summaryrefslogtreecommitdiff
path: root/gnuradio-runtime/python
diff options
context:
space:
mode:
authorStefan <stefan.wunsch@student.kit.edu>2015-09-01 13:21:51 +0200
committerStefan <stefan.wunsch@student.kit.edu>2015-09-01 13:21:51 +0200
commitebad2162b40b2b144449ff2927dbe89c683c4972 (patch)
tree5a8219cd5001f0402a21ac9eb28670c22aefeefb /gnuradio-runtime/python
parent1206251231696359270a260508551e044f3af33a (diff)
fix wrong laplacian random numbers and add testcase
Diffstat (limited to 'gnuradio-runtime/python')
-rw-r--r--gnuradio-runtime/python/gnuradio/gr/qa_random.py51
1 files changed, 33 insertions, 18 deletions
diff --git a/gnuradio-runtime/python/gnuradio/gr/qa_random.py b/gnuradio-runtime/python/gnuradio/gr/qa_random.py
index 39d75f3afa..ee4018327b 100644
--- a/gnuradio-runtime/python/gnuradio/gr/qa_random.py
+++ b/gnuradio-runtime/python/gnuradio/gr/qa_random.py
@@ -22,78 +22,93 @@
from gnuradio import gr, gr_unittest
import numpy as np
-from scipy.stats import norm, laplace
+from scipy.stats import norm, laplace, rayleigh
class test_random(gr_unittest.TestCase):
+ num_tests = 10000
+
# Disclaimer
def test_0(self):
- print 'NOTE: Following tests are not statistically significant! Check out fulltest_random.py for full testing.'
+ print 'NOTE: Following tests are not statistically significant!'
+ print 'Realisations per test:',self.num_tests
self.assertEqual(1,1)
# Check for range [0,1) of uniform distributed random numbers and print minimal and maximal value
def test_1(self):
print '# TEST 1'
print 'Uniform distributed numbers: Range'
- num_tests = 10000
- values = np.zeros(num_tests)
+ values = np.zeros(self.num_tests)
rndm = gr.random()
- for k in range(num_tests):
+ for k in range(self.num_tests):
values[k] = rndm.ran1()
for value in values:
self.assertLess(value, 1)
self.assertGreaterEqual(value, 0)
- print 'Uniform random numbers (num/min/max):', num_tests, min(values), max(values)
+ print 'Uniform random numbers (num/min/max):', self.num_tests, min(values), max(values)
# Check uniformly distributed random numbers on uniformity (without assert, only printing)
def test_2(self):
print '# TEST 2'
print 'Uniform random numbers: Distribution'
- num_tests = 10000
num_bins = 11
- values = np.zeros(num_tests)
+ values = np.zeros(self.num_tests)
rndm = gr.random()
- for k in range(num_tests):
+ for k in range(self.num_tests):
values[k] = rndm.ran1()
bins = np.linspace(0,1,num_bins) # These are the bin edges!
hist = np.histogram(values,bins)
print 'Lower edge bin / upper edge bin / count / expected'
for k in range(len(hist[0])):
- print hist[1][k], hist[1][k+1], hist[0][k], float(num_tests)/(num_bins-1)
+ print hist[1][k], hist[1][k+1], hist[0][k], float(self.num_tests)/(num_bins-1)
# Check distribution of normally (gaussian, mean=0, variance=1) distributed random numbers (no assert)
def test_3(self):
print '# TEST 3'
print 'Normal random numbers: Distribution'
- num_tests = 10000
num_bins = 11
hist_range = [-5,5]
- values = np.zeros(num_tests)
+ values = np.zeros(self.num_tests)
rndm = gr.random()
- for k in range(num_tests):
+ for k in range(self.num_tests):
values[k] = rndm.gasdev()
bins = np.linspace(hist_range[0],hist_range[1],num_bins)
hist = np.histogram(values,bins)
print 'Lower edge bin / upper edge bin / count / expected'
for k in range(len(hist[0])):
- print hist[1][k], hist[1][k+1], hist[0][k], float(norm.cdf(hist[1][k+1])-norm.cdf(hist[1][k]))*num_tests
+ print hist[1][k], hist[1][k+1], hist[0][k], float(norm.cdf(hist[1][k+1])-norm.cdf(hist[1][k]))*self.num_tests
# Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert)
def test_4(self):
print '# TEST 4'
print 'Laplacian random numbers: Distribution'
- num_tests = 100000
num_bins = 11
hist_range = [-5,5]
- values = np.zeros(num_tests)
+ values = np.zeros(self.num_tests)
rndm = gr.random()
- for k in range(num_tests):
+ for k in range(self.num_tests):
values[k] = rndm.laplacian()
bins = np.linspace(hist_range[0],hist_range[1],num_bins)
hist = np.histogram(values,bins)
print 'Lower edge bin / upper edge bin / count / expected'
for k in range(len(hist[0])):
- print hist[1][k], hist[1][k+1], hist[0][k], float(laplace.cdf(hist[1][k+1])-laplace.cdf(hist[1][k]))*num_tests
+ print hist[1][k], hist[1][k+1], hist[0][k], float(laplace.cdf(hist[1][k+1])-laplace.cdf(hist[1][k]))*self.num_tests
+
+ # Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert)
+ def test_5(self):
+ print '# TEST 5'
+ print 'Rayleigh random numbers: Distribution'
+ num_bins = 11
+ hist_range = [0,10]
+ values = np.zeros(self.num_tests)
+ rndm = gr.random()
+ for k in range(self.num_tests):
+ values[k] = rndm.rayleigh()
+ bins = np.linspace(hist_range[0],hist_range[1],num_bins)
+ hist = np.histogram(values,bins)
+ print 'Lower edge bin / upper edge bin / count / expected'
+ for k in range(len(hist[0])):
+ print hist[1][k], hist[1][k+1], hist[0][k], float(rayleigh.cdf(hist[1][k+1])-rayleigh.cdf(hist[1][k]))*self.num_tests
if __name__ == '__main__':
gr_unittest.run(test_random, "test_random.xml")