GNU Radio 3.4.2 C++ API
gr_math.h
Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2003,2005,2008 Free Software Foundation, Inc.
00004  * 
00005  * This file is part of GNU Radio
00006  * 
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  * 
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  * 
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 
00023 /*
00024  * mathematical odds and ends.
00025  */
00026 
00027 #ifndef _GR_MATH_H_
00028 #define _GR_MATH_H_
00029 
00030 #include <gr_complex.h>
00031 
00032 static inline bool
00033 gr_is_power_of_2(long x)
00034 {
00035   return x != 0 && (x & (x-1)) == 0;
00036 }
00037 
00038 /*!
00039  * \brief Fast arc tangent using table lookup and linear interpolation
00040  * \ingroup misc
00041  *
00042  * \param y component of input vector
00043  * \param x component of input vector
00044  * \returns float angle angle of vector (x, y) in radians
00045  *
00046  * This function calculates the angle of the vector (x,y) based on a
00047  * table lookup and linear interpolation. The table uses a 256 point
00048  * table covering -45 to +45 degrees and uses symetry to determine the
00049  * final angle value in the range of -180 to 180 degrees. Note that
00050  * this function uses the small angle approximation for values close
00051  * to zero. This routine calculates the arc tangent with an average
00052  * error of +/- 0.045 degrees.
00053  */
00054 float gr_fast_atan2f(float y, float x);
00055 
00056 static inline float gr_fast_atan2f(gr_complex z) 
00057 { 
00058   return gr_fast_atan2f(z.imag(), z.real()); 
00059 }
00060 
00061 /* This bounds x by +/- clip without a branch */
00062 static inline float gr_branchless_clip(float x, float clip)
00063 {
00064   float x1 = fabsf(x+clip);
00065   float x2 = fabsf(x-clip);
00066   x1 -= x2;
00067   return 0.5*x1;
00068 }
00069 
00070 static inline float gr_clip(float x, float clip)
00071 {
00072   float y = x;
00073   if(x > clip)
00074     y = clip;
00075   else if(x < -clip)
00076     y = -clip;
00077   return y;
00078 }
00079 
00080 // Slicer Functions
00081 static inline unsigned int gr_binary_slicer(float x)
00082 {
00083   if(x >= 0)
00084     return 1;
00085   else
00086     return 0;
00087 }
00088 
00089 static inline unsigned int gr_quad_45deg_slicer(float r, float i)
00090 {
00091   unsigned int ret = 0;
00092   if((r >= 0) && (i >= 0))
00093     ret = 0;
00094   else if((r < 0) && (i >= 0))
00095     ret = 1;
00096   else if((r < 0) && (i < 0))
00097     ret = 2;
00098   else 
00099     ret = 3;
00100   return ret;
00101 }
00102 
00103 static inline unsigned int gr_quad_0deg_slicer(float r, float i)
00104 {
00105   unsigned int ret = 0;
00106   if(fabsf(r) > fabsf(i)) {
00107     if(r > 0)
00108       ret = 0;
00109     else
00110       ret = 2;
00111   }
00112   else {
00113     if(i > 0)
00114       ret = 1;
00115     else
00116       ret = 3;
00117   }
00118 
00119   return ret;
00120 }
00121 
00122 static inline unsigned int gr_quad_45deg_slicer(gr_complex x)
00123 {
00124   return gr_quad_45deg_slicer(x.real(), x.imag());
00125 }
00126 
00127 static inline unsigned int gr_quad_0deg_slicer(gr_complex x)
00128 {
00129   return gr_quad_0deg_slicer(x.real(), x.imag());
00130 }
00131 
00132 // Branchless Slicer Functions
00133 static inline unsigned int gr_branchless_binary_slicer(float x)
00134 {
00135   return (x >= 0);
00136 }
00137 
00138 static inline unsigned int gr_branchless_quad_0deg_slicer(float r, float i)
00139 {
00140   unsigned int ret = 0;
00141   ret =  (fabsf(r) > fabsf(i)) * (((r < 0) << 0x1));       // either 0 (00) or 2 (10)
00142   ret |= (fabsf(i) > fabsf(r)) * (((i < 0) << 0x1) | 0x1); // either 1 (01) or 3 (11)
00143 
00144   return ret;
00145 }
00146 
00147 static inline unsigned int gr_branchless_quad_0deg_slicer(gr_complex x)
00148 {
00149   return gr_branchless_quad_0deg_slicer(x.real(), x.imag());
00150 }
00151 
00152 static inline unsigned int gr_branchless_quad_45deg_slicer(float r, float i)
00153 {
00154   char ret = (r <= 0);
00155   ret |= ((i <= 0) << 1);
00156   return (ret ^ ((ret & 0x2) >> 0x1));
00157 }
00158 
00159 static inline unsigned int gr_branchless_quad_45deg_slicer(gr_complex x)
00160 {
00161   return gr_branchless_quad_45deg_slicer(x.real(), x.imag());
00162 }
00163 
00164 /*!
00165  * \param x any value
00166  * \param pow2 must be a power of 2
00167  * \returns \p x rounded down to a multiple of \p pow2.
00168  */
00169 static inline size_t
00170 gr_p2_round_down(size_t x, size_t pow2)
00171 {
00172   return x & -pow2;
00173 }
00174 
00175 /*!
00176  * \param x any value
00177  * \param pow2 must be a power of 2
00178  * \returns \p x rounded up to a multiple of \p pow2.
00179  */
00180 static inline size_t
00181 gr_p2_round_up(size_t x, size_t pow2)
00182 {
00183   return gr_p2_round_down(x + pow2 - 1, pow2);
00184 }
00185 
00186 /*!
00187  * \param x any value
00188  * \param pow2 must be a power of 2
00189  * \returns \p x modulo \p pow2.
00190  */
00191 static inline size_t
00192 gr_p2_modulo(size_t x, size_t pow2)
00193 {
00194   return x & (pow2 - 1);
00195 }
00196 
00197 /*!
00198  * \param x any value
00199  * \param pow2 must be a power of 2
00200  * \returns \p pow2 - (\p x modulo \p pow2).
00201  */
00202 static inline size_t
00203 gr_p2_modulo_neg(size_t x, size_t pow2)
00204 {
00205   return pow2 - gr_p2_modulo(x, pow2);
00206 }
00207 
00208 #endif /* _GR_MATH_H_ */