summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital/ofdm_txrx.py
blob: 8f1b4c5f02683a23716625c55790723edfbee3d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#
# Copyright 2013 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 
"""
OFDM Transmitter / Receiver hier blocks.

For simple configurations, no need to connect all the relevant OFDM blocks
to form an OFDM Tx/Rx--simply use these.
"""

# Reminder: All frequency-domain stuff is in shifted form, i.e. DC carrier
# in the middle!

import numpy
from gnuradio import gr
import digital_swig as digital
from utils import tagged_streams

try:
    # This will work when feature #505 is added.
    from gnuradio import fft
    from gnuradio import blocks
    from gnuradio import analog
except ImportError:
    # Until then this will work.
    import fft_swig as fft
    import blocks_swig as blocks
    import analog_swig as analog

_def_fft_len = 64
_def_cp_len = 16
_def_frame_length_tag_key = "frame_length"
_def_packet_length_tag_key = "packet_length"
_def_packet_num_tag_key = "packet_num"
# Data and pilot carriers are same as in 802.11a
_def_occupied_carriers = (range(-26, -21) + range(-20, -7) + range(-6, 0) + range(1, 7) + range(8, 21) + range(22, 27),)
_def_pilot_carriers=((-21, -7, 7, 21,),)
_pilot_sym_scramble_seq = (
        1,1,1,1, -1,-1,-1,1, -1,-1,-1,-1, 1,1,-1,1, -1,-1,1,1, -1,1,1,-1, 1,1,1,1, 1,1,-1,1,
        1,1,-1,1, 1,-1,-1,1, 1,1,-1,1, -1,-1,-1,1, -1,1,-1,-1, 1,-1,-1,1, 1,1,1,1, -1,-1,1,1,
        -1,-1,1,-1, 1,-1,1,1, -1,-1,-1,1, 1,-1,-1,-1, -1,1,-1,-1, 1,-1,1,1, 1,1,-1,1, -1,1,-1,1,
        -1,-1,-1,-1, -1,1,-1,1, 1,-1,1,-1, 1,1,1,-1, -1,1,-1,-1, -1,1,1,1, -1,-1,-1,-1, -1,-1,-1
)
_def_pilot_symbols= tuple([(x, x, x, -x) for x in _pilot_sym_scramble_seq])
_seq_seed = 42


def _get_active_carriers(fft_len, occupied_carriers, pilot_carriers):
    active_carriers = list()
    for carrier in list(occupied_carriers[0]) + list(pilot_carriers[0]):
        if carrier < 0:
            carrier += fft_len
        active_carriers.append(carrier)
    return active_carriers

def _make_sync_word1(fft_len, occupied_carriers, pilot_carriers):
    """ Creates a random sync sequence for fine frequency offset and timing
    estimation. This is the first of typically two sync preamble symbols
    for the Schmidl & Cox sync algorithm.
    The relevant feature of this symbols is that every second sub-carrier
    is zero. In the time domain, this results in two identical halves of
    the OFDM symbols.
    Symbols are always BPSK symbols. Carriers are scaled by sqrt(2) to keep
    total energy constant.
    Carrier 0 (DC carrier) is always zero. If used, carrier 1 is non-zero.
    This means the sync algorithm has to check on odd carriers!
    """
    active_carriers = _get_active_carriers(fft_len, occupied_carriers, pilot_carriers)
    numpy.random.seed(_seq_seed)
    bpsk = {0: numpy.sqrt(2), 1: -numpy.sqrt(2)}
    sw1 = [bpsk[numpy.random.randint(2)]  if x in active_carriers and x % 2 else 0 for x in range(fft_len)]
    return numpy.fft.fftshift(sw1)

def _make_sync_word2(fft_len, occupied_carriers, pilot_carriers):
    """ Creates a random sync sequence for coarse frequency offset and channel
    estimation. This is the second of typically two sync preamble symbols
    for the Schmidl & Cox sync algorithm.
    Symbols are always BPSK symbols.
    """
    active_carriers = _get_active_carriers(fft_len, occupied_carriers, pilot_carriers)
    numpy.random.seed(_seq_seed)
    bpsk = {0: 1, 1: -1}
    sw2 = [bpsk[numpy.random.randint(2)] if x in active_carriers else 0 for x in range(fft_len)]
    sw2[0] = 0j
    return numpy.fft.fftshift(sw2)

def _get_constellation(bps):
    """ Returns a modulator block for a given number of bits per symbol """
    constellation = {
            1: digital.constellation_bpsk(),
            2: digital.constellation_qpsk(),
            3: digital.constellation_8psk()
    }
    try:
        return constellation[bps]
    except KeyError:
        print 'Modulation not supported.'
        exit(1)

class ofdm_tx(gr.hier_block2):
    """ Hierarchical block for OFDM modulation.

    The input is a byte stream (unsigned char) and the
    output is the complex modulated signal at baseband.

    Args:
    fft_len: The length of FFT (integer).
    cp_len:  The length of cyclic prefix in total samples (integer).
    packet_length_tag_key: The name of the tag giving packet length at the input.
    occupied_carriers: A vector of vectors describing which OFDM carriers are occupied.
    pilot_carriers: A vector of vectors describing which OFDM carriers are occupied with pilot symbols.
    pilot_symbols: The pilot symbols.
    bps_header: Bits per symbol (header).
    bps_payload: Bits per symbol (payload).
    sync_word1: The first sync preamble symbol. This has to be with zeros on alternating carriers.
                Used for fine and coarse frequency offset and timing estimation.
    sync_word2: The second sync preamble symbol. This has to be filled entirely. Also used for
                coarse frequency offset and channel estimation.
    rolloff: The rolloff length in samples. Must be smaller than the CP.
    """
    def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len,
                 packet_length_tag_key=_def_packet_length_tag_key,
                 occupied_carriers=_def_occupied_carriers,
                 pilot_carriers=_def_pilot_carriers,
                 pilot_symbols=_def_pilot_symbols,
                 bps_header=1,
                 bps_payload=1,
                 sync_word1=None,
                 sync_word2=None,
                 rolloff=0,
                 debug_log=False
                 ):
        gr.hier_block2.__init__(self, "ofdm_tx",
                    gr.io_signature(1, 1, gr.sizeof_char),
                    gr.io_signature(1, 1, gr.sizeof_gr_complex))
        ### Param init / sanity check ########################################
        self.fft_len           = fft_len
        self.cp_len            = cp_len
        self.packet_length_tag_key = packet_length_tag_key
        self.occupied_carriers = occupied_carriers
        self.pilot_carriers    = pilot_carriers
        self.pilot_symbols     = pilot_symbols
        self.bps_header        = bps_header
        self.bps_payload       = bps_payload
        n_sync_words = 1
        self.sync_word1 = sync_word1
        if sync_word1 is None:
            self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers, pilot_carriers)
        else:
            if len(sync_word1) != self.fft_len:
                raise ValueError("Length of sync sequence(s) must be FFT length.")
        self.sync_words = [self.sync_word1,]
        self.sync_word2 = ()
        if sync_word2 is None:
            self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers, pilot_carriers)
        if len(self.sync_word2):
            if len(self.sync_word2) != fft_len:
                raise ValueError("Length of sync sequence(s) must be FFT length.")
            self.sync_word2 = list(self.sync_word2)
            n_sync_words = 2
            self.sync_words.append(self.sync_word2)
        ### Header modulation ################################################
        crc = digital.crc32_bb(False, self.packet_length_tag_key)
        header_constellation  = _get_constellation(bps_header)
        header_mod = digital.chunks_to_symbols_bc(header_constellation.points())
        formatter_object = digital.packet_header_ofdm(
            occupied_carriers=occupied_carriers, n_syms=1,
            bits_per_header_sym=self.bps_header,
            bits_per_payload_sym=self.bps_payload
        )
        header_gen = digital.packet_headergenerator_bb(formatter_object.base(), self.packet_length_tag_key)
        header_payload_mux = blocks.tagged_stream_mux(gr.sizeof_gr_complex*1, self.packet_length_tag_key)
        self.connect(self, crc, header_gen, header_mod, (header_payload_mux, 0))
        if debug_log:
            self.connect(header_gen, blocks.file_sink(1, 'tx-hdr.dat'))
        ### Payload modulation ###############################################
        payload_constellation = _get_constellation(bps_payload)
        payload_mod = digital.chunks_to_symbols_bc(payload_constellation.points())
        self.connect(
            crc,
            blocks.repack_bits_bb(
                8, # Unpack 8 bits per byte
                bps_payload,
                self.packet_length_tag_key
            ),
            payload_mod,
            (header_payload_mux, 1)
        )
        ### Create OFDM frame ################################################
        allocator = digital.ofdm_carrier_allocator_cvc(
            self.fft_len,
            occupied_carriers=self.occupied_carriers,
            pilot_carriers=self.pilot_carriers,
            pilot_symbols=self.pilot_symbols,
            sync_words=self.sync_words,
            len_tag_key=self.packet_length_tag_key
        )
        ffter = fft.fft_vcc(
                self.fft_len,
                False, # Inverse FFT
                (), # No window
                True # Shift
        )
        cyclic_prefixer = digital.ofdm_cyclic_prefixer(
            self.fft_len,
            self.fft_len+self.cp_len,
            rolloff,
            self.packet_length_tag_key
        )
        self.connect(header_payload_mux, allocator, ffter, cyclic_prefixer, self)
        if debug_log:
            self.connect(allocator,         blocks.file_sink(8*64, 'tx-post-allocator.dat'))
            self.connect(cyclic_prefixer,   blocks.file_sink(8,    'tx-signal.dat'))


class ofdm_rx(gr.hier_block2):
    """ Hierarchical block for OFDM demodulation.

    The input is a complex baseband signal (e.g. from a UHD source).
    The detected packets are output as a stream of packed bits on the output.

    Args:
    fft_len: The length of FFT (integer).
    cp_len:  The length of cyclic prefix in total samples (integer).
    frame_length_tag_key: Used internally to tag the length of the OFDM frame.
    packet_length_tag_key: The name of the tag giving packet length at the input.
    occupied_carriers: A vector of vectors describing which OFDM carriers are occupied.
    pilot_carriers: A vector of vectors describing which OFDM carriers are occupied with pilot symbols.
    pilot_symbols: The pilot symbols.
    bps_header: Bits per symbol (header).
    bps_payload: Bits per symbol (payload).
    sync_word1: The first sync preamble symbol. This has to be with zeros on alternating carriers.
                Used for fine and coarse frequency offset and timing estimation.
    sync_word2: The second sync preamble symbol. This has to be filled entirely. Also used for
                coarse frequency offset and channel estimation.
    """
    def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len,
                 frame_length_tag_key=_def_frame_length_tag_key,
                 packet_length_tag_key=_def_packet_length_tag_key,
                 packet_num_tag_key=_def_packet_num_tag_key,
                 occupied_carriers=_def_occupied_carriers,
                 pilot_carriers=_def_pilot_carriers,
                 pilot_symbols=_def_pilot_symbols,
                 bps_header=1,
                 bps_payload=1,
                 sync_word1=None,
                 sync_word2=None,
                 debug_log=False
                 ):
        gr.hier_block2.__init__(self, "ofdm_rx",
                    gr.io_signature(1, 1, gr.sizeof_gr_complex),
                    gr.io_signature(1, 1, gr.sizeof_char))
        ### Param init / sanity check ########################################
        self.fft_len           = fft_len
        self.cp_len            = cp_len
        self.frame_length_tag_key    = frame_length_tag_key
        self.packet_length_tag_key   = packet_length_tag_key
        self.occupied_carriers = occupied_carriers
        self.bps_header        = bps_header
        self.bps_payload       = bps_payload
        n_sync_words = 1
        if sync_word1 is None:
            self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers, pilot_carriers)
        else:
            if len(sync_word1) != self.fft_len:
                raise ValueError("Length of sync sequence(s) must be FFT length.")
            self.sync_word1 = sync_word1
        self.sync_word2 = ()
        if sync_word2 is None:
            self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers, pilot_carriers)
            n_sync_words = 2
        elif len(sync_word2):
            if len(sync_word2) != fft_len:
                raise ValueError("Length of sync sequence(s) must be FFT length.")
            self.sync_word2 = sync_word2
            n_sync_words = 2
        ### Sync ############################################################
        sync_detect = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
        delay = blocks.delay(gr.sizeof_gr_complex, fft_len+cp_len)
        oscillator = analog.frequency_modulator_fc(-2.0 / fft_len)
        mixer = blocks.multiply_cc()
        hpd = digital.header_payload_demux(
            n_sync_words+1,       # Number of OFDM symbols before payload (sync + 1 sym header)
            fft_len, cp_len,      # FFT length, guard interval
            frame_length_tag_key, # Frame length tag key
            "",                   # We're not using trigger tags
            True                  # One output item is one OFDM symbol (False would output complex scalars)
        )
        self.connect(self, sync_detect)
        self.connect(self, delay, (mixer, 0), (hpd, 0))
        self.connect((sync_detect, 0), oscillator, (mixer, 1))
        self.connect((sync_detect, 1), (hpd, 1))
        if debug_log:
            self.connect((sync_detect, 0), blocks.file_sink(gr.sizeof_float, 'freq-offset.dat'))
            self.connect((sync_detect, 1), blocks.file_sink(gr.sizeof_char, 'sync-detect.dat'))
        ### Header demodulation ##############################################
        header_fft           = fft.fft_vcc(self.fft_len, True, (), True)
        chanest              = digital.ofdm_chanest_vcvc(self.sync_word1, self.sync_word2, 1)
        header_constellation = _get_constellation(bps_header)
        header_equalizer     = digital.ofdm_equalizer_simpledfe(
            fft_len, header_constellation.base(),
            occupied_carriers, pilot_carriers, pilot_symbols, 0, 0
        )
        header_eq = digital.ofdm_frame_equalizer_vcvc(
                header_equalizer.base(),
                cp_len,
                self.frame_length_tag_key,
                True,
                1 # Header is 1 symbol long
        )
        header_serializer = digital.ofdm_serializer_vcc(
                fft_len, occupied_carriers,
                self.frame_length_tag_key
        )
        header_demod     = digital.constellation_decoder_cb(header_constellation.base())
        header_formatter = digital.packet_header_ofdm(
                occupied_carriers, 1,
                packet_length_tag_key,
                frame_length_tag_key,
                packet_num_tag_key,
                bps_header
        )
        header_parser = digital.packet_headerparser_b(header_formatter.formatter())
        self.connect((hpd, 0), header_fft, chanest, header_eq, header_serializer, header_demod, header_parser)
        self.msg_connect(header_parser, "header_data", hpd, "header_data")
        if debug_log:
            self.connect((chanest, 1),      blocks.file_sink(512, 'channel-estimate.dat'))
            self.connect((chanest, 0),      blocks.file_sink(512, 'post-hdr-chanest.dat'))
            self.connect(header_eq,         blocks.file_sink(512, 'post-hdr-eq.dat'))
            self.connect(header_serializer, blocks.file_sink(8,   'post-hdr-serializer.dat'))
            self.connect(header_demod,      blocks.file_sink(1,   'post-hdr-demod.dat'))
            self.connect(header_demod,      blocks.tag_debug(1,   'post-hdr-demod.dat'))
        ### Payload demod ####################################################
        payload_fft = fft.fft_vcc(self.fft_len, True, (), True)
        payload_constellation = _get_constellation(bps_payload)
        payload_equalizer = digital.ofdm_equalizer_simpledfe(
                fft_len, payload_constellation.base(),
                occupied_carriers,
                pilot_carriers,
                pilot_symbols,
                1 # Skip 1 symbol (that was already in the header)
        )
        payload_eq = digital.ofdm_frame_equalizer_vcvc(
                payload_equalizer.base(),
                cp_len,
                self.frame_length_tag_key
        )
        payload_serializer = digital.ofdm_serializer_vcc(
                fft_len, occupied_carriers,
                self.frame_length_tag_key,
                self.packet_length_tag_key,
                1 # Skip 1 symbol (that was already in the header)
        )
        payload_demod = digital.constellation_decoder_cb(payload_constellation.base())
        repack = blocks.repack_bits_bb(bps_payload, 8, self.packet_length_tag_key, True)
        crc = digital.crc32_bb(True, self.packet_length_tag_key)
        self.connect((hpd, 1), payload_fft, payload_eq, payload_serializer, payload_demod, repack, crc, self)
        if debug_log:
            self.connect((hpd, 1),           blocks.tag_debug(8*64, 'post-hpd'));
            self.connect(payload_fft,        blocks.file_sink(8*64, 'post-payload-fft.dat'))
            self.connect(payload_eq,         blocks.file_sink(8*64, 'post-payload-eq.dat'))
            self.connect(payload_serializer, blocks.file_sink(8, 'post-payload-serializer.dat'))
            self.connect(payload_demod,      blocks.file_sink(1, 'post-payload-demod.dat'))
            self.connect(repack,             blocks.file_sink(1, 'post-payload-repack.dat'))
            self.connect(crc,                blocks.file_sink(1, 'post-payload-crc.dat'))
            self.connect(crc,                blocks.tag_debug(1, 'post-payload-crc'))