GNU Radio 3.4.2 C++ API
gr_fir_ccf Class Reference

Abstract class for FIR with gr_complex input, gr_complex output and float tapsThis is the abstract class for a Finite Impulse Response filter. More...

#include <gr_fir_ccf.h>

Inheritance diagram for gr_fir_ccf:

List of all members.

Public Member Functions

 gr_fir_ccf ()
 construct new FIR with given taps.
 gr_fir_ccf (const std::vector< float > &taps)
virtual ~gr_fir_ccf ()
virtual gr_complex filter (const gr_complex input[])=0
 compute a single output value.
virtual void filterN (gr_complex output[], const gr_complex input[], unsigned long n)=0
 compute an array of N output values.
virtual void filterNdec (gr_complex output[], const gr_complex input[], unsigned long n, unsigned decimate)=0
 compute an array of N output values, decimating the input
virtual void set_taps (const std::vector< float > &taps)
 install new_taps as the current taps.
unsigned ntaps () const
virtual const std::vector< float > get_taps () const

Protected Attributes

std::vector< float > d_taps

Detailed Description

Abstract class for FIR with gr_complex input, gr_complex output and float taps

This is the abstract class for a Finite Impulse Response filter.

The trailing suffix has the form _IOT where I codes the input type, O codes the output type, and T codes the tap type. I,O,T are elements of the set 's' (short), 'f' (float), 'c' (gr_complex), 'i' (int)


Constructor & Destructor Documentation

gr_fir_ccf::gr_fir_ccf ( ) [inline]

construct new FIR with given taps.

Note that taps must be in forward order, e.g., coefficient 0 is stored in new_taps[0], coefficient 1 is stored in new_taps[1], etc.

gr_fir_ccf::gr_fir_ccf ( const std::vector< float > &  taps) [inline]
virtual gr_fir_ccf::~gr_fir_ccf ( ) [virtual]

Member Function Documentation

virtual gr_complex gr_fir_ccf::filter ( const gr_complex  input[]) [pure virtual]

compute a single output value.

input must have ntaps() valid entries. input[0] .. input[ntaps() - 1] are referenced to compute the output value.

Returns:
the filtered input value.

Implemented in gr_fir_ccf_armv7_a, gr_fir_ccf_simd, and gr_fir_ccf_generic.

virtual void gr_fir_ccf::filterN ( gr_complex  output[],
const gr_complex  input[],
unsigned long  n 
) [pure virtual]

compute an array of N output values.

input must have (n - 1 + ntaps()) valid entries. input[0] .. input[n - 1 + ntaps() - 1] are referenced to compute the output values.

Implemented in gr_fir_ccf_generic.

virtual void gr_fir_ccf::filterNdec ( gr_complex  output[],
const gr_complex  input[],
unsigned long  n,
unsigned  decimate 
) [pure virtual]

compute an array of N output values, decimating the input

input must have (decimate * (n - 1) + ntaps()) valid entries. input[0] .. input[decimate * (n - 1) + ntaps() - 1] are referenced to compute the output values.

Implemented in gr_fir_ccf_generic.

virtual const std::vector<float> gr_fir_ccf::get_taps ( ) const [inline, virtual]
Returns:
current taps

References d_taps, and gr_reverse().

unsigned gr_fir_ccf::ntaps ( ) const [inline]
Returns:
number of taps in filter.

References d_taps.

virtual void gr_fir_ccf::set_taps ( const std::vector< float > &  taps) [inline, virtual]

install new_taps as the current taps.

Reimplemented in gr_fir_ccf_armv7_a, and gr_fir_ccf_simd.

References d_taps, and gr_reverse().


Member Data Documentation

std::vector<float> gr_fir_ccf::d_taps [protected]

Referenced by get_taps(), ntaps(), and set_taps().


The documentation for this class was generated from the following file: