GNU Radio 3.4.2 C++ API
gr_mpsk_receiver_cc.h
Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2004,2007 Free Software Foundation, Inc.
00004  *
00005  * This file is part of GNU Radio
00006  *
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  *
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 #ifndef INCLUDED_GR_MPSK_RECEIVER_CC_H
00024 #define INCLUDED_GR_MPSK_RECEIVER_CC_H
00025 
00026 #include <gruel/attributes.h>
00027 #include <gr_block.h>
00028 #include <gr_complex.h>
00029 #include <fstream>
00030 
00031 class gri_mmse_fir_interpolator_cc;
00032 
00033 class gr_mpsk_receiver_cc;
00034 typedef boost::shared_ptr<gr_mpsk_receiver_cc> gr_mpsk_receiver_cc_sptr;
00035 
00036 // public constructor
00037 gr_mpsk_receiver_cc_sptr 
00038 gr_make_mpsk_receiver_cc (unsigned int M, float theta, 
00039                           float alpha, float beta,
00040                           float fmin, float fmax,
00041                           float mu, float gain_mu, 
00042                           float omega, float gain_omega, float omega_rel);
00043 
00044 /*!
00045  * \brief This block takes care of receiving M-PSK modulated signals through phase, frequency, and symbol
00046  * synchronization. 
00047  * \ingroup sync_blk
00048  * \ingroup demod_blk
00049  *
00050  * This block takes care of receiving M-PSK modulated signals through phase, frequency, and symbol
00051  * synchronization. It performs carrier frequency and phase locking as well as symbol timing recovery. 
00052  * It works with (D)BPSK, (D)QPSK, and (D)8PSK as tested currently. It should also work for OQPSK and 
00053  * PI/4 DQPSK.
00054  *
00055  * The phase and frequency synchronization are based on a Costas loop that finds the error of the incoming
00056  * signal point compared to its nearest constellation point. The frequency and phase of the NCO are 
00057  * updated according to this error. There are optimized phase error detectors for BPSK and QPSK, but 8PSK
00058  * is done using a brute-force computation of the constellation points to find the minimum.
00059  *
00060  * The symbol synchronization is done using a modified Mueller and Muller circuit from the paper:
00061  * 
00062  *    G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller 
00063  *    algorithm,"  Electronics Letters, Vol. 31, no. 13,  22 June 1995, pp. 1032 - 1033.
00064  *
00065  * This circuit interpolates the downconverted sample (using the NCO developed by the Costas loop)
00066  * every mu samples, then it finds the sampling error based on this and the past symbols and the decision
00067  * made on the samples. Like the phase error detector, there are optimized decision algorithms for BPSK
00068  * and QPKS, but 8PSK uses another brute force computation against all possible symbols. The modifications
00069  * to the M&M used here reduce self-noise.
00070  *
00071  */
00072 
00073 class gr_mpsk_receiver_cc : public gr_block
00074 {
00075  public:
00076   ~gr_mpsk_receiver_cc ();
00077   void forecast(int noutput_items, gr_vector_int &ninput_items_required);
00078   int general_work (int noutput_items,
00079                     gr_vector_int &ninput_items,
00080                     gr_vector_const_void_star &input_items,
00081                     gr_vector_void_star &output_items);
00082 
00083 
00084   // Member functions related to the symbol tracking portion of the receiver
00085   //! (M&M) Returns current value of mu
00086   float mu() const { return d_mu;}
00087 
00088   //! (M&M) Returns current value of omega
00089   float omega() const { return d_omega;}
00090 
00091   //! (M&M) Returns mu gain factor
00092   float gain_mu() const { return d_gain_mu;}
00093 
00094   //! (M&M) Returns omega gain factor
00095   float gain_omega() const { return d_gain_omega;}
00096 
00097   //! (M&M) Sets value of mu
00098   void set_mu (float mu) { d_mu = mu; }
00099   
00100   //! (M&M) Sets value of omega and its min and max values 
00101   void set_omega (float omega) { 
00102     d_omega = omega;
00103     d_min_omega = omega*(1.0 - d_omega_rel);
00104     d_max_omega = omega*(1.0 + d_omega_rel);
00105     d_omega_mid = 0.5*(d_min_omega+d_max_omega);
00106   }
00107 
00108   //! (M&M) Sets value for mu gain factor
00109   void set_gain_mu (float gain_mu) { d_gain_mu = gain_mu; }
00110 
00111   //! (M&M) Sets value for omega gain factor
00112   void set_gain_omega (float gain_omega) { d_gain_omega = gain_omega; }
00113 
00114 
00115 
00116   // Member function related to the phase/frequency tracking portion of the receiver
00117   //! (CL) Returns the value for alpha (the phase gain term)
00118   float alpha() const { return d_alpha; }
00119   
00120   //! (CL) Returns the value of beta (the frequency gain term)
00121   float beta() const { return d_beta; }
00122 
00123   //! (CL) Returns the current value of the frequency of the NCO in the Costas loop
00124   float freq() const { return d_freq; }
00125 
00126   //! (CL) Returns the current value of the phase of the NCO in the Costal loop
00127   float phase() const { return d_phase; }
00128 
00129   //! (CL) Sets the value for alpha (the phase gain term)
00130   void set_alpha(float alpha) { d_alpha = alpha; }
00131   
00132   //! (CL) Setss the value of beta (the frequency gain term)
00133   void set_beta(float beta) { d_beta = beta; }
00134 
00135   //! (CL) Sets the current value of the frequency of the NCO in the Costas loop
00136   void set_freq(float freq) { d_freq = freq; }
00137 
00138   //! (CL) Setss the current value of the phase of the NCO in the Costal loop
00139   void set_phase(float phase) { d_phase = phase; }
00140 
00141 
00142 protected:
00143 
00144  /*!
00145    * \brief Constructor to synchronize incoming M-PSK symbols
00146    *
00147    * \param M           modulation order of the M-PSK modulation
00148    * \param theta       any constant phase rotation from the real axis of the constellation
00149    * \param alpha       gain parameter to adjust the phase in the Costas loop (~0.01)
00150    * \param beta        gain parameter to adjust the frequency in the Costas loop (~alpha^2/4)  
00151    * \param fmin        minimum normalized frequency value the loop can achieve
00152    * \param fmax        maximum normalized frequency value the loop can achieve
00153    * \param mu          initial parameter for the interpolator [0,1]
00154    * \param gain_mu     gain parameter of the M&M error signal to adjust mu (~0.05)
00155    * \param omega       initial value for the number of symbols between samples (~number of samples/symbol)
00156    * \param gain_omega  gain parameter to adjust omega based on the error (~omega^2/4)
00157    * \param omega_rel   sets the maximum (omega*(1+omega_rel)) and minimum (omega*(1+omega_rel)) omega (~0.005)
00158    *
00159    * The constructor also chooses which phase detector and decision maker to use in the work loop based on the
00160    * value of M.
00161    */
00162   gr_mpsk_receiver_cc (unsigned int M, float theta, 
00163                        float alpha, float beta,
00164                        float fmin, float fmax,
00165                        float mu, float gain_mu, 
00166                        float omega, float gain_omega, float omega_rel);
00167 
00168   void make_constellation();
00169   void mm_sampler(const gr_complex symbol);
00170   void mm_error_tracking(gr_complex sample);
00171   void phase_error_tracking(gr_complex sample);
00172 
00173 
00174 /*!
00175    * \brief Phase error detector for MPSK modulations.
00176    *
00177    * \param sample   the I&Q sample from which to determine the phase error
00178    *
00179    * This function determines the phase error for any MPSK signal by creating a set of PSK constellation points
00180    * and doing a brute-force search to see which point minimizes the Euclidean distance. This point is then used
00181    * to derotate the sample to the real-axis and a atan (using the fast approximation function) to determine the
00182    * phase difference between the incoming sample and the real constellation point
00183    *
00184    * This should be cleaned up and made more efficient.
00185    *
00186    * \returns the approximated phase error.
00187  */
00188   float phase_error_detector_generic(gr_complex sample) const; // generic for M but more costly
00189 
00190  /*!
00191    * \brief Phase error detector for BPSK modulation.
00192    *
00193    * \param sample   the I&Q sample from which to determine the phase error
00194    *
00195    * This function determines the phase error using a simple BPSK phase error detector by multiplying the real
00196    * and imaginary (the error signal) components together. As the imaginary part goes to 0, so does this error.
00197    *
00198    * \returns the approximated phase error.
00199  */
00200   float phase_error_detector_bpsk(gr_complex sample) const;    // optimized for BPSK
00201 
00202  /*!
00203    * \brief Phase error detector for QPSK modulation.
00204    *
00205    * \param sample   the I&Q sample from which to determine the phase error
00206    *
00207    * This function determines the phase error using the limiter approach in a standard 4th order Costas loop
00208    *
00209    * \returns the approximated phase error.
00210  */
00211   float phase_error_detector_qpsk(gr_complex sample) const;
00212 
00213 
00214 
00215  /*!
00216    * \brief Decision maker for a generic MPSK constellation.
00217    *
00218    * \param sample   the baseband I&Q sample from which to make the decision
00219    *
00220    * This decision maker is a generic implementation that does a brute-force search 
00221    * for the constellation point that minimizes the error between it and the incoming signal.
00222    *
00223    * \returns the index to d_constellation that minimizes the error/
00224  */
00225   unsigned int decision_generic(gr_complex sample) const;
00226 
00227 
00228  /*!
00229    * \brief Decision maker for BPSK constellation.
00230    *
00231    * \param sample   the baseband I&Q sample from which to make the decision
00232    *
00233    * This decision maker is a simple slicer function that makes a decision on the symbol based on its
00234    * placement on the real axis of greater than 0 or less than 0; the quadrature component is always 0.
00235    *
00236    * \returns the index to d_constellation that minimizes the error/
00237  */
00238   unsigned int decision_bpsk(gr_complex sample) const;
00239   
00240 
00241  /*!
00242    * \brief Decision maker for QPSK constellation.
00243    *
00244    * \param sample   the baseband I&Q sample from which to make the decision
00245    *
00246    * This decision maker is a simple slicer function that makes a decision on the symbol based on its
00247    * placement versus both axes and returns which quadrant the symbol is in.
00248    *
00249    * \returns the index to d_constellation that minimizes the error/
00250  */
00251   unsigned int decision_qpsk(gr_complex sample) const;
00252 
00253   private:
00254   unsigned int d_M;
00255   float        d_theta;
00256 
00257   // Members related to carrier and phase tracking
00258   float d_alpha;
00259   float d_beta;
00260   float d_freq, d_max_freq, d_min_freq;
00261   float d_phase;
00262 
00263 /*!
00264    * \brief Decision maker function pointer 
00265    *
00266    * \param sample   the baseband I&Q sample from which to make the decision
00267    *
00268    * This is a function pointer that is set in the constructor to point to the proper decision function
00269    * for the specified constellation order.
00270    *
00271    * \return index into d_constellation point that is the closest to the recieved sample
00272  */
00273   unsigned int (gr_mpsk_receiver_cc::*d_decision)(gr_complex sample) const; // pointer to decision function
00274 
00275 
00276   std::vector<gr_complex> d_constellation;
00277   unsigned int d_current_const_point;
00278 
00279   // Members related to symbol timing
00280   float d_mu, d_gain_mu;
00281   float d_omega, d_gain_omega, d_omega_rel, d_max_omega, d_min_omega, d_omega_mid;
00282   gr_complex d_p_2T, d_p_1T, d_p_0T;
00283   gr_complex d_c_2T, d_c_1T, d_c_0T;
00284 
00285  /*!
00286    * \brief Phase error detector function pointer 
00287    *
00288    * \param sample   the I&Q sample from which to determine the phase error
00289    *
00290    * This is a function pointer that is set in the constructor to point to the proper phase error detector
00291    * function for the specified constellation order.
00292  */
00293   float (gr_mpsk_receiver_cc::*d_phase_error_detector)(gr_complex sample) const;
00294 
00295 
00296   //! get interpolated value
00297   gri_mmse_fir_interpolator_cc  *d_interp;
00298   
00299   //! delay line length.
00300   static const unsigned int DLLEN = 8;
00301   
00302   //! delay line plus some length for overflow protection
00303   __GR_ATTR_ALIGNED(8) gr_complex d_dl[2*DLLEN];
00304   
00305   //! index to delay line
00306   unsigned int d_dl_idx;
00307 
00308   friend gr_mpsk_receiver_cc_sptr
00309   gr_make_mpsk_receiver_cc (unsigned int M, float theta,
00310                             float alpha, float beta,
00311                             float fmin, float fmax,
00312                             float mu, float gain_mu, 
00313                             float omega, float gain_omega, float omega_rel);
00314 };
00315 
00316 #endif