summaryrefslogtreecommitdiff
path: root/gnuradio-runtime/python
diff options
context:
space:
mode:
authorStefan <stefan.wunsch@student.kit.edu>2015-09-01 12:46:09 +0200
committerStefan <stefan.wunsch@student.kit.edu>2015-09-01 12:46:09 +0200
commit1206251231696359270a260508551e044f3af33a (patch)
tree79c8f65de7d2e31301e051cbcaedf95b4e31d9c6 /gnuradio-runtime/python
parenta06420691493534ca268ce52e1f16504c216828d (diff)
include random.h in swig; add qa_random testcase
Diffstat (limited to 'gnuradio-runtime/python')
-rw-r--r--gnuradio-runtime/python/gnuradio/gr/qa_random.py99
1 files changed, 99 insertions, 0 deletions
diff --git a/gnuradio-runtime/python/gnuradio/gr/qa_random.py b/gnuradio-runtime/python/gnuradio/gr/qa_random.py
new file mode 100644
index 0000000000..39d75f3afa
--- /dev/null
+++ b/gnuradio-runtime/python/gnuradio/gr/qa_random.py
@@ -0,0 +1,99 @@
+#!/usr/bin/env python
+#
+# Copyright 2006,2007,2010 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, gr_unittest
+import numpy as np
+from scipy.stats import norm, laplace
+
+class test_random(gr_unittest.TestCase):
+
+ # Disclaimer
+ def test_0(self):
+ print 'NOTE: Following tests are not statistically significant! Check out fulltest_random.py for full testing.'
+ self.assertEqual(1,1)
+
+ # Check for range [0,1) of uniform distributed random numbers and print minimal and maximal value
+ def test_1(self):
+ print '# TEST 1'
+ print 'Uniform distributed numbers: Range'
+ num_tests = 10000
+ values = np.zeros(num_tests)
+ rndm = gr.random()
+ for k in range(num_tests):
+ values[k] = rndm.ran1()
+ for value in values:
+ self.assertLess(value, 1)
+ self.assertGreaterEqual(value, 0)
+ print 'Uniform random numbers (num/min/max):', num_tests, min(values), max(values)
+
+ # Check uniformly distributed random numbers on uniformity (without assert, only printing)
+ def test_2(self):
+ print '# TEST 2'
+ print 'Uniform random numbers: Distribution'
+ num_tests = 10000
+ num_bins = 11
+ values = np.zeros(num_tests)
+ rndm = gr.random()
+ for k in range(num_tests):
+ values[k] = rndm.ran1()
+ bins = np.linspace(0,1,num_bins) # These are the bin edges!
+ hist = np.histogram(values,bins)
+ print 'Lower edge bin / upper edge bin / count / expected'
+ for k in range(len(hist[0])):
+ print hist[1][k], hist[1][k+1], hist[0][k], float(num_tests)/(num_bins-1)
+
+ # Check distribution of normally (gaussian, mean=0, variance=1) distributed random numbers (no assert)
+ def test_3(self):
+ print '# TEST 3'
+ print 'Normal random numbers: Distribution'
+ num_tests = 10000
+ num_bins = 11
+ hist_range = [-5,5]
+ values = np.zeros(num_tests)
+ rndm = gr.random()
+ for k in range(num_tests):
+ values[k] = rndm.gasdev()
+ bins = np.linspace(hist_range[0],hist_range[1],num_bins)
+ hist = np.histogram(values,bins)
+ print 'Lower edge bin / upper edge bin / count / expected'
+ for k in range(len(hist[0])):
+ print hist[1][k], hist[1][k+1], hist[0][k], float(norm.cdf(hist[1][k+1])-norm.cdf(hist[1][k]))*num_tests
+
+ # Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert)
+ def test_4(self):
+ print '# TEST 4'
+ print 'Laplacian random numbers: Distribution'
+ num_tests = 100000
+ num_bins = 11
+ hist_range = [-5,5]
+ values = np.zeros(num_tests)
+ rndm = gr.random()
+ for k in range(num_tests):
+ values[k] = rndm.laplacian()
+ bins = np.linspace(hist_range[0],hist_range[1],num_bins)
+ hist = np.histogram(values,bins)
+ print 'Lower edge bin / upper edge bin / count / expected'
+ for k in range(len(hist[0])):
+ print hist[1][k], hist[1][k+1], hist[0][k], float(laplace.cdf(hist[1][k+1])-laplace.cdf(hist[1][k]))*num_tests
+
+if __name__ == '__main__':
+ gr_unittest.run(test_random, "test_random.xml")