diff options
-rw-r--r-- | gnuradio-runtime/include/gnuradio/random.h | 21 | ||||
-rw-r--r-- | gnuradio-runtime/lib/math/random.cc | 23 | ||||
-rw-r--r-- | gnuradio-runtime/python/gnuradio/gr/qa_random.py | 51 |
3 files changed, 54 insertions, 41 deletions
diff --git a/gnuradio-runtime/include/gnuradio/random.h b/gnuradio-runtime/include/gnuradio/random.h index e01fcb7be7..454c88ee6c 100644 --- a/gnuradio-runtime/include/gnuradio/random.h +++ b/gnuradio-runtime/include/gnuradio/random.h @@ -60,18 +60,33 @@ namespace gr { void reseed(long seed); /*! - * \brief uniform random deviate in the range [0.0, 1.0) + * \brief Uniform random numbers in the range [0.0, 1.0) */ float ran1(); /*! - * \brief normally distributed deviate with zero mean and variance 1 + * \brief Normally distributed random numbers (Gaussian distribution with zero mean and variance 1) */ float gasdev(); + /*! + * \brief Laplacian distributed random numbers with zero mean and variance 1 + */ float laplacian(); - float impulse(float factor); + + /*! + * \brief Rayleigh distributed random numbers (zero mean and variance 1 for the underlying Gaussian distributions) + */ float rayleigh(); + + /*! + * \brief FIXME: add description + */ + float impulse(float factor); + + /*! + * \brief Normally distributed random numbers with zero mean and variance 1 on real and imaginary part. This results in a Rayleigh distribution for the amplitude and an uniform distribution for the phase. + */ gr_complex rayleigh_complex(); }; diff --git a/gnuradio-runtime/lib/math/random.cc b/gnuradio-runtime/lib/math/random.cc index 7170f27edf..ecf70e0f9a 100644 --- a/gnuradio-runtime/lib/math/random.cc +++ b/gnuradio-runtime/lib/math/random.cc @@ -130,18 +130,12 @@ namespace gr { return d_gset; } - /* - * Copied from The KC7WW / OH2BNS Channel Simulator - * FIXME Need to check how good this is at some point - */ float random::laplacian() { - float z = ran1(); - if(z < 0.5) - return log(2.0 * z) / M_SQRT2; - else - return -log(2.0 * (1.0 - z)) / M_SQRT2; + float z = ran1()-0.5; + if(z>0) return -log(1-2*z); + else return log(1+2*z); } /* @@ -161,10 +155,6 @@ namespace gr { /* * Complex rayleigh is really gaussian I and gaussian Q - * It can also be generated by real rayleigh magnitude and - * uniform random angle - * Adapted from The KC7WW / OH2BNS Channel Simulator - * FIXME Need to check how good this is at some point */ gr_complex random::rayleigh_complex() @@ -172,13 +162,6 @@ namespace gr { return gr_complex(gasdev(),gasdev()); } - /* Other option - mag = rayleigh(); - ang = 2.0 * M_PI * RNG(); - *Rx = rxx * cos(z); - *Iy = rxx * sin(z); - */ - float random::rayleigh() { diff --git a/gnuradio-runtime/python/gnuradio/gr/qa_random.py b/gnuradio-runtime/python/gnuradio/gr/qa_random.py index 39d75f3afa..ee4018327b 100644 --- a/gnuradio-runtime/python/gnuradio/gr/qa_random.py +++ b/gnuradio-runtime/python/gnuradio/gr/qa_random.py @@ -22,78 +22,93 @@ from gnuradio import gr, gr_unittest import numpy as np -from scipy.stats import norm, laplace +from scipy.stats import norm, laplace, rayleigh class test_random(gr_unittest.TestCase): + num_tests = 10000 + # Disclaimer def test_0(self): - print 'NOTE: Following tests are not statistically significant! Check out fulltest_random.py for full testing.' + print 'NOTE: Following tests are not statistically significant!' + print 'Realisations per test:',self.num_tests self.assertEqual(1,1) # Check for range [0,1) of uniform distributed random numbers and print minimal and maximal value def test_1(self): print '# TEST 1' print 'Uniform distributed numbers: Range' - num_tests = 10000 - values = np.zeros(num_tests) + values = np.zeros(self.num_tests) rndm = gr.random() - for k in range(num_tests): + for k in range(self.num_tests): values[k] = rndm.ran1() for value in values: self.assertLess(value, 1) self.assertGreaterEqual(value, 0) - print 'Uniform random numbers (num/min/max):', num_tests, min(values), max(values) + print 'Uniform random numbers (num/min/max):', self.num_tests, min(values), max(values) # Check uniformly distributed random numbers on uniformity (without assert, only printing) def test_2(self): print '# TEST 2' print 'Uniform random numbers: Distribution' - num_tests = 10000 num_bins = 11 - values = np.zeros(num_tests) + values = np.zeros(self.num_tests) rndm = gr.random() - for k in range(num_tests): + for k in range(self.num_tests): values[k] = rndm.ran1() bins = np.linspace(0,1,num_bins) # These are the bin edges! hist = np.histogram(values,bins) print 'Lower edge bin / upper edge bin / count / expected' for k in range(len(hist[0])): - print hist[1][k], hist[1][k+1], hist[0][k], float(num_tests)/(num_bins-1) + print hist[1][k], hist[1][k+1], hist[0][k], float(self.num_tests)/(num_bins-1) # Check distribution of normally (gaussian, mean=0, variance=1) distributed random numbers (no assert) def test_3(self): print '# TEST 3' print 'Normal random numbers: Distribution' - num_tests = 10000 num_bins = 11 hist_range = [-5,5] - values = np.zeros(num_tests) + values = np.zeros(self.num_tests) rndm = gr.random() - for k in range(num_tests): + for k in range(self.num_tests): values[k] = rndm.gasdev() bins = np.linspace(hist_range[0],hist_range[1],num_bins) hist = np.histogram(values,bins) print 'Lower edge bin / upper edge bin / count / expected' for k in range(len(hist[0])): - print hist[1][k], hist[1][k+1], hist[0][k], float(norm.cdf(hist[1][k+1])-norm.cdf(hist[1][k]))*num_tests + print hist[1][k], hist[1][k+1], hist[0][k], float(norm.cdf(hist[1][k+1])-norm.cdf(hist[1][k]))*self.num_tests # Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert) def test_4(self): print '# TEST 4' print 'Laplacian random numbers: Distribution' - num_tests = 100000 num_bins = 11 hist_range = [-5,5] - values = np.zeros(num_tests) + values = np.zeros(self.num_tests) rndm = gr.random() - for k in range(num_tests): + for k in range(self.num_tests): values[k] = rndm.laplacian() bins = np.linspace(hist_range[0],hist_range[1],num_bins) hist = np.histogram(values,bins) print 'Lower edge bin / upper edge bin / count / expected' for k in range(len(hist[0])): - print hist[1][k], hist[1][k+1], hist[0][k], float(laplace.cdf(hist[1][k+1])-laplace.cdf(hist[1][k]))*num_tests + print hist[1][k], hist[1][k+1], hist[0][k], float(laplace.cdf(hist[1][k+1])-laplace.cdf(hist[1][k]))*self.num_tests + + # Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert) + def test_5(self): + print '# TEST 5' + print 'Rayleigh random numbers: Distribution' + num_bins = 11 + hist_range = [0,10] + values = np.zeros(self.num_tests) + rndm = gr.random() + for k in range(self.num_tests): + values[k] = rndm.rayleigh() + bins = np.linspace(hist_range[0],hist_range[1],num_bins) + hist = np.histogram(values,bins) + print 'Lower edge bin / upper edge bin / count / expected' + for k in range(len(hist[0])): + print hist[1][k], hist[1][k+1], hist[0][k], float(rayleigh.cdf(hist[1][k+1])-rayleigh.cdf(hist[1][k]))*self.num_tests if __name__ == '__main__': gr_unittest.run(test_random, "test_random.xml") |