/* -*- c++ -*- */
/*
 * Copyright 2010-2013 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include <climits>
#include <stdexcept>
#include "usrp_sink_impl.h"
#include "gr_uhd_common.h"
#include <gnuradio/io_signature.h>

namespace gr {
  namespace uhd {

    static const size_t ALL_CHANS = ::uhd::usrp::multi_usrp::ALL_CHANS;

    usrp_sink::sptr
    usrp_sink::make(const ::uhd::device_addr_t &device_addr,
		    const ::uhd::io_type_t &io_type,
		    size_t num_channels)
    {
      //fill in the streamer args
      ::uhd::stream_args_t stream_args;
      switch(io_type.tid) {
      case ::uhd::io_type_t::COMPLEX_FLOAT32: stream_args.cpu_format = "fc32"; break;
      case ::uhd::io_type_t::COMPLEX_INT16: stream_args.cpu_format = "sc16"; break;
      default: throw std::runtime_error("only complex float and shorts known to work");
      }

      stream_args.otw_format = "sc16"; //only sc16 known to work
      for(size_t chan = 0; chan < num_channels; chan++)
	stream_args.channels.push_back(chan); //linear mapping

      return usrp_sink::make(device_addr, stream_args, "");
    }

    usrp_sink::sptr
    usrp_sink::make(const ::uhd::device_addr_t &device_addr,
                    const ::uhd::stream_args_t &stream_args,
                    const std::string &length_tag_name)
    {
      check_abi();
      return usrp_sink::sptr
        (new usrp_sink_impl(device_addr, stream_args_ensure(stream_args), length_tag_name));
    }

    usrp_sink_impl::usrp_sink_impl(const ::uhd::device_addr_t &device_addr,
                                   const ::uhd::stream_args_t &stream_args,
                                   const std::string &length_tag_name)
      : sync_block("gr uhd usrp sink",
                      args_to_io_sig(stream_args),
                      io_signature::make(0, 0, 0)),
        usrp_common_impl(device_addr, stream_args, length_tag_name),
        _length_tag_key(length_tag_name.empty() ? pmt::PMT_NIL : pmt::string_to_symbol(length_tag_name)),
        _nitems_to_send(0),
        _curr_freq(stream_args.channels.size(), 0.0),
        _curr_lo_offset(stream_args.channels.size(), 0.0),
        _curr_gain(stream_args.channels.size(), 0.0),
        _chans_to_tune(stream_args.channels.size())
    {
      message_port_register_in(pmt::mp("command"));
      set_msg_handler(
          pmt::mp("command"),
          boost::bind(&usrp_sink_impl::msg_handler_command, this, _1)
      );

      _check_sensors_locked();
    }

    bool usrp_sink_impl::_check_sensors_locked()
    {
      bool clocks_locked = true;

      // Check ref lock for all mboards
      for (size_t mboard_index = 0; mboard_index < _dev->get_num_mboards(); mboard_index++) {
        std::string sensor_name = "ref_locked";
        if (_dev->get_clock_source(mboard_index) == "internal") {
          continue;
        }
        else if (_dev->get_clock_source(mboard_index) == "mimo") {
          sensor_name = "mimo_locked";
        }
        if (not _wait_for_locked_sensor(
                get_mboard_sensor_names(mboard_index),
                sensor_name,
                boost::bind(&usrp_sink_impl::get_mboard_sensor, this, _1, mboard_index)
            )) {
          GR_LOG_WARN(d_logger, boost::format("Sensor '%s' failed to lock within timeout on motherboard %d.") % sensor_name % mboard_index);
          clocks_locked = false;
        }
      }

      return clocks_locked;
    }


    usrp_sink_impl::~usrp_sink_impl()
    {
    }

    ::uhd::dict<std::string, std::string>
    usrp_sink_impl::get_usrp_info(size_t chan)
    {
      chan = _stream_args.channels[chan];
#ifdef UHD_USRP_MULTI_USRP_GET_USRP_INFO_API
      return _dev->get_usrp_tx_info(chan);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::set_subdev_spec(const std::string &spec,
                                    size_t mboard)
    {
      return _dev->set_tx_subdev_spec(spec, mboard);
    }

    std::string
    usrp_sink_impl::get_subdev_spec(size_t mboard)
    {
      return _dev->get_tx_subdev_spec(mboard).to_string();
    }

    void
    usrp_sink_impl::set_samp_rate(double rate)
    {
        BOOST_FOREACH(const size_t chan, _stream_args.channels)
        {
            _dev->set_tx_rate(rate, chan);
        }
      _sample_rate = this->get_samp_rate();
    }

    double
    usrp_sink_impl::get_samp_rate(void)
    {
      return _dev->get_tx_rate(_stream_args.channels[0]);
    }

    ::uhd::meta_range_t
    usrp_sink_impl::get_samp_rates(void)
    {
#ifdef UHD_USRP_MULTI_USRP_GET_RATES_API
      return _dev->get_tx_rates(_stream_args.channels[0]);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    ::uhd::tune_result_t
    usrp_sink_impl::set_center_freq(const ::uhd::tune_request_t tune_request,
                                    size_t chan)
    {
      _curr_freq[chan] = tune_request.target_freq;
      if (tune_request.rf_freq_policy == ::uhd::tune_request_t::POLICY_MANUAL) {
        _curr_lo_offset[chan] = tune_request.rf_freq - tune_request.target_freq;
      } else {
        _curr_lo_offset[chan] = 0.0;
      }
      chan = _stream_args.channels[chan];
      return _dev->set_tx_freq(tune_request, chan);
    }

    ::uhd::tune_result_t
    usrp_sink_impl::_set_center_freq_from_internals(size_t chan)
    {
      _chans_to_tune[chan] = false;
      if (_curr_lo_offset[chan] == 0.0) {
	return _dev->set_tx_freq(_curr_freq[chan], _stream_args.channels[chan]);
      } else {
	return _dev->set_tx_freq(
	    ::uhd::tune_request_t(_curr_freq[chan], _curr_lo_offset[chan]),
	    _stream_args.channels[chan]
	);
      }
    }

    void
    usrp_sink_impl::_set_center_freq_from_internals_allchans()
    {
      for (size_t chan = 0; chan < _nchan; chan++) {
        if (_chans_to_tune[chan]) {
          _set_center_freq_from_internals(chan);
        }
      }
    }

    double
    usrp_sink_impl::get_center_freq(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_freq(chan);
    }

    ::uhd::freq_range_t
    usrp_sink_impl::get_freq_range(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_freq_range(chan);
    }

    void
    usrp_sink_impl::set_gain(double gain, size_t chan)
    {
      _curr_gain[chan] = gain;
      chan = _stream_args.channels[chan];
      return _dev->set_tx_gain(gain, chan);
    }

    void
    usrp_sink_impl::set_gain(double gain,
                             const std::string &name,
                             size_t chan)
    {
      _curr_gain[chan] = gain;
      chan = _stream_args.channels[chan];
      return _dev->set_tx_gain(gain, name, chan);
    }

    double
    usrp_sink_impl::get_gain(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain(chan);
    }

    double
    usrp_sink_impl::get_gain(const std::string &name, size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain(name, chan);
    }

    std::vector<std::string>
    usrp_sink_impl::get_gain_names(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain_names(chan);
    }

    ::uhd::gain_range_t
    usrp_sink_impl::get_gain_range(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain_range(chan);
    }

    ::uhd::gain_range_t
    usrp_sink_impl::get_gain_range(const std::string &name,
                                   size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_gain_range(name, chan);
    }

    void
    usrp_sink_impl::set_antenna(const std::string &ant,
                                size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->set_tx_antenna(ant, chan);
    }

    std::string
    usrp_sink_impl::get_antenna(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_antenna(chan);
    }

    std::vector<std::string>
    usrp_sink_impl::get_antennas(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_antennas(chan);
    }

    void
    usrp_sink_impl::set_bandwidth(double bandwidth, size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->set_tx_bandwidth(bandwidth, chan);
    }

    double
    usrp_sink_impl::get_bandwidth(size_t chan)
    {
        chan = _stream_args.channels[chan];
        return _dev->get_tx_bandwidth(chan);
    }

    ::uhd::freq_range_t
    usrp_sink_impl::get_bandwidth_range(size_t chan)
    {
        chan = _stream_args.channels[chan];
        return _dev->get_tx_bandwidth_range(chan);
    }

    void
    usrp_sink_impl::set_dc_offset(const std::complex<double> &offset,
                                  size_t chan)
    {
      chan = _stream_args.channels[chan];
#ifdef UHD_USRP_MULTI_USRP_FRONTEND_CAL_API
      return _dev->set_tx_dc_offset(offset, chan);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::set_iq_balance(const std::complex<double> &correction,
                                   size_t chan)
    {
      chan = _stream_args.channels[chan];
#ifdef UHD_USRP_MULTI_USRP_FRONTEND_CAL_API
      return _dev->set_tx_iq_balance(correction, chan);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    ::uhd::sensor_value_t
    usrp_sink_impl::get_sensor(const std::string &name, size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_sensor(name, chan);
    }

    std::vector<std::string>
    usrp_sink_impl::get_sensor_names(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_sensor_names(chan);
    }

    ::uhd::sensor_value_t
    usrp_sink_impl::get_mboard_sensor(const std::string &name,
                                       size_t mboard)
    {
      return _dev->get_mboard_sensor(name, mboard);
    }

    std::vector<std::string>
    usrp_sink_impl::get_mboard_sensor_names(size_t mboard)
    {
      return _dev->get_mboard_sensor_names(mboard);
    }

    void
    usrp_sink_impl::set_clock_config(const ::uhd::clock_config_t &clock_config,
                                     size_t mboard)
    {
      return _dev->set_clock_config(clock_config, mboard);
    }

    void
    usrp_sink_impl::set_time_source(const std::string &source,
                                    const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->set_time_source(source, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::string
    usrp_sink_impl::get_time_source(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_time_source(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::vector<std::string>
    usrp_sink_impl::get_time_sources(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_time_sources(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::set_clock_source(const std::string &source,
                                     const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->set_clock_source(source, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::string
    usrp_sink_impl::get_clock_source(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_clock_source(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    std::vector<std::string>
    usrp_sink_impl::get_clock_sources(const size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_REF_SOURCES_API
      return _dev->get_clock_sources(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    double
    usrp_sink_impl::get_clock_rate(size_t mboard)
    {
      return _dev->get_master_clock_rate(mboard);
    }

    void
    usrp_sink_impl::set_clock_rate(double rate, size_t mboard)
    {
      return _dev->set_master_clock_rate(rate, mboard);
    }

    ::uhd::time_spec_t
    usrp_sink_impl::get_time_now(size_t mboard)
    {
      return _dev->get_time_now(mboard);
    }

    ::uhd::time_spec_t
    usrp_sink_impl::get_time_last_pps(size_t mboard)
    {
      return _dev->get_time_last_pps(mboard);
    }

    void
    usrp_sink_impl::set_time_now(const ::uhd::time_spec_t &time_spec,
                                 size_t mboard)
    {
      return _dev->set_time_now(time_spec, mboard);
    }

    void
    usrp_sink_impl::set_time_next_pps(const ::uhd::time_spec_t &time_spec)
    {
      return _dev->set_time_next_pps(time_spec);
    }

    void
    usrp_sink_impl::set_time_unknown_pps(const ::uhd::time_spec_t &time_spec)
    {
      return _dev->set_time_unknown_pps(time_spec);
    }

    void
    usrp_sink_impl::set_command_time(const ::uhd::time_spec_t &time_spec,
                                     size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_COMMAND_TIME_API
      return _dev->set_command_time(time_spec, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    void
    usrp_sink_impl::clear_command_time(size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_COMMAND_TIME_API
      return _dev->clear_command_time(mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }

    ::uhd::usrp::dboard_iface::sptr
    usrp_sink_impl::get_dboard_iface(size_t chan)
    {
      chan = _stream_args.channels[chan];
      return _dev->get_tx_dboard_iface(chan);
    }

    ::uhd::usrp::multi_usrp::sptr
    usrp_sink_impl::get_device(void)
    {
      return _dev;
    }

    void
    usrp_sink_impl::set_user_register(const uint8_t addr,
                                      const uint32_t data,
                                      size_t mboard)
    {
#ifdef UHD_USRP_MULTI_USRP_USER_REGS_API
      _dev->set_user_register(addr, data, mboard);
#else
      throw std::runtime_error("not implemented in this version");
#endif
    }


    /***********************************************************************
     * Work
     **********************************************************************/
    int
    usrp_sink_impl::work(int noutput_items,
                         gr_vector_const_void_star &input_items,
                         gr_vector_void_star &output_items)
    {
      int ninput_items = noutput_items; //cuz it's a sync block

      // default to send a mid-burst packet
      _metadata.start_of_burst = false;
      _metadata.end_of_burst = false;

      //collect tags in this work()
      const uint64_t samp0_count = nitems_read(0);
      get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items);
      if(not _tags.empty())
        this->tag_work(ninput_items);

      if(not pmt::is_null(_length_tag_key)) {
        //check if there is data left to send from a burst tagged with length_tag
        //If a burst is started during this call to work(), tag_work() should have
        //been called and we should have _nitems_to_send > 0.
        if (_nitems_to_send > 0) {
          ninput_items = std::min<long>(_nitems_to_send, ninput_items);
          //if we run out of items to send, it's the end of the burst
          if(_nitems_to_send - long(ninput_items) == 0)
            _metadata.end_of_burst = true;
        }
        else {
          //There is a tag gap since no length_tag was found immediately following
          //the last sample of the previous burst. Drop samples until the next
          //length_tag is found. Notify the user of the tag gap.
          std::cerr << "tG" << std::flush;
          //increment the timespec by the number of samples dropped
          _metadata.time_spec += ::uhd::time_spec_t(0, ninput_items, _sample_rate);
          return ninput_items;
        }
      }

#ifdef GR_UHD_USE_STREAM_API
      //send all ninput_items with metadata
      const size_t num_sent = _tx_stream->send
        (input_items, ninput_items, _metadata, 1.0);
#else
      const size_t num_sent = _dev->get_device()->send
        (input_items, ninput_items, _metadata,
         *_type, ::uhd::device::SEND_MODE_FULL_BUFF, 1.0);
#endif

      //if using length_tags, decrement items left to send by the number of samples sent
      if(not pmt::is_null(_length_tag_key) && _nitems_to_send > 0) {
        _nitems_to_send -= long(num_sent);
      }

      //increment the timespec by the number of samples sent
      _metadata.time_spec += ::uhd::time_spec_t(0, num_sent, _sample_rate);

      // Some post-processing tasks if we actually transmitted the entire burst
      if (not _pending_cmds.empty() && num_sent == size_t(ninput_items)) {
        GR_LOG_DEBUG(d_debug_logger, boost::format("Executing %d pending commands.") % _pending_cmds.size());
        BOOST_FOREACH(const pmt::pmt_t &cmd_pmt, _pending_cmds) {
          msg_handler_command(cmd_pmt);
        }
        _pending_cmds.clear();
      }

      return num_sent;
    }

    /***********************************************************************
     * Tag Work
     **********************************************************************/
    void
    usrp_sink_impl::tag_work(int &ninput_items)
    {
      //the for loop below assumes tags sorted by count low -> high
      std::sort(_tags.begin(), _tags.end(), tag_t::offset_compare);

      //extract absolute sample counts
      const uint64_t samp0_count = this->nitems_read(0);
      uint64_t max_count = samp0_count + ninput_items;

      // Go through tag list until something indicates the end of a burst.
      bool found_time_tag = false;
      bool found_eob = false;
      // For commands that are in the middle in the burst:
      std::vector<pmt::pmt_t> commands_in_burst; // Store the command
      uint64_t in_burst_cmd_offset = 0; // Store its position
      BOOST_FOREACH(const tag_t &my_tag, _tags) {
        const uint64_t my_tag_count = my_tag.offset;
        const pmt::pmt_t &key = my_tag.key;
        const pmt::pmt_t &value = my_tag.value;

        if (my_tag_count >= max_count) {
          break;
        }

        /* I. Tags that can only be on the first sample of a burst
         *
         * This includes:
         * - tx_time
         * - tx_command
         * - tx_sob
         * - length tags
         *
         * With these tags, we check if they're on the first item, otherwise,
         * we stop before that tag so they are on the first item the next time round.
         */
        else if (pmt::equal(key, COMMAND_KEY)) {
          if (my_tag_count != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          msg_handler_command(value);
        }

        //set the time specification in the metadata
        else if(pmt::equal(key, TIME_KEY)) {
          if (my_tag_count != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          found_time_tag = true;
          _metadata.has_time_spec = true;
          _metadata.time_spec = ::uhd::time_spec_t
            (pmt::to_uint64(pmt::tuple_ref(value, 0)),
             pmt::to_double(pmt::tuple_ref(value, 1)));
        }

        //set the start of burst flag in the metadata; ignore if length_tag_key is not null
        else if(pmt::is_null(_length_tag_key) && pmt::equal(key, SOB_KEY)) {
          if (my_tag.offset != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          // Bursty tx will not use time specs, unless a tx_time tag is also given.
          _metadata.has_time_spec = false;
          _metadata.start_of_burst = pmt::to_bool(value);
        }

        //length_tag found; set the start of burst flag in the metadata
        else if(not pmt::is_null(_length_tag_key) && pmt::equal(key, _length_tag_key)) {
          if (my_tag_count != samp0_count) {
            max_count = my_tag_count;
            break;
          }
          //If there are still items left to send, the current burst has been preempted.
          //Set the items remaining counter to the new burst length. Notify the user of
          //the tag preemption.
          else if(_nitems_to_send > 0) {
              std::cerr << "tP" << std::flush;
          }
          _nitems_to_send = pmt::to_long(value);
          _metadata.start_of_burst = true;
        }

        /* II. Tags that can be on the first OR last sample of a burst
         *
         * This includes:
         * - tx_freq
         *
         * With these tags, we check if they're at the start of a burst, and do
         * the appropriate action. Otherwise, make sure the corresponding sample
         * is the last one.
         */
        else if (pmt::equal(key, FREQ_KEY) && my_tag_count == samp0_count) {
          // If it's on the first sample, immediately do the tune:
          GR_LOG_DEBUG(d_debug_logger, boost::format("Received tx_freq on start of burst."));
          msg_handler_command(pmt::cons(pmt::mp("freq"), value));
        }
        else if(pmt::equal(key, FREQ_KEY)) {
          // If it's not on the first sample, queue this command and only tx until here:
          GR_LOG_DEBUG(d_debug_logger, boost::format("Received tx_freq mid-burst."));
          commands_in_burst.push_back(pmt::cons(pmt::mp("freq"), value));
          max_count = my_tag_count + 1;
          in_burst_cmd_offset = my_tag_count;
        }

        /* III. Tags that can only be on the last sample of a burst
         *
         * This includes:
         * - tx_eob
         *
         * Make sure that no more samples are allowed through.
         */
        else if(pmt::is_null(_length_tag_key) && pmt::equal(key, EOB_KEY)) {
          found_eob = true;
          max_count = my_tag_count + 1;
          _metadata.end_of_burst = pmt::to_bool(value);
        }
      } // end foreach

      if(not pmt::is_null(_length_tag_key) && long(max_count - samp0_count) == _nitems_to_send) {
        found_eob = true;
      }

      // If a command was found in-burst that may appear at the end of burst,
      // there's two options:
      // 1) The command was actually on the last sample (eob). Then, stash the
      //    commands for running after work().
      // 2) The command was not on the last sample. In this case, only send()
      //    until before the tag, so it will be on the first sample of the next run.
      if (not commands_in_burst.empty()) {
        if (not found_eob) {
          // If it's in the middle of a burst, only send() until before the tag
          max_count = in_burst_cmd_offset;
        } else if (in_burst_cmd_offset < max_count) {
          BOOST_FOREACH(const pmt::pmt_t &cmd_pmt, commands_in_burst) {
            _pending_cmds.push_back(cmd_pmt);
          }
        }
      }

      if (found_time_tag) {
        _metadata.has_time_spec = true;
      }

      // Only transmit up to and including end of burst,
      // or everything if no burst boundaries are found.
      ninput_items = int(max_count - samp0_count);

    } // end tag_work()

    void
    usrp_sink_impl::set_start_time(const ::uhd::time_spec_t &time)
    {
      _start_time = time;
      _start_time_set = true;
      _stream_now = false;
    }

    //Send an empty start-of-burst packet to begin streaming.
    //Set at a time in the near future to avoid late packets.
    bool
    usrp_sink_impl::start(void)
    {
#ifdef GR_UHD_USE_STREAM_API
      _tx_stream = _dev->get_tx_stream(_stream_args);
#endif

      _metadata.start_of_burst = true;
      _metadata.end_of_burst = false;
      // Bursty tx will need to send a tx_time to activate time spec
      _metadata.has_time_spec = !_stream_now && pmt::is_null(_length_tag_key);
      _nitems_to_send = 0;
      if(_start_time_set) {
        _start_time_set = false; //cleared for next run
        _metadata.time_spec = _start_time;
      }
      else {
        _metadata.time_spec = get_time_now() + ::uhd::time_spec_t(0.01);
      }

#ifdef GR_UHD_USE_STREAM_API
      _tx_stream->send
        (gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
#else
      _dev->get_device()->send
        (gr_vector_const_void_star(_nchan), 0, _metadata,
         *_type, ::uhd::device::SEND_MODE_ONE_PACKET, 1.0);
#endif
      return true;
    }

    //Send an empty end-of-burst packet to end streaming.
    //Ending the burst avoids an underflow error on stop.
    bool
    usrp_sink_impl::stop(void)
    {
      _metadata.start_of_burst = false;
      _metadata.end_of_burst = true;
      _metadata.has_time_spec = false;
      _nitems_to_send = 0;

#ifdef GR_UHD_USE_STREAM_API
      _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
#else
      _dev->get_device()->send
        (gr_vector_const_void_star(_nchan), 0, _metadata,
         *_type, ::uhd::device::SEND_MODE_ONE_PACKET, 1.0);
#endif
      return true;
    }


    /************** External interfaces (RPC + Message passing) ********************/
    void usrp_sink_impl::msg_handler_command(pmt::pmt_t msg)
    {
      std::string command;
      pmt::pmt_t cmd_value;
      int chan = -1;
      if (not _unpack_chan_command(command, cmd_value, chan, msg)) {
        GR_LOG_ALERT(d_logger, boost::format("Error while unpacking command PMT: %s") % msg);
        return;
      }
      GR_LOG_DEBUG(d_debug_logger, boost::format("Received command: %s") % command);
      try {
        if (command == "freq") {
          _chans_to_tune = _update_vector_from_cmd_val<double>(
              _curr_freq, chan, pmt::to_double(cmd_value), true
          );
          _set_center_freq_from_internals_allchans();
        } else if (command == "lo_offset") {
          _chans_to_tune = _update_vector_from_cmd_val<double>(
              _curr_lo_offset, chan, pmt::to_double(cmd_value), true
          );
          _set_center_freq_from_internals_allchans();
        } else if (command == "gain") {
          boost::dynamic_bitset<> chans_to_change = _update_vector_from_cmd_val<double>(
              _curr_gain, chan, pmt::to_double(cmd_value), true
          );
          if (chans_to_change.any()) {
            for (size_t i = 0; i < chans_to_change.size(); i++) {
              if (chans_to_change[i]) {
                set_gain(_curr_gain[i], i);
              }
            }
          }
        } else {
          GR_LOG_ALERT(d_logger, boost::format("Received unknown command: %s") % command);
        }
      } catch (pmt::wrong_type &e) {
        GR_LOG_ALERT(d_logger, boost::format("Received command '%s' with invalid command value: %s") % command % cmd_value);
      }
    }

    void
    usrp_sink_impl::setup_rpc()
    {
#ifdef GR_CTRLPORT
      add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_get<usrp_sink, double>(
	  alias(), "samp_rate",
	  &usrp_sink::get_samp_rate,
	  pmt::mp(100000.0f), pmt::mp(25000000.0f), pmt::mp(1000000.0f),
	  "sps", "TX Sample Rate", RPC_PRIVLVL_MIN,
          DISPTIME | DISPOPTSTRIP)));

      add_rpc_variable(
        rpcbasic_sptr(new rpcbasic_register_set<usrp_sink, double>(
	  alias(), "samp_rate",
	  &usrp_sink::set_samp_rate,
	  pmt::mp(100000.0f), pmt::mp(25000000.0f), pmt::mp(1000000.0f),
	  "sps", "TX Sample Rate",
	  RPC_PRIVLVL_MIN, DISPNULL)));
#endif /* GR_CTRLPORT */
    }

  } /* namespace uhd */
} /* namespace gr */