmdv)
+{
+ return (fdmdv->Nc * NB);
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_get_test_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Generate a frame of bits from a repeating sequence of random data. OK so
+ it's not very random if it repeats but it makes syncing at the demod easier
+ for test purposes.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[])
+{
+ int i;
+ int bits_per_frame = fdmdv_bits_per_frame(f);
+
+ for(i=0; i<bits_per_frame; i++) {
+ tx_bits[i] = test_bits[f->current_test_bit];
+ f->current_test_bit++;
+ if (f->current_test_bit > (f->ntest_bits-1))
+ f->current_test_bit = 0;
+ }
+ }
+
+float CODEC2_WIN32SUPPORT fdmdv_get_fsep(struct FDMDV *f)
+{
+ return f->fsep;
+}
+
+void CODEC2_WIN32SUPPORT fdmdv_set_fsep(struct FDMDV *f, float fsep) {
+ int c;
+ float carrier_freq;
+
+ f->fsep = fsep;
+ /* Set up frequency of each carrier */
+
+ for(c=0; c<f->Nc/2; c++) {
+ carrier_freq = (-f->Nc/2 + c)*f->fsep + FDMDV_FCENTRE;
+ f->freq[c].real = cos(2.0*PI*carrier_freq/FS);
+ f->freq[c].imag = sin(2.0*PI*carrier_freq/FS);
+ }
+
+ for(c=f->Nc/2; c<f->Nc; c++) {
+ carrier_freq = (-f->Nc/2 + c + 1)*f->fsep + FDMDV_FCENTRE;
+ f->freq[c].real = cos(2.0*PI*carrier_freq/FS);
+ f->freq[c].imag = sin(2.0*PI*carrier_freq/FS);
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: bits_to_dqpsk_symbols()
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from
+ vector of (1,Nc*Nb) input tx_bits. The Nc+1 symbol is the +1 -1 +1
+ .... BPSK sync carrier.
+
+\*---------------------------------------------------------------------------*/
+
+void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping)
+{
+ int c, msb, lsb;
+ COMP j = {0.0,1.0};
+
+ /* Map tx_bits to to Nc DQPSK symbols. Note legacy support for
+ old (suboptimal) V0.91 FreeDV mapping */
+
+ for(c=0; c<Nc; c++) {
+ msb = tx_bits[2*c];
+ lsb = tx_bits[2*c+1];
+ if ((msb == 0) && (lsb == 0))
+ tx_symbols[c] = prev_tx_symbols[c];
+ if ((msb == 0) && (lsb == 1))
+ tx_symbols[c] = cmult(j, prev_tx_symbols[c]);
+ if ((msb == 1) && (lsb == 0)) {
+ if (old_qpsk_mapping)
+ tx_symbols[c] = cneg(prev_tx_symbols[c]);
+ else
+ tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
+ }
+ if ((msb == 1) && (lsb == 1)) {
+ if (old_qpsk_mapping)
+ tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
+ else
+ tx_symbols[c] = cneg(prev_tx_symbols[c]);
+ }
+ }
+
+ /* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly)
+ two spectral lines at +/- Rs/2 */
+
+ if (*pilot_bit)
+ tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]);
+ else
+ tx_symbols[Nc] = prev_tx_symbols[Nc];
+
+ if (*pilot_bit)
+ *pilot_bit = 0;
+ else
+ *pilot_bit = 1;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: tx_filter()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17/4/2012
+
+ Given Nc*NB bits construct M samples (1 symbol) of Nc+1 filtered
+ symbols streams.
+
+\*---------------------------------------------------------------------------*/
+
+void tx_filter(COMP tx_baseband[NC+1][M], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM])
+{
+ int c;
+ int i,j,k;
+ float acc;
+ COMP gain;
+
+ gain.real = sqrt(2.0)/2.0;
+ gain.imag = 0.0;
+
+ for(c=0; c<Nc+1; c++)
+ tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
+
+ /*
+ tx filter each symbol, generate M filtered output samples for each symbol.
+ Efficient polyphase filter techniques used as tx_filter_memory is sparse
+ */
+
+ for(i=0; i<M; i++) {
+ for(c=0; c<Nc+1; c++) {
+
+ /* filter real sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=M-i-1; j<NSYM; j++,k+=M)
+ acc += M * tx_filter_memory[c][j].real * gt_alpha5_root[k];
+ tx_baseband[c][i].real = acc;
+
+ /* filter imag sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=M-i-1; j<NSYM; j++,k+=M)
+ acc += M * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
+ tx_baseband[c][i].imag = acc;
+
+ }
+ }
+
+ /* shift memory, inserting zeros at end */
+
+ for(i=0; i<NSYM-1; i++)
+ for(c=0; c<Nc+1; c++)
+ tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
+
+ for(c=0; c<Nc+1; c++) {
+ tx_filter_memory[c][NSYM-1].real = 0.0;
+ tx_filter_memory[c][NSYM-1].imag = 0.0;
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdm_upconvert()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17/4/2012
+
+ Construct FDM signal by frequency shifting each filtered symbol
+ stream. Returns complex signal so we can apply frequency offsets
+ easily.
+
+\*---------------------------------------------------------------------------*/
+
+void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M], COMP phase_tx[], COMP freq[])
+{
+ int i,c;
+ COMP two = {2.0, 0.0};
+ COMP pilot;
+
+ for(i=0; i<M; i++) {
+ tx_fdm[i].real = 0.0;
+ tx_fdm[i].imag = 0.0;
+ }
+
+ /* Nc/2 tones below centre freq */
+
+ for (c=0; c<Nc/2; c++)
+ for (i=0; i<M; i++) {
+ phase_tx[c] = cmult(phase_tx[c], freq[c]);
+ tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
+ }
+
+ /* Nc/2 tones above centre freq */
+
+ for (c=Nc/2; c<Nc; c++)
+ for (i=0; i<M; i++) {
+ phase_tx[c] = cmult(phase_tx[c], freq[c]);
+ tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
+ }
+
+ /* add centre pilot tone */
+
+ c = Nc;
+ for (i=0; i<M; i++) {
+ phase_tx[c] = cmult(phase_tx[c], freq[c]);
+ pilot = cmult(cmult(two, tx_baseband[c][i]), phase_tx[c]);
+ tx_fdm[i] = cadd(tx_fdm[i], pilot);
+ }
+
+ /*
+ Scale such that total Carrier power C of real(tx_fdm) = Nc. This
+ excludes the power of the pilot tone.
+ We return the complex (single sided) signal to make frequency
+ shifting for the purpose of testing easier
+ */
+
+ for (i=0; i<M; i++)
+ tx_fdm[i] = cmult(two, tx_fdm[i]);
+
+ /* normalise digital oscilators as the magnitude can drfift over time */
+
+ for (c=0; c<Nc+1; c++) {
+ phase_tx[c].real /= cabsolute(phase_tx[c]);
+ phase_tx[c].imag /= cabsolute(phase_tx[c]);
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_mod()
+ AUTHOR......: David Rowe
+ DATE CREATED: 26/4/2012
+
+ FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and
+ generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols.
+ Sync bit is returned to aid alignment of your next frame.
+
+ The sync_bit value returned will be used for the _next_ frame.
+
+ The output signal is complex to support single sided frequency
+ shifting, for example when testing frequency offsets in channel
+ simulation.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[],
+ int tx_bits[], int *sync_bit)
+{
+ COMP tx_symbols[NC+1];
+ COMP tx_baseband[NC+1][M];
+
+ bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping);
+ memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
+ tx_filter(tx_baseband, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory);
+ fdm_upconvert(tx_fdm, fdmdv->Nc, tx_baseband, fdmdv->phase_tx, fdmdv->freq);
+
+ *sync_bit = fdmdv->tx_pilot_bit;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: generate_pilot_fdm()
+ AUTHOR......: David Rowe
+ DATE CREATED: 19/4/2012
+
+ Generate M samples of DBPSK pilot signal for Freq offset estimation.
+
+\*---------------------------------------------------------------------------*/
+
+void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol,
+ float *filter_mem, COMP *phase, COMP *freq)
+{
+ int i,j,k;
+ float tx_baseband[M];
+
+ /* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly)
+ two spectral lines at +/- RS/2 */
+
+ if (*bit)
+ *symbol = -*symbol;
+ else
+ *symbol = *symbol;
+ if (*bit)
+ *bit = 0;
+ else
+ *bit = 1;
+
+ /* filter DPSK symbol to create M baseband samples */
+
+ filter_mem[NFILTER-1] = (sqrt(2)/2) * *symbol;
+ for(i=0; i<M; i++) {
+ tx_baseband[i] = 0.0;
+ for(j=M-1,k=M-i-1; j<NFILTER; j+=M,k+=M)
+ tx_baseband[i] += M * filter_mem[j] * gt_alpha5_root[k];
+ }
+
+ /* shift memory, inserting zeros at end */
+
+ for(i=0; i<NFILTER-M; i++)
+ filter_mem[i] = filter_mem[i+M];
+
+ for(i=NFILTER-M; i<NFILTER; i++)
+ filter_mem[i] = 0.0;
+
+ /* upconvert */
+
+ for(i=0; i<M; i++) {
+ *phase = cmult(*phase, *freq);
+ pilot_fdm[i].real = sqrt(2)*2*tx_baseband[i] * phase->real;
+ pilot_fdm[i].imag = sqrt(2)*2*tx_baseband[i] * phase->imag;
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: generate_pilot_lut()
+ AUTHOR......: David Rowe
+ DATE CREATED: 19/4/2012
+
+ Generate a 4M sample vector of DBPSK pilot signal. As the pilot signal
+ is periodic in 4M samples we can then use this vector as a look up table
+ for pilot signal generation in the demod.
+
+\*---------------------------------------------------------------------------*/
+
+void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq)
+{
+ int pilot_rx_bit = 0;
+ float pilot_symbol = sqrt(2.0);
+ COMP pilot_phase = {1.0, 0.0};
+ float pilot_filter_mem[NFILTER];
+ COMP pilot[M];
+ int i,f;
+
+ for(i=0; i<NFILTER; i++)
+ pilot_filter_mem[i] = 0.0;
+
+ /* discard first 4 symbols as filter memory is filling, just keep
+ last four symbols */
+
+ for(f=0; f<8; f++) {
+ generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq);
+ if (f >= 4)
+ memcpy(&pilot_lut[M*(f-4)], pilot, M*sizeof(COMP));
+ }
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: lpf_peak_pick()
+ AUTHOR......: David Rowe
+ DATE CREATED: 20/4/2012
+
+ LPF and peak pick part of freq est, put in a function as we call it twice.
+
+\*---------------------------------------------------------------------------*/
+
+void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[],
+ COMP pilot_lpf[], kiss_fft_cfg fft_pilot_cfg, COMP S[], int nin)
+{
+ int i,j,k;
+ int mpilot;
+ COMP s[MPILOTFFT];
+ float mag, imax;
+ int ix;
+ float r;
+
+ /* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */
+
+ for(i=0; i<NPILOTLPF-nin; i++)
+ pilot_lpf[i] = pilot_lpf[nin+i];
+ for(i=NPILOTLPF-nin, j=0; i<NPILOTLPF; i++,j++) {
+ pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0;
+ for(k=0; k<NPILOTCOEFF; k++)
+ pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j+k]));
+ }
+
+ /* decimate to improve DFT resolution, window and DFT */
+
+ mpilot = FS/(2*200); /* calc decimation rate given new sample rate is twice LPF freq */
+ for(i=0; i<MPILOTFFT; i++) {
+ s[i].real = 0.0; s[i].imag = 0.0;
+ }
+ for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) {
+ s[j] = fcmult(hanning[i], pilot_lpf[i]);
+ }
+
+ kiss_fft(fft_pilot_cfg, (kiss_fft_cpx *)s, (kiss_fft_cpx *)S);
+
+ /* peak pick and convert to Hz */
+
+ imax = 0.0;
+ ix = 0;
+ for(i=0; i<MPILOTFFT; i++) {
+ mag = S[i].real*S[i].real + S[i].imag*S[i].imag;
+ if (mag > imax) {
+ imax = mag;
+ ix = i;
+ }
+ }
+ r = 2.0*200.0/MPILOTFFT; /* maps FFT bin to frequency in Hz */
+
+ if (ix >= MPILOTFFT/2)
+ *foff = (ix - MPILOTFFT)*r;
+ else
+ *foff = (ix)*r;
+ *max = imax;
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_est_freq_offset()
+ AUTHOR......: David Rowe
+ DATE CREATED: 19/4/2012
+
+ Estimate frequency offset of FDM signal using BPSK pilot. Note that
+ this algorithm is quite sensitive to pilot tone level wrt other
+ carriers, so test variations to the pilot amplitude carefully.
+
+\*---------------------------------------------------------------------------*/
+
+float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin)
+{
+ int i,j;
+ COMP pilot[M+M/P];
+ COMP prev_pilot[M+M/P];
+ float foff, foff1, foff2;
+ float max1, max2;
+
+ assert(nin <= M+M/P);
+
+ /* get pilot samples used for correlation/down conversion of rx signal */
+
+ for (i=0; i<nin; i++) {
+ pilot[i] = f->pilot_lut[f->pilot_lut_index];
+ f->pilot_lut_index++;
+ if (f->pilot_lut_index >= 4*M)
+ f->pilot_lut_index = 0;
+
+ prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index];
+ f->prev_pilot_lut_index++;
+ if (f->prev_pilot_lut_index >= 4*M)
+ f->prev_pilot_lut_index = 0;
+ }
+
+ /*
+ Down convert latest M samples of pilot by multiplying by ideal
+ BPSK pilot signal we have generated locally. The peak of the
+ resulting signal is sensitive to the time shift between the
+ received and local version of the pilot, so we do it twice at
+ different time shifts and choose the maximum.
+ */
+
+ for(i=0; i<NPILOTBASEBAND-nin; i++) {
+ f->pilot_baseband1[i] = f->pilot_baseband1[i+nin];
+ f->pilot_baseband2[i] = f->pilot_baseband2[i+nin];
+ }
+
+ for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) {
+ f->pilot_baseband1[j] = cmult(rx_fdm[i], cconj(pilot[i]));
+ f->pilot_baseband2[j] = cmult(rx_fdm[i], cconj(prev_pilot[i]));
+ }
+
+ lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin);
+ lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin);
+
+ if (max1 > max2)
+ foff = foff1;
+ else
+ foff = foff2;
+
+ return foff;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_freq_shift()
+ AUTHOR......: David Rowe
+ DATE CREATED: 26/4/2012
+
+ Frequency shift modem signal. The use of complex input and output allows
+ single sided frequency shifting (no images).
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff,
+ COMP *foff_rect, COMP *foff_phase_rect, int nin)
+{
+ int i;
+
+ foff_rect->real = cos(2.0*PI*foff/FS);
+ foff_rect->imag = sin(2.0*PI*foff/FS);
+ for(i=0; i<nin; i++) {
+ *foff_phase_rect = cmult(*foff_phase_rect, *foff_rect);
+ rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
+ }
+
+ /* normalise digital oscilator as the magnitude can drfift over time */
+
+ foff_phase_rect->real /= cabsolute(*foff_phase_rect);
+ foff_phase_rect->imag /= cabsolute(*foff_phase_rect);
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdm_downconvert()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/4/2012
+
+ Frequency shift each modem carrier down to Nc+1 baseband signals.
+
+\*---------------------------------------------------------------------------*/
+
+void fdm_downconvert(COMP rx_baseband[NC+1][M+M/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
+{
+ int i,c;
+
+ /* maximum number of input samples to demod */
+
+ assert(nin <= (M+M/P));
+
+ /* Nc/2 tones below centre freq */
+
+ for (c=0; c<Nc/2; c++)
+ for (i=0; i<nin; i++) {
+ phase_rx[c] = cmult(phase_rx[c], freq[c]);
+ rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
+ }
+
+ /* Nc/2 tones above centre freq */
+
+ for (c=Nc/2; c<Nc; c++)
+ for (i=0; i<nin; i++) {
+ phase_rx[c] = cmult(phase_rx[c], freq[c]);
+ rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
+ }
+
+ /* centre pilot tone */
+
+ c = Nc;
+ for (i=0; i<nin; i++) {
+ phase_rx[c] = cmult(phase_rx[c], freq[c]);
+ rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
+ }
+
+ /* normalise digital oscilators as the magnitude can drift over time */
+
+ for (c=0; c<Nc+1; c++) {
+ phase_rx[c].real /= cabsolute(phase_rx[c]);
+ phase_rx[c].imag /= cabsolute(phase_rx[c]);
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_filter()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/4/2012
+
+ Receive filter each baseband signal at oversample rate P. Filtering at
+ rate P lowers CPU compared to rate M.
+
+ Depending on the number of input samples to the demod nin, we
+ produce P-1, P (usually), or P+1 filtered samples at rate P. nin is
+ occasionally adjusted to compensate for timing slips due to
+ different tx and rx sample clocks.
+
+\*---------------------------------------------------------------------------*/
+
+void rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_baseband[NC+1][M+M/P], COMP rx_filter_memory[NC+1][NFILTER], int nin)
+{
+ int c, i,j,k,l;
+ int n=M/P;
+
+ /* rx filter each symbol, generate P filtered output samples for
+ each symbol. Note we keep filter memory at rate M, it's just
+ the filter output at rate P */
+
+ for(i=0, j=0; i<nin; i+=n,j++) {
+
+ /* latest input sample */
+
+ for(c=0; c<Nc+1; c++)
+ for(k=NFILTER-n,l=i; k<NFILTER; k++,l++)
+ rx_filter_memory[c][k] = rx_baseband[c][l];
+
+ /* convolution (filtering) */
+
+ for(c=0; c<Nc+1; c++) {
+ rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0;
+ for(k=0; k<NFILTER; k++)
+ rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k]));
+ }
+
+ /* make room for next input sample */
+
+ for(c=0; c<Nc+1; c++)
+ for(k=0,l=n; k<NFILTER-n; k++,l++)
+ rx_filter_memory[c][k] = rx_filter_memory[c][l];
+ }
+
+ assert(j <= (P+1)); /* check for any over runs */
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_est_timing()
+ AUTHOR......: David Rowe
+ DATE CREATED: 23/4/2012
+
+ Estimate optimum timing offset, re-filter receive symbols at optimum
+ timing estimate.
+
+\*---------------------------------------------------------------------------*/
+
+float rx_est_timing(COMP rx_symbols[],
+ int Nc,
+ COMP rx_filt[NC+1][P+1],
+ COMP rx_baseband[NC+1][M+M/P],
+ COMP rx_filter_mem_timing[NC+1][NT*P],
+ float env[],
+ COMP rx_baseband_mem_timing[NC+1][NFILTERTIMING],
+ int nin)
+{
+ int c,i,j,k;
+ int adjust, s;
+ COMP x, phase, freq;
+ float rx_timing;
+
+ /*
+ nin adjust
+ --------------------------------
+ 120 -1 (one less rate P sample)
+ 160 0 (nominal)
+ 200 1 (one more rate P sample)
+ */
+
+ adjust = P - nin*P/M;
+
+ /* update buffer of NT rate P filtered symbols */
+
+ for(c=0; c<Nc+1; c++)
+ for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++)
+ rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j];
+ for(c=0; c<Nc+1; c++)
+ for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++)
+ rx_filter_mem_timing[c][i] = rx_filt[c][j];
+
+ /* sum envelopes of all carriers */
+
+ for(i=0; i<NT*P; i++) {
+ env[i] = 0.0;
+ for(c=0; c<Nc+1; c++)
+ env[i] += cabsolute(rx_filter_mem_timing[c][i]);
+ }
+
+ /* The envelope has a frequency component at the symbol rate. The
+ phase of this frequency component indicates the timing. So work
+ out single DFT at frequency 2*pi/P */
+
+ x.real = 0.0; x.imag = 0.0;
+ freq.real = cos(2*PI/P);
+ freq.imag = sin(2*PI/P);
+ phase.real = 1.0;
+ phase.imag = 0.0;
+
+ for(i=0; i<NT*P; i++) {
+ x = cadd(x, fcmult(env[i], phase));
+ phase = cmult(phase, freq);
+ }
+
+ /* Map phase to estimated optimum timing instant at rate M. The
+ M/4 part was adjusted by experiment, I know not why.... */
+
+ rx_timing = atan2(x.imag, x.real)*M/(2*PI) + M/4;
+
+ if (rx_timing > M)
+ rx_timing -= M;
+ if (rx_timing < -M)
+ rx_timing += M;
+
+ /* rx_filt_mem_timing contains M + Nfilter + M samples of the
+ baseband signal at rate M this enables us to resample the
+ filtered rx symbol with M sample precision once we have
+ rx_timing */
+
+ for(c=0; c<Nc+1; c++)
+ for(i=0,j=nin; i<NFILTERTIMING-nin; i++,j++)
+ rx_baseband_mem_timing[c][i] = rx_baseband_mem_timing[c][j];
+ for(c=0; c<Nc+1; c++)
+ for(i=NFILTERTIMING-nin,j=0; i<NFILTERTIMING; i++,j++)
+ rx_baseband_mem_timing[c][i] = rx_baseband[c][j];
+
+ /* rx filter to get symbol for each carrier at estimated optimum
+ timing instant. We use rate M filter memory to get fine timing
+ resolution. */
+
+ s = round(rx_timing) + M;
+ for(c=0; c<Nc+1; c++) {
+ rx_symbols[c].real = 0.0;
+ rx_symbols[c].imag = 0.0;
+ for(k=s,j=0; k<s+NFILTER; k++,j++)
+ rx_symbols[c] = cadd(rx_symbols[c], fcmult(gt_alpha5_root[j], rx_baseband_mem_timing[c][k]));
+ }
+
+ return rx_timing;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: qpsk_to_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: 24/4/2012
+
+ Convert DQPSK symbols back to an array of bits, extracts sync bit
+ from DBPSK pilot, and also uses pilot to estimate fine frequency
+ error.
+
+\*---------------------------------------------------------------------------*/
+
+float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[],
+ COMP rx_symbols[], int old_qpsk_mapping)
+{
+ int c;
+ COMP pi_on_4;
+ COMP d;
+ int msb=0, lsb=0;
+ float ferr, norm;
+
+ pi_on_4.real = cos(PI/4.0);
+ pi_on_4.imag = sin(PI/4.0);
+
+ /* Extra 45 degree clockwise lets us use real and imag axis as
+ decision boundaries. "norm" makes sure the phase subtraction
+ from the previous symbol doesn't affect the amplitude, which
+ leads to sensible scatter plots */
+
+ for(c=0; c<Nc; c++) {
+ norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6);
+ phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4);
+ }
+
+ /* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */
+
+ for (c=0; c<Nc; c++) {
+ d = phase_difference[c];
+ if ((d.real >= 0) && (d.imag >= 0)) {
+ msb = 0; lsb = 0;
+ }
+ if ((d.real < 0) && (d.imag >= 0)) {
+ msb = 0; lsb = 1;
+ }
+ if ((d.real < 0) && (d.imag < 0)) {
+ if (old_qpsk_mapping) {
+ msb = 1; lsb = 0;
+ } else {
+ msb = 1; lsb = 1;
+ }
+ }
+ if ((d.real >= 0) && (d.imag < 0)) {
+ if (old_qpsk_mapping) {
+ msb = 1; lsb = 1;
+ } else {
+ msb = 1; lsb = 0;
+ }
+ }
+ rx_bits[2*c] = msb;
+ rx_bits[2*c+1] = lsb;
+ }
+
+ /* Extract DBPSK encoded Sync bit and fine freq offset estimate */
+
+ norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6);
+ phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc])));
+ if (phase_difference[Nc].real < 0) {
+ *sync_bit = 1;
+ ferr = phase_difference[Nc].imag;
+ }
+ else {
+ *sync_bit = 0;
+ ferr = -phase_difference[Nc].imag;
+ }
+
+ /* pilot carrier gets an extra pi/4 rotation to make it consistent
+ with other carriers, as we need it for snr_update and scatter
+ diagram */
+
+ phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4);
+
+ return ferr;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: snr_update()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17 May 2012
+
+ Given phase differences update estimates of signal and noise levels.
+
+\*---------------------------------------------------------------------------*/
+
+void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[])
+{
+ float s[NC+1];
+ COMP refl_symbols[NC+1];
+ float n[NC+1];
+ COMP pi_on_4;
+ int c;
+
+ pi_on_4.real = cos(PI/4.0);
+ pi_on_4.imag = sin(PI/4.0);
+
+ /* mag of each symbol is distance from origin, this gives us a
+ vector of mags, one for each carrier. */
+
+ for(c=0; c<Nc+1; c++)
+ s[c] = cabsolute(phase_difference[c]);
+
+ /* signal mag estimate for each carrier is a smoothed version of
+ instantaneous magntitude, this gives us a vector of smoothed
+ mag estimates, one for each carrier. */
+
+ for(c=0; c<Nc+1; c++)
+ sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c];
+
+ /* noise mag estimate is distance of current symbol from average
+ location of that symbol. We reflect all symbols into the first
+ quadrant for convenience. */
+
+ for(c=0; c<Nc+1; c++) {
+ refl_symbols[c].real = fabs(phase_difference[c].real);
+ refl_symbols[c].imag = fabs(phase_difference[c].imag);
+ n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c])));
+ }
+
+ /* noise mag estimate for each carrier is a smoothed version of
+ instantaneous noise mag, this gives us a vector of smoothed
+ noise power estimates, one for each carrier. */
+
+ for(c=0; c<Nc+1; c++)
+ noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c];
+}
+
+// returns number of shorts in error_pattern[], one short per error
+
+int CODEC2_WIN32SUPPORT fdmdv_error_pattern_size(struct FDMDV *f) {
+ return f->ntest_bits;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_put_test_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: 24/4/2012
+
+ Accepts nbits from rx and attempts to sync with test_bits sequence.
+ If sync OK measures bit errors.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[],
+ int *bit_errors, int *ntest_bits,
+ int rx_bits[])
+{
+ int i,j;
+ float ber;
+ int bits_per_frame = fdmdv_bits_per_frame(f);
+
+ /* Append to our memory */
+
+ for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++)
+ f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j];
+ for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++)
+ f->rx_test_bits_mem[i] = rx_bits[j];
+
+ /* see how many bit errors we get when checked against test sequence */
+
+ *bit_errors = 0;
+ for(i=0; i<f->ntest_bits; i++) {
+ error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i];
+ *bit_errors += error_pattern[i];
+ //printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]);
+ }
+
+ /* if less than a thresh we are aligned and in sync with test sequence */
+
+ ber = (float)*bit_errors/f->ntest_bits;
+
+ *sync = 0;
+ if (ber < 0.2)
+ *sync = 1;
+
+ *ntest_bits = f->ntest_bits;
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: freq_state(()
+ AUTHOR......: David Rowe
+ DATE CREATED: 24/4/2012
+
+ Freq offset state machine. Moves between coarse and fine states
+ based on BPSK pilot sequence. Freq offset estimator occasionally
+ makes mistakes when used continuously. So we use it until we have
+ acquired the BPSK pilot, then switch to a more robust "fine"
+ tracking algorithm. If we lose sync we switch back to coarse mode
+ for fast re-acquisition of large frequency offsets.
+
+ The sync state is also useful for higher layers to determine when
+ there is valid FDMDV data for decoding. We want to reliably and
+ quickly get into sync, stay in sync even on fading channels, and
+ fall out of sync quickly if tx stops or it's a false sync.
+
+ In multipath fading channels the BPSK sync carrier may be pushed
+ down in the noise, despite other carriers being at full strength.
+ We want to avoid loss of sync in these cases.
+
+\*---------------------------------------------------------------------------*/
+
+int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem)
+{
+ int next_state, sync, unique_word, i, corr;
+
+ /* look for 6 symbols (120ms) 101010 of sync sequence */
+
+ unique_word = 0;
+ for(i=0; i<NSYNC_MEM-1; i++)
+ sync_mem[i] = sync_mem[i+1];
+ sync_mem[i] = 1 - 2*sync_bit;
+ corr = 0;
+ for(i=0; i<NSYNC_MEM; i++)
+ corr += sync_mem[i]*sync_uw[i];
+ if (abs(corr) == NSYNC_MEM)
+ unique_word = 1;
+ *reliable_sync_bit = (corr == NSYNC_MEM);
+
+ /* iterate state machine */
+
+ next_state = *state;
+ switch(*state) {
+ case 0:
+ if (unique_word) {
+ next_state = 1;
+ *timer = 0;
+ }
+ break;
+ case 1: /* tentative sync state */
+ if (unique_word) {
+ (*timer)++;
+ if (*timer == 25) /* sync has been good for 500ms */
+ next_state = 2;
+ }
+ else
+ next_state = 0; /* quickly fall out of sync */
+ break;
+ case 2: /* good sync state */
+ if (unique_word == 0) {
+ *timer = 0;
+ next_state = 3;
+ }
+ break;
+ case 3: /* tentative bad state, but could be a fade */
+ if (unique_word)
+ next_state = 2;
+ else {
+ (*timer)++;
+ if (*timer == 50) /* wait for 1000ms in case sync comes back */
+ next_state = 0;
+ }
+ break;
+ }
+
+ //printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer);
+ *state = next_state;
+ if (*state)
+ sync = 1;
+ else
+ sync = 0;
+
+ return sync;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_demod()
+ AUTHOR......: David Rowe
+ DATE CREATED: 26/4/2012
+
+ FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME
+ modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits,
+ plus the sync bit.
+
+ The input signal is complex to support single sided frequency shifting
+ before the demod input (e.g. fdmdv2 click to tune feature).
+
+ The number of input samples nin will normally be M ==
+ FDMDV_SAMPLES_PER_FRAME. However to adjust for differences in
+ transmit and receive sample clocks nin will occasionally be M-M/P,
+ or M+M/P.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[],
+ int *reliable_sync_bit, COMP rx_fdm[], int *nin)
+{
+ float foff_coarse, foff_fine;
+ COMP rx_fdm_fcorr[M+M/P];
+ COMP rx_baseband[NC+1][M+M/P];
+ COMP rx_filt[NC+1][P+1];
+ COMP rx_symbols[NC+1];
+ float env[NT*P];
+ int sync_bit;
+
+ /* freq offset estimation and correction */
+
+ foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm, *nin);
+
+ if (fdmdv->sync == 0)
+ fdmdv->foff = foff_coarse;
+ fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm, -fdmdv->foff, &fdmdv->foff_rect, &fdmdv->foff_phase_rect, *nin);
+
+ /* baseband processing */
+
+ fdm_downconvert(rx_baseband, fdmdv->Nc, rx_fdm_fcorr, fdmdv->phase_rx, fdmdv->freq, *nin);
+ rx_filter(rx_filt, fdmdv->Nc, rx_baseband, fdmdv->rx_filter_memory, *nin);
+ fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, rx_baseband, fdmdv->rx_filter_mem_timing, env, fdmdv->rx_baseband_mem_timing, *nin);
+
+ /* Adjust number of input samples to keep timing within bounds */
+
+ *nin = M;
+
+ if (fdmdv->rx_timing > 2*M/P)
+ *nin += M/P;
+
+ if (fdmdv->rx_timing < 0)
+ *nin -= M/P;
+
+ foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols,
+ fdmdv->old_qpsk_mapping);
+ memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
+ snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference);
+
+ /* freq offset estimation state machine */
+
+ fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
+ fdmdv->foff -= TRACK_COEFF*foff_fine;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: calc_snr()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17 May 2012
+
+ Calculate current SNR estimate (3000Hz noise BW)
+
+\*---------------------------------------------------------------------------*/
+
+float calc_snr(int Nc, float sig_est[], float noise_est[])
+{
+ float S, SdB;
+ float mean, N50, N50dB, N3000dB;
+ float snr_dB;
+ int c;
+
+ S = 0.0;
+ for(c=0; c<Nc+1; c++)
+ S += pow(sig_est[c], 2.0);
+ SdB = 10.0*log10(S+1E-12);
+
+ /* Average noise mag across all carriers and square to get an
+ average noise power. This is an estimate of the noise power in
+ Rs = 50Hz of BW (note for raised root cosine filters Rs is the
+ noise BW of the filter) */
+
+ mean = 0.0;
+ for(c=0; c<Nc+1; c++)
+ mean += noise_est[c];
+ mean /= (Nc+1);
+ N50 = pow(mean, 2.0);
+ N50dB = 10.0*log10(N50+1E-12);
+
+ /* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power
+ in 3000 Hz */
+
+ N3000dB = N50dB + 10.0*log10(3000.0/RS);
+
+ snr_dB = SdB - N3000dB;
+
+ return snr_dB;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_get_demod_stats()
+ AUTHOR......: David Rowe
+ DATE CREATED: 1 May 2012
+
+ Fills stats structure with a bunch of demod information.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_get_demod_stats(struct FDMDV *fdmdv,
+ struct FDMDV_STATS *fdmdv_stats)
+{
+ int c;
+
+ fdmdv_stats->Nc = fdmdv->Nc;
+ fdmdv_stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est);
+ fdmdv_stats->sync = fdmdv->sync;
+ fdmdv_stats->foff = fdmdv->foff;
+ fdmdv_stats->rx_timing = fdmdv->rx_timing;
+ fdmdv_stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */
+
+ for(c=0; c<fdmdv->Nc+1; c++) {
+ fdmdv_stats->rx_symbols[c] = fdmdv->phase_difference[c];
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_8_to_48()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 May 2012
+
+ Changes the sample rate of a signal from 8 to 48 kHz. Experience
+ with PC based modems has shown that PC sound cards have a more
+ accurate sample clock when set for 48 kHz than 8 kHz.
+
+ n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n samples
+ at the 48 kHz rate. A memory of FDMDV_OS_TAPS/FDMDV_OS samples is reqd for
+ in8k[] (see t48_8.c unit test as example).
+
+ This is a classic polyphase upsampler. We take the 8 kHz samples
+ and insert (FDMDV_OS-1) zeroes between each sample, then
+ FDMDV_OS_TAPS FIR low pass filter the signal at 4kHz. As most of
+ the input samples are zeroes, we only need to multiply non-zero
+ input samples by filter coefficients. The zero insertion and
+ filtering are combined in the code below and I'm too lazy to explain
+ it further right now....
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_8_to_48(float out48k[], float in8k[], int n)
+{
+ int i,j,k,l;
+
+ /* make sure n is an integer multiple of the oversampling rate, ow
+ this function breaks */
+
+ assert((n % FDMDV_OS) == 0);
+
+ for(i=0; i<n; i++) {
+ for(j=0; j<FDMDV_OS; j++) {
+ out48k[i*FDMDV_OS+j] = 0.0;
+ for(k=0,l=0; k<FDMDV_OS_TAPS; k+=FDMDV_OS,l++)
+ out48k[i*FDMDV_OS+j] += fdmdv_os_filter[k+j]*in8k[i-l];
+ out48k[i*FDMDV_OS+j] *= FDMDV_OS;
+
+ }
+ }
+
+ /* update filter memory */
+
+ for(i=-(FDMDV_OS_TAPS/FDMDV_OS); i<0; i++)
+ in8k[i] = in8k[i + n];
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_48_to_8()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 May 2012
+
+ Changes the sample rate of a signal from 48 to 8 kHz.
+
+ n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n
+ samples at the 48 kHz rate. As above however a memory of
+ FDMDV_OS_TAPS samples is reqd for in48k[] (see t48_8.c unit test as example).
+
+ Low pass filter the 48 kHz signal at 4 kHz using the same filter as
+ the upsampler, then just output every FDMDV_OS-th filtered sample.
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_48_to_8(float out8k[], float in48k[], int n)
+{
+ int i,j;
+
+ for(i=0; i<n; i++) {
+ out8k[i] = 0.0;
+ for(j=0; j<FDMDV_OS_TAPS; j++)
+ out8k[i] += fdmdv_os_filter[j]*in48k[i*FDMDV_OS-j];
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS; i<0; i++)
+ in48k[i] = in48k[i + n*FDMDV_OS];
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_get_rx_spectrum()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 June 2012
+
+ Returns the FDMDV_NSPEC point magnitude spectrum of the rx signal in
+ dB. The spectral samples are scaled so that 0dB is the peak, a good
+ range for plotting is 0 to -40dB.
+
+ Note only the real part of the complex input signal is used at
+ present. A complex variable is used for input for compatability
+ with the other rx signal procesing.
+
+ Successive calls can be used to build up a waterfall or spectrogram
+ plot, by mapping the received levels to colours.
+
+ The time-frequency resolution of the spectrum can be adjusted by varying
+ FDMDV_NSPEC. Note that a 2*FDMDV_NSPEC size FFT is reqd to get
+ FDMDV_NSPEC output points. FDMDV_NSPEC must be a power of 2.
+
+ See octave/tget_spec.m for a demo real time spectral display using
+ Octave. This demo averages the output over time to get a smoother
+ display:
+
+ av = 0.9*av + 0.1*mag_dB
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_get_rx_spectrum(struct FDMDV *f, float mag_spec_dB[],
+ COMP rx_fdm[], int nin)
+{
+ int i,j;
+ COMP fft_in[2*FDMDV_NSPEC];
+ COMP fft_out[2*FDMDV_NSPEC];
+ float full_scale_dB;
+
+ /* update buffer of input samples */
+
+ for(i=0; i<2*FDMDV_NSPEC-nin; i++)
+ f->fft_buf[i] = f->fft_buf[i+nin];
+ for(j=0; j<nin; j++,i++)
+ f->fft_buf[i] = rx_fdm[j].real;
+ assert(i == 2*FDMDV_NSPEC);
+
+ /* window and FFT */
+
+ for(i=0; i<2*FDMDV_NSPEC; i++) {
+ fft_in[i].real = f->fft_buf[i] * (0.5 - 0.5*cos((float)i*2.0*PI/(2*FDMDV_NSPEC)));
+ fft_in[i].imag = 0.0;
+ }
+
+ kiss_fft(f->fft_cfg, (kiss_fft_cpx *)fft_in, (kiss_fft_cpx *)fft_out);
+
+ /* FFT scales up a signal of level 1 FDMDV_NSPEC */
+
+ full_scale_dB = 20*log10(FDMDV_NSPEC);
+
+ /* scale and convert to dB */
+
+ for(i=0; i<FDMDV_NSPEC; i++) {
+ mag_spec_dB[i] = 10.0*log10(fft_out[i].real*fft_out[i].real + fft_out[i].imag*fft_out[i].imag + 1E-12);
+ mag_spec_dB[i] -= full_scale_dB;
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ Function used during development to test if magnitude of digital
+ oscillators was drifting. It was!
+
+\*---------------------------------------------------------------------------*/
+
+void CODEC2_WIN32SUPPORT fdmdv_dump_osc_mags(struct FDMDV *f)
+{
+ int i;
+
+ fprintf(stderr, "phase_tx[]:\n");
+ for(i=0; i<=f->Nc; i++)
+ fprintf(stderr," %1.3f", cabsolute(f->phase_tx[i]));
+ fprintf(stderr,"\nfreq[]:\n");
+ for(i=0; i<=f->Nc; i++)
+ fprintf(stderr," %1.3f", cabsolute(f->freq[i]));
+ fprintf(stderr,"\nfoff_rect %1.3f foff_phase_rect: %1.3f", cabsolute(f->foff_rect), cabsolute(f->foff_phase_rect));
+ fprintf(stderr,"\nphase_rx[]:\n");
+ for(i=0; i<=f->Nc; i++)
+ fprintf(stderr," %1.3f", cabsolute(f->phase_rx[i]));
+ fprintf(stderr, "\n\n");
+}