summaryrefslogtreecommitdiff
path: root/gr-uhd/lib/usrp_sink_impl.cc
blob: c184f0a406b61590dc7237b434c83f02548d3f26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/* -*- c++ -*- */
/*
 * Copyright 2010-2013 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include <climits>
#include <stdexcept>
#include "usrp_sink_impl.h"
#include "gr_uhd_common.h"
#include <gnuradio/io_signature.h>

namespace gr {
  namespace uhd {

    static const size_t ALL_CHANS = ::uhd::usrp::multi_usrp::ALL_CHANS;

    usrp_sink::sptr
    usrp_sink::make(const ::uhd::device_addr_t &device_addr,
		    const ::uhd::io_type_t &io_type,
		    size_t num_channels)
    {
      //fill in the streamer args
      ::uhd::stream_args_t stream_args;
      switch(io_type.tid) {
      case ::uhd::io_type_t::COMPLEX_FLOAT32: stream_args.cpu_format = "fc32"; break;
      case ::uhd::io_type_t::COMPLEX_INT16: stream_args.cpu_format = "sc16"; break;
      default: throw std::runtime_error("only complex float and shorts known to work");
      }

      stream_args.otw_format = "sc16"; //only sc16 known to work
      for(size_t chan = 0; chan < num_channels; chan++)
	stream_args.channels.push_back(chan); //linear mapping

      return usrp_sink::make(device_addr, stream_args, "");
    }

    usrp_sink::sptr
    usrp_sink::make(const ::uhd::device_addr_t &device_addr,
                    const ::uhd::stream_args_t &stream_args,
                    const std::string &length_tag_name)
    {
      check_abi();
      return usrp_sink::sptr
        (new usrp_sink_impl(device_addr, stream_args_ensure(stream_args), length_tag_name));
    }

    usrp_sink_impl::usrp_sink_impl(const ::uhd::device_addr_t &device_addr,
                                   const ::uhd::stream_args_t &stream_args,
                                   const std::string &length_tag_name)
      : sync_block("gr uhd usrp sink",
                      args_to_io_sig(stream_args),
                      io_signature::make(0, 0, 0)),
        usrp_common_impl(device_addr, stream_args, length_tag_name),
        _length_tag_key(length_tag_name.empty() ? pmt::PMT_NIL : pmt::string_to_symbol(length_tag_name)),
        _nitems_to_send(0),
        _curr_freq(stream_args.channels.size(), 0.0),
        _curr_lo_offset(stream_args.channels.size(), 0.0),
        _curr_gain(stream_args.channels.size(), 0.0),
        _chans_to_tune(stream_args.channels.size())
    {
      message_port_register_in(pmt::mp("command"));
      set_msg_handler(
          pmt::mp("command"),
          boost::bind(&usrp_sink_impl::msg_handler_command, this, _1)
      );

      _check_sensors_locked();
    }

    bool usrp_sink_impl::_check_sensors_locked()
    {
      bool clocks_locked = true;

      // Check ref lock for all mboards
      for (size_t mboard_index = 0; mboard_index < _dev->get_num_mboards(); mboard_index++) {
        std::string sensor_name = "ref_locked";
        if (_dev->get_clock_source(mboard_index) == "internal") {
          continue;
        }
        else if (_dev->get_clock_source(mboard_index) == "mimo") {
          sensor_name = "mimo_locked";
        }
        if (not _wait_for_locked_sensor(
                get_mboard_sensor_names(mboard_index),
                sensor_name,
                boost::bind(&usrp_sink_impl::get_mboard_sensor, this, _1, mboard_index)
            )) {
          GR_LOG_WARN(d_logger, boost::format("Sensor '%s' failed to lock within timeout on motherboard %d.") % sensor_name % mboard_index);
          clocks_locked = false;
        }
      }

      return clocks_locked;
    }


    usrp_sink_impl::~usrp_sink_impl()
    {
    }

    ::uhd::dict<std::string, std::string>
    usrp_sink_impl::get_usrp_info(size_t chan)
    {
      chan = _stream_args.channels[chan];
#ifdef UHD_USRP_MULTI_USRP_GET_USRP_INFO_API
      return _dev->get_usrp_tx_info(chan);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::set_subdev_spec(const std::string &spec,
                                    size_t mboard)
    {
      return _dev->set_tx_subdev_spec(spec, mboard);
    }

    std::string
    usrp_sink_impl::get_subdev_spec(size_t mboard)
    {
      return _dev->get_tx_subdev_spec(mboard).to_string();
    }

    void
    usrp_sink_impl::set_samp_rate(double rate)
    {
        BOOST_FOREACH(const size_t chan, _stream_args.channels)
        {
            _dev->set_tx_rate(rate, chan);
        }
      _sample_rate = this->get_samp_rate();
    }

    double
    usrp_sink_impl::get_samp_rate(void)
    {
      return _dev->get_tx_rate(_stream_args.channels[0]);
    }

    ::uhd::meta_range_t
    usrp_sink_impl::get_samp_rates(void)
    {
#ifdef UHD_USRP_MULTI_USRP_GET_RATES_API
      return _dev->get_tx_rates(_stream_args.channels[0]);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    ::uhd::tune_result_t
    usrp_sink_impl::set_center_freq(const ::uhd::tune_request_t tune_request,
                                    size_t chan)
    {
      _curr_freq[chan] = tune_request.target_freq;
      if (tune_request.rf_freq_policy == ::uhd::tune_request_t::POLICY_MANUAL) {
        _curr_lo_offset[chan] = tune_request.rf_freq - tune_request.target_freq;
      } else {
        _curr_lo_offset[chan] = 0.0;
      }
      chan = _stream_args.channels[chan];
      return _dev->set_tx_freq(tune_request, chan);
    }

    ::uhd::tune_result_t
    usrp_sink_impl::_set_center_freq_from_internals(size_t chan)
    {
      _chans_to_tune[chan] = false;
      if (_curr_lo_offset[chan] == 0.0) {
	return _dev->set_tx_freq(_curr_freq[chan], _stream_args.channels[chan]);
      } else {
	return _dev->set_tx_freq(
	    ::uhd::tune_request_t(_curr_freq[chan], _curr_lo_offset[chan]),
	    _stream_args.channels[chan]
	);
      }
    }

    void
    usrp_sink_impl::_set_center_freq_from_internals_allchans()
    {
      for (size_t chan = 0; chan < _nchan; chan++) {
        if (_chans_to_tune[chan]) {
          _set_center_freq_from_internals(chan);
        }
      }
    }

    double
    usrp_sink_impl::get_center_freq(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_freq(chan);
    }

    ::uhd::freq_range_t
    usrp_sink_impl::get_freq_range(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_freq_range(chan);
    }

    void
    usrp_sink_impl::set_gain(double gain, size_t chan)
    {
      _curr_gain[chan] = gain;
      chan = _stream_args.channels[chan];
      return _dev->set_tx_gain(gain, chan);
    }

    void
    usrp_sink_impl::set_gain(double gain,
                             const std::string &name,
                             size_t chan)
    {
      _curr_gain[chan] = gain;
      chan = _stream_args.channels[chan];
      return _dev->set_tx_gain(gain, name, chan);
    }

    double
    usrp_sink_impl::get_gain(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain(chan);
    }

    double
    usrp_sink_impl::get_gain(const std::string &name, size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain(name, chan);
    }

    std::vector<std::string>
    usrp_sink_impl::get_gain_names(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain_names(chan);
    }

    ::uhd::gain_range_t
    usrp_sink_impl::get_gain_range(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain_range(chan);
    }

    ::uhd::gain_range_t
    usrp_sink_impl::get_gain_range(const std::string &name,
                                   size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain_range(name, chan);
    }

    void
    usrp_sink_impl::set_antenna(const std::string &ant,
                                size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->set_tx_antenna(ant, chan);
    }

    std::string
    usrp_sink_impl::get_antenna(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_antenna(chan);
    }

    std::vector<std::string>
    usrp_sink_impl::get_antennas(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_antennas(chan);
    }

    void
    usrp_sink_impl::set_bandwidth(double bandwidth, size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->set_tx_bandwidth(bandwidth, chan);
    }

    double
    usrp_sink_impl::get_bandwidth(size_t chan)
    {
        chan = _stream_args.channels[chan];
        return _dev->get_tx_bandwidth(chan);
    }

    ::uhd::freq_range_t
    usrp_sink_impl::get_bandwidth_range(size_t chan)
    {
        chan = _stream_args.channels[chan];
        return _dev->get_tx_bandwidth_range(chan);
    }

    void
    usrp_sink_impl::set_dc_offset(const std::complex<double> &offset,
                                  size_t chan)
    {
      chan = _stream_args.channels[chan];
#ifdef UHD_USRP_MULTI_USRP_FRONTEND_CAL_API
      return _dev->set_tx_dc_offset(offset, chan);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::set_iq_balance(const std::complex<double> &correction,
                                   size_t chan)
    {
      chan = _stream_args.channels[chan];
#ifdef UHD_USRP_MULTI_USRP_FRONTEND_CAL_API
      return _dev->set_tx_iq_balance(correction, chan);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    ::uhd::sensor_value_t
    usrp_sink_impl::get_sensor(const std::string &name, size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_sensor(name, chan);
    }

    std::vector<std::string>
    usrp_sink_impl::get_sensor_names(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_sensor_names(chan);
    }

    ::uhd::sensor_value_t
    usrp_sink_impl::get_mboard_sensor(const std::string &name,
                                       size_t mboard)
    {
      return _dev->get_mboard_sensor(name, mboard);
    }

    std::vector<std::string>
    usrp_sink_impl::get_mboard_sensor_names(size_t mboard)
    {
      return _dev->get_mboard_sensor_names(mboard);
    }

    void
    usrp_sink_impl::set_clock_config(const ::uhd::clock_config_t &clock_config,
                                     size_t mboard)
    {
      return _dev->set_clock_config(clock_config, mboard);
    }

    void
    usrp_sink_impl::set_time_source(const std::string &source,
                                    const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->set_time_source(source, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::string
    usrp_sink_impl::get_time_source(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_time_source(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::vector<std::string>
    usrp_sink_impl::get_time_sources(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_time_sources(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::set_clock_source(const std::string &source,
                                     const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->set_clock_source(source, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::string
    usrp_sink_impl::get_clock_source(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_clock_source(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::vector<std::string>
    usrp_sink_impl::get_clock_sources(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_clock_sources(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    double
    usrp_sink_impl::get_clock_rate(size_t mboard)
    {
      return _dev->get_master_clock_rate(mboard);
    }

    void
    usrp_sink_impl::set_clock_rate(double rate, size_t mboard)
    {
      return _dev->set_master_clock_rate(rate, mboard);
    }

    ::uhd::time_spec_t
    usrp_sink_impl::get_time_now(size_t mboard)
    {
      return _dev->get_time_now(mboard);
    }

    ::uhd::time_spec_t
    usrp_sink_impl::get_time_last_pps(size_t mboard)
    {
      return _dev->get_time_last_pps(mboard);
    }

    void
    usrp_sink_impl::set_time_now(const ::uhd::time_spec_t &time_spec,
                                 size_t mboard)
    {
      return _dev->set_time_now(time_spec, mboard);
    }

    void
    usrp_sink_impl::set_time_next_pps(const ::uhd::time_spec_t &time_spec)
    {
      return _dev->set_time_next_pps(time_spec);
    }

    void
    usrp_sink_impl::set_time_unknown_pps(const ::uhd::time_spec_t &time_spec)
    {
      return _dev->set_time_unknown_pps(time_spec);
    }

    void
    usrp_sink_impl::set_command_time(const ::uhd::time_spec_t &time_spec,
                                     size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_COMMAND_TIME_API
      return _dev->set_command_time(time_spec, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::clear_command_time(size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_COMMAND_TIME_API
      return _dev->clear_command_time(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    ::uhd::usrp::dboard_iface::sptr
    usrp_sink_impl::get_dboard_iface(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_dboard_iface(chan);
    }

    ::uhd::usrp::multi_usrp::sptr
    usrp_sink_impl::get_device(void)
    {
      return _dev;
    }

    void
    usrp_sink_impl::set_user_register(const uint8_t addr,
                                      const uint32_t data,
                                      size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_USER_REGS_API
      _dev->set_user_register(addr, data, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }


    /***********************************************************************
     * Work
     **********************************************************************/
    int
    usrp_sink_impl::work(int noutput_items,
                         gr_vector_const_void_star &input_items,
                         gr_vector_void_star &output_items)
    {
      int ninput_items = noutput_items; //cuz it's a sync block

      // default to send a mid-burst packet
      _metadata.start_of_burst = false;
      _metadata.end_of_burst = false;

      //collect tags in this work()
      const uint64_t samp0_count = nitems_read(0);
      get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items);
      if(not _tags.empty())
        this->tag_work(ninput_items);

      if(not pmt::is_null(_length_tag_key)) {
        //check if there is data left to send from a burst tagged with length_tag
        //If a burst is started during this call to work(), tag_work() should have
        //been called and we should have _nitems_to_send > 0.
        if (_nitems_to_send > 0) {
          ninput_items = std::min<long>(_nitems_to_send, ninput_items);
          //if we run out of items to send, it's the end of the burst
          if(_nitems_to_send - long(ninput_items) == 0)
            _metadata.end_of_burst = true;
        }
        else {
          //There is a tag gap since no length_tag was found immediately following
          //the last sample of the previous burst. Drop samples until the next
          //length_tag is found. Notify the user of the tag gap.
          std::cerr << "tG" << std::flush;
          //increment the timespec by the number of samples dropped
          _metadata.time_spec += ::uhd::time_spec_t(0, ninput_items, _sample_rate);
          return ninput_items;
        }
      }

#ifdef GR_UHD_USE_STREAM_API
      //send all ninput_items with metadata
      const size_t num_sent = _tx_stream->send
        (input_items, ninput_items, _metadata, 1.0);
#else
      const size_t num_sent = _dev->get_device()->send
        (input_items, ninput_items, _metadata,
         *_type, ::uhd::device::SEND_MODE_FULL_BUFF, 1.0);
#endif

      //if using length_tags, decrement items left to send by the number of samples sent
      if(not pmt::is_null(_length_tag_key) && _nitems_to_send > 0) {
        _nitems_to_send -= long(num_sent);
      }

      //increment the timespec by the number of samples sent
      _metadata.time_spec += ::uhd::time_spec_t(0, num_sent, _sample_rate);

      // Some post-processing tasks if we actually transmitted the entire burst
      if (not _pending_cmds.empty() && num_sent == size_t(ninput_items)) {
        GR_LOG_DEBUG(d_debug_logger, boost::format("Executing %d pending commands.") % _pending_cmds.size());
        BOOST_FOREACH(const pmt::pmt_t &cmd_pmt, _pending_cmds) {
          msg_handler_command(cmd_pmt);
        }
        _pending_cmds.clear();
      }

      return num_sent;
    }

    /***********************************************************************
     * Tag Work
     **********************************************************************/
    void
    usrp_sink_impl::tag_work(int &ninput_items)
    {
      //the for loop below assumes tags sorted by count low -> high
      std::sort(_tags.begin(), _tags.end(), tag_t::offset_compare);

      //extract absolute sample counts
      const uint64_t samp0_count = this->nitems_read(0);
      uint64_t max_count = samp0_count + ninput_items;

      // Go through tag list until something indicates the end of a burst.
      bool found_time_tag = false;
      bool found_eob = false;
      // For commands that are in the middle in the burst:
      std::vector<pmt::pmt_t> commands_in_burst; // Store the command
      uint64_t in_burst_cmd_offset = 0; // Store its position
      BOOST_FOREACH(const tag_t &my_tag, _tags) {
        const uint64_t my_tag_count = my_tag.offset;
        const pmt::pmt_t &key = my_tag.key;
        const pmt::pmt_t &value = my_tag.value;

        if (my_tag_count >= max_count) {
          break;
        }

        /* I. Tags that can only be on the first sample of a burst
         *
         * This includes:
         * - tx_time
         * - tx_command
         * - tx_sob
         * - length tags
         *
         * With these tags, we check if they're on the first item, otherwise,
         * we stop before that tag so they are on the first item the next time round.
         */
        else if (pmt::equal(key, COMMAND_KEY)) {
          if (my_tag_count != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          msg_handler_command(value);
        }

        //set the time specification in the metadata
        else if(pmt::equal(key, TIME_KEY)) {
          if (my_tag_count != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          found_time_tag = true;
          _metadata.has_time_spec = true;
          _metadata.time_spec = ::uhd::time_spec_t
            (pmt::to_uint64(pmt::tuple_ref(value, 0)),
             pmt::to_double(pmt::tuple_ref(value, 1)));
        }

        //set the start of burst flag in the metadata; ignore if length_tag_key is not null
        else if(pmt::is_null(_length_tag_key) && pmt::equal(key, SOB_KEY)) {
          if (my_tag.offset != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          // Bursty tx will not use time specs, unless a tx_time tag is also given.
          _metadata.has_time_spec = false;
          _metadata.start_of_burst = pmt::to_bool(value);
        }

        //length_tag found; set the start of burst flag in the metadata
        else if(not pmt::is_null(_length_tag_key) && pmt::equal(key, _length_tag_key)) {
          if (my_tag_count != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          //If there are still items left to send, the current burst has been preempted.
          //Set the items remaining counter to the new burst length. Notify the user of
          //the tag preemption.
          else if(_nitems_to_send > 0) {
              std::cerr << "tP" << std::flush;
          }
          _nitems_to_send = pmt::to_long(value);
          _metadata.start_of_burst = true;
        }

        /* II. Tags that can be on the first OR last sample of a burst
         *
         * This includes:
         * - tx_freq
         *
         * With these tags, we check if they're at the start of a burst, and do
         * the appropriate action. Otherwise, make sure the corresponding sample
         * is the last one.
         */
        else if (pmt::equal(key, FREQ_KEY) && my_tag_count == samp0_count) {
          // If it's on the first sample, immediately do the tune:
          GR_LOG_DEBUG(d_debug_logger, boost::format("Received tx_freq on start of burst."));
          msg_handler_command(pmt::cons(pmt::mp("freq"), value));
        }
        else if(pmt::equal(key, FREQ_KEY)) {
          // If it's not on the first sample, queue this command and only tx until here:
          GR_LOG_DEBUG(d_debug_logger, boost::format("Received tx_freq mid-burst."));
          commands_in_burst.push_back(pmt::cons(pmt::mp("freq"), value));
          max_count = my_tag_count + 1;
          in_burst_cmd_offset = my_tag_count;
        }

        /* III. Tags that can only be on the last sample of a burst
         *
         * This includes:
         * - tx_eob
         *
         * Make sure that no more samples are allowed through.
         */
        else if(pmt::is_null(_length_tag_key) && pmt::equal(key, EOB_KEY)) {
          found_eob = true;
          max_count = my_tag_count + 1;
          _metadata.end_of_burst = pmt::to_bool(value);
        }
      } // end foreach

      if(not pmt::is_null(_length_tag_key) && long(max_count - samp0_count) == _nitems_to_send) {
        found_eob = true;
      }

      // If a command was found in-burst that may appear at the end of burst,
      // there's two options:
      // 1) The command was actually on the last sample (eob). Then, stash the
      //    commands for running after work().
      // 2) The command was not on the last sample. In this case, only send()
      //    until before the tag, so it will be on the first sample of the next run.
      if (not commands_in_burst.empty()) {
        if (not found_eob) {
          // If it's in the middle of a burst, only send() until before the tag
          max_count = in_burst_cmd_offset;
        } else if (in_burst_cmd_offset < max_count) {
          BOOST_FOREACH(const pmt::pmt_t &cmd_pmt, commands_in_burst) {
            _pending_cmds.push_back(cmd_pmt);
          }
        }
      }

      if (found_time_tag) {
        _metadata.has_time_spec = true;
      }

      // Only transmit up to and including end of burst,
      // or everything if no burst boundaries are found.
      ninput_items = int(max_count - samp0_count);

    } // end tag_work()

    void
    usrp_sink_impl::set_start_time(const ::uhd::time_spec_t &time)
    {
      _start_time = time;
      _start_time_set = true;
      _stream_now = false;
    }

    //Send an empty start-of-burst packet to begin streaming.
    //Set at a time in the near future to avoid late packets.
    bool
    usrp_sink_impl::start(void)
    {
#ifdef GR_UHD_USE_STREAM_API
      _tx_stream = _dev->get_tx_stream(_stream_args);
#endif

      _metadata.start_of_burst = true;
      _metadata.end_of_burst = false;
      // Bursty tx will need to send a tx_time to activate time spec
      _metadata.has_time_spec = !_stream_now && pmt::is_null(_length_tag_key);
      _nitems_to_send = 0;
      if(_start_time_set) {
        _start_time_set = false; //cleared for next run
        _metadata.time_spec = _start_time;
      }
      else {
        _metadata.time_spec = get_time_now() + ::uhd::time_spec_t(0.01);
      }

#ifdef GR_UHD_USE_STREAM_API
      _tx_stream->send
        (gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
#else
      _dev->get_device()->send
        (gr_vector_const_void_star(_nchan), 0, _metadata,
         *_type, ::uhd::device::SEND_MODE_ONE_PACKET, 1.0);
#endif
      return true;
    }

    //Send an empty end-of-burst packet to end streaming.
    //Ending the burst avoids an underflow error on stop.
    bool
    usrp_sink_impl::stop(void)
    {
      _metadata.start_of_burst = false;
      _metadata.end_of_burst = true;
      _metadata.has_time_spec = false;
      _nitems_to_send = 0;

#ifdef GR_UHD_USE_STREAM_API
      _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
#else
      _dev->get_device()->send
        (gr_vector_const_void_star(_nchan), 0, _metadata,
         *_type, ::uhd::device::SEND_MODE_ONE_PACKET, 1.0);
#endif
      return true;
    }


    /************** External interfaces (RPC + Message passing) ********************/
    void usrp_sink_impl::msg_handler_command(pmt::pmt_t msg)
    {
      std::string command;
      pmt::pmt_t cmd_value;
      int chan = -1;
      if (not _unpack_chan_command(command, cmd_value, chan, msg)) {
        GR_LOG_ALERT(d_logger, boost::format("Error while unpacking command PMT: %s") % msg);
        return;
      }
      GR_LOG_DEBUG(d_debug_logger, boost::format("Received command: %s") % command);
      try {
        if (command == "freq") {
          _chans_to_tune = _update_vector_from_cmd_val<double>(
              _curr_freq, chan, pmt::to_double(cmd_value), true
          );
          _set_center_freq_from_internals_allchans();
        } else if (command == "lo_offset") {
          _chans_to_tune = _update_vector_from_cmd_val<double>(
              _curr_lo_offset, chan, pmt::to_double(cmd_value), true
          );
          _set_center_freq_from_internals_allchans();
        } else if (command == "gain") {
          boost::dynamic_bitset<> chans_to_change = _update_vector_from_cmd_val<double>(
              _curr_gain, chan, pmt::to_double(cmd_value), true
          );
          if (chans_to_change.any()) {
            for (size_t i = 0; i < chans_to_change.size(); i++) {
              if (chans_to_change[i]) {
                set_gain(_curr_gain[i], i);
              }
            }
          }
        } else {
          GR_LOG_ALERT(d_logger, boost::format("Received unknown command: %s") % command);
        }
      } catch (pmt::wrong_type &e) {
        GR_LOG_ALERT(d_logger, boost::format("Received command '%s' with invalid command value: %s") % command % cmd_value);
      }
    }

    void
    usrp_sink_impl::setup_rpc()
    {
#ifdef GR_CTRLPORT
      add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_get<usrp_sink, double>(
	  alias(), "samp_rate",
	  &usrp_sink::get_samp_rate,
	  pmt::mp(100000.0f), pmt::mp(25000000.0f), pmt::mp(1000000.0f),
	  "sps", "TX Sample Rate", RPC_PRIVLVL_MIN,
          DISPTIME | DISPOPTSTRIP)));

      add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_set<usrp_sink, double>(
	  alias(), "samp_rate",
	  &usrp_sink::set_samp_rate,
	  pmt::mp(100000.0f), pmt::mp(25000000.0f), pmt::mp(1000000.0f),
	  "sps", "TX Sample Rate",
	  RPC_PRIVLVL_MIN, DISPNULL)));
#endif /* GR_CTRLPORT */
    }

  } /* namespace uhd */
} /* namespace gr */