GNU Radio 3.4.2 C++ API
gr_pfb_channelizer_ccf.h
Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2009,2010 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 
00024 #ifndef INCLUDED_GR_PFB_CHANNELIZER_CCF_H
00025 #define INCLUDED_GR_PFB_CHANNELIZER_CCF_H
00026 
00027 #include <gr_block.h>
00028 
00029 class gr_pfb_channelizer_ccf;
00030 typedef boost::shared_ptr<gr_pfb_channelizer_ccf> gr_pfb_channelizer_ccf_sptr;
00031 gr_pfb_channelizer_ccf_sptr gr_make_pfb_channelizer_ccf (unsigned int numchans, 
00032                                                          const std::vector<float> &taps,
00033                                                          float oversample_rate=1);
00034 
00035 class gr_fir_ccf;
00036 class gri_fft_complex;
00037 
00038 
00039 /*!
00040  * \class gr_pfb_channelizer_ccf
00041  *
00042  * \brief Polyphase filterbank channelizer with 
00043  *        gr_complex input, gr_complex output and float taps
00044  *
00045  * \ingroup filter_blk
00046  *
00047  * This block takes in complex inputs and channelizes it to <EM>M</EM>
00048  * channels of equal bandwidth. Each of the resulting channels is
00049  * decimated to the new rate that is the input sampling rate
00050  * <EM>fs</EM> divided by the number of channels, <EM>M</EM>.
00051  *
00052  * The PFB channelizer code takes the taps generated above and builds
00053  * a set of filters. The set contains <EM>M</EM> number of filters
00054  * and each filter contains ceil(taps.size()/decim) number of taps.
00055  * Each tap from the filter prototype is sequentially inserted into
00056  * the next filter. When all of the input taps are used, the remaining
00057  * filters in the filterbank are filled out with 0's to make sure each
00058  * filter has the same number of taps.
00059  *
00060  * Each filter operates using the gr_fir filter classs of GNU Radio,
00061  * which takes the input stream at <EM>i</EM> and performs the inner
00062  * product calculation to <EM>i+(n-1)</EM> where <EM>n</EM> is the
00063  * number of filter taps. To efficiently handle this in the GNU Radio
00064  * structure, each filter input must come from its own input
00065  * stream. So the channelizer must be provided with <EM>M</EM> streams
00066  * where the input stream has been deinterleaved. This is most easily
00067  * done using the gr_stream_to_streams block.
00068  *
00069  * The output is then produced as a vector, where index <EM>i</EM> in
00070  * the vector is the next sample from the <EM>i</EM>th channel. This
00071  * is most easily handled by sending the output to a
00072  * gr_vector_to_streams block to handle the conversion and passing
00073  * <EM>M</EM> streams out.
00074  *
00075  * The input and output formatting is done using a hier_block2 called
00076  * pfb_channelizer_ccf. This can take in a single stream and outputs
00077  * <EM>M</EM> streams based on the behavior described above.
00078  *
00079  * The filter's taps should be based on the input sampling rate.
00080  *
00081  * For example, using the GNU Radio's firdes utility to building
00082  * filters, we build a low-pass filter with a sampling rate of 
00083  * <EM>fs</EM>, a 3-dB bandwidth of <EM>BW</EM> and a transition
00084  * bandwidth of <EM>TB</EM>. We can also specify the out-of-band
00085  * attenuation to use, <EM>ATT</EM>, and the filter window
00086  * function (a Blackman-harris window in this case). The first input
00087  *  is the gain of the filter, which we specify here as unity.
00088  *
00089  *      <B><EM>self._taps = gr.firdes.low_pass_2(1, fs, BW, TB, 
00090  *           attenuation_dB=ATT, window=gr.firdes.WIN_BLACKMAN_hARRIS)</EM></B>
00091  *
00092  * The filter output can also be overs ampled. The over sampling rate 
00093  * is the ratio of the the actual output sampling rate to the normal 
00094  * output sampling rate. It must be rationally related to the number 
00095  * of channels as N/i for i in [1,N], which gives an outputsample rate
00096  * of [fs/N, fs] where fs is the input sample rate and N is the number
00097  * of channels.
00098  *
00099  * For example, for 6 channels with fs = 6000 Hz, the normal rate is 
00100  * 6000/6 = 1000 Hz. Allowable oversampling rates are 6/6, 6/5, 6/4, 
00101  * 6/3, 6/2, and 6/1 where the output sample rate of a 6/1 oversample
00102  * ratio is 6000 Hz, or 6 times the normal 1000 Hz. A rate of 6/5 = 1.2,
00103  * so the output rate would be 1200 Hz.
00104  *
00105  * The theory behind this block can be found in Chapter 6 of 
00106  * the following book.
00107  *
00108  *    <B><EM>f. harris, "Multirate Signal Processing for Communication 
00109  *       Systems," Upper Saddle River, NJ: Prentice Hall, Inc. 2004.</EM></B>
00110  *
00111  */
00112 
00113 class gr_pfb_channelizer_ccf : public gr_block
00114 {
00115  private:
00116   /*!
00117    * Build the polyphase filterbank decimator.
00118    * \param numchans (unsigned integer) Specifies the number of channels <EM>M</EM>
00119    * \param taps    (vector/list of floats) The prototype filter to populate the filterbank.
00120    * \param oversample_rate (float)   The over sampling rate is the ratio of the the actual
00121    *                                  output sampling rate to the normal output sampling rate.
00122    *                                   It must be rationally related to the number of channels
00123    *                                  as N/i for i in [1,N], which gives an outputsample rate 
00124    *                                  of [fs/N, fs] where fs is the input sample rate and N is
00125    *                                  the number of channels.
00126    *                                  
00127    *                                  For example, for 6 channels with fs = 6000 Hz, the normal
00128    *                                  rate is 6000/6 = 1000 Hz. Allowable oversampling rates
00129    *                                  are 6/6, 6/5, 6/4, 6/3, 6/2, and 6/1 where the output
00130    *                                  sample rate of a 6/1 oversample ratio is 6000 Hz, or
00131    *                                  6 times the normal 1000 Hz.
00132    */
00133   friend gr_pfb_channelizer_ccf_sptr gr_make_pfb_channelizer_ccf (unsigned int numchans,
00134                                                                   const std::vector<float> &taps,
00135                                                                   float oversample_rate);
00136 
00137   bool                     d_updated;
00138   unsigned int             d_numchans;
00139   float                    d_oversample_rate;
00140   std::vector<gr_fir_ccf*> d_filters;
00141   std::vector< std::vector<float> > d_taps;
00142   unsigned int             d_taps_per_filter;
00143   gri_fft_complex         *d_fft;
00144   int                     *d_idxlut;
00145   int                      d_rate_ratio;
00146   int                      d_output_multiple;
00147 
00148   /*!
00149    * Build the polyphase filterbank decimator.
00150    * \param numchans (unsigned integer) Specifies the number of channels <EM>M</EM>
00151    * \param taps    (vector/list of floats) The prototype filter to populate the filterbank.
00152    * \param oversample_rate (float)   The output over sampling rate.
00153    */
00154   gr_pfb_channelizer_ccf (unsigned int numchans, 
00155                           const std::vector<float> &taps,
00156                           float oversample_rate);
00157 
00158 public:
00159   ~gr_pfb_channelizer_ccf ();
00160   
00161   /*!
00162    * Resets the filterbank's filter taps with the new prototype filter
00163    * \param taps    (vector/list of floats) The prototype filter to populate the filterbank.
00164    */
00165   void set_taps (const std::vector<float> &taps);
00166 
00167   /*!
00168    * Print all of the filterbank taps to screen.
00169    */
00170   void print_taps();
00171   
00172   int general_work (int noutput_items,
00173                     gr_vector_int &ninput_items,
00174                     gr_vector_const_void_star &input_items,
00175                     gr_vector_void_star &output_items);
00176 };
00177 
00178 #endif