# # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # """ OFDM Transmitter / Receiver hier blocks. For simple configurations, no need to connect all the relevant OFDM blocks to form an OFDM Tx/Rx--simply use these. """ # Reminder: All frequency-domain stuff is in shifted form, i.e. DC carrier # in the middle! import numpy from gnuradio import gr import digital_swig as digital from utils import tagged_streams try: # This will work when feature #505 is added. from gnuradio import fft from gnuradio import blocks from gnuradio import analog except ImportError: # Until then this will work. import fft_swig as fft import blocks_swig as blocks import analog_swig as analog _def_fft_len = 64 _def_cp_len = 16 _def_frame_length_tag_key = "frame_length" _def_packet_length_tag_key = "packet_length" _def_packet_num_tag_key = "packet_num" # Data and pilot carriers are same as in 802.11a _def_occupied_carriers = (range(-26, -21) + range(-20, -7) + range(-6, 0) + range(1, 7) + range(8, 21) + range(22, 27),) _def_pilot_carriers=((-21, -7, 7, 21,),) _pilot_sym_scramble_seq = ( 1,1,1,1, -1,-1,-1,1, -1,-1,-1,-1, 1,1,-1,1, -1,-1,1,1, -1,1,1,-1, 1,1,1,1, 1,1,-1,1, 1,1,-1,1, 1,-1,-1,1, 1,1,-1,1, -1,-1,-1,1, -1,1,-1,-1, 1,-1,-1,1, 1,1,1,1, -1,-1,1,1, -1,-1,1,-1, 1,-1,1,1, -1,-1,-1,1, 1,-1,-1,-1, -1,1,-1,-1, 1,-1,1,1, 1,1,-1,1, -1,1,-1,1, -1,-1,-1,-1, -1,1,-1,1, 1,-1,1,-1, 1,1,1,-1, -1,1,-1,-1, -1,1,1,1, -1,-1,-1,-1, -1,-1,-1 ) _def_pilot_symbols= tuple([(x, x, x, -x) for x in _pilot_sym_scramble_seq]) _seq_seed = 42 def _get_active_carriers(fft_len, occupied_carriers, pilot_carriers): active_carriers = list() for carrier in list(occupied_carriers[0]) + list(pilot_carriers[0]): if carrier < 0: carrier += fft_len active_carriers.append(carrier) return active_carriers def _make_sync_word1(fft_len, occupied_carriers, pilot_carriers): """ Creates a random sync sequence for fine frequency offset and timing estimation. This is the first of typically two sync preamble symbols for the Schmidl & Cox sync algorithm. The relevant feature of this symbols is that every second sub-carrier is zero. In the time domain, this results in two identical halves of the OFDM symbols. Symbols are always BPSK symbols. Carriers are scaled by sqrt(2) to keep total energy constant. Carrier 0 (DC carrier) is always zero. If used, carrier 1 is non-zero. This means the sync algorithm has to check on odd carriers! """ active_carriers = _get_active_carriers(fft_len, occupied_carriers, pilot_carriers) numpy.random.seed(_seq_seed) bpsk = {0: numpy.sqrt(2), 1: -numpy.sqrt(2)} sw1 = [bpsk[numpy.random.randint(2)] if x in active_carriers and x % 2 else 0 for x in range(fft_len)] return numpy.fft.fftshift(sw1) def _make_sync_word2(fft_len, occupied_carriers, pilot_carriers): """ Creates a random sync sequence for coarse frequency offset and channel estimation. This is the second of typically two sync preamble symbols for the Schmidl & Cox sync algorithm. Symbols are always BPSK symbols. """ active_carriers = _get_active_carriers(fft_len, occupied_carriers, pilot_carriers) numpy.random.seed(_seq_seed) bpsk = {0: 1, 1: -1} sw2 = [bpsk[numpy.random.randint(2)] if x in active_carriers else 0 for x in range(fft_len)] sw2[0] = 0j return numpy.fft.fftshift(sw2) def _get_constellation(bps): """ Returns a modulator block for a given number of bits per symbol """ constellation = { 1: digital.constellation_bpsk(), 2: digital.constellation_qpsk(), 3: digital.constellation_8psk() } try: return constellation[bps] except KeyError: print 'Modulation not supported.' exit(1) class ofdm_tx(gr.hier_block2): """ Hierarchical block for OFDM modulation. The input is a byte stream (unsigned char) and the output is the complex modulated signal at baseband. Args: fft_len: The length of FFT (integer). cp_len: The length of cyclic prefix in total samples (integer). packet_length_tag_key: The name of the tag giving packet length at the input. occupied_carriers: A vector of vectors describing which OFDM carriers are occupied. pilot_carriers: A vector of vectors describing which OFDM carriers are occupied with pilot symbols. pilot_symbols: The pilot symbols. bps_header: Bits per symbol (header). bps_payload: Bits per symbol (payload). sync_word1: The first sync preamble symbol. This has to be with zeros on alternating carriers. Used for fine and coarse frequency offset and timing estimation. sync_word2: The second sync preamble symbol. This has to be filled entirely. Also used for coarse frequency offset and channel estimation. rolloff: The rolloff length in samples. Must be smaller than the CP. """ def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len, packet_length_tag_key=_def_packet_length_tag_key, occupied_carriers=_def_occupied_carriers, pilot_carriers=_def_pilot_carriers, pilot_symbols=_def_pilot_symbols, bps_header=1, bps_payload=1, sync_word1=None, sync_word2=None, rolloff=0, debug_log=False ): gr.hier_block2.__init__(self, "ofdm_tx", gr.io_signature(1, 1, gr.sizeof_char), gr.io_signature(1, 1, gr.sizeof_gr_complex)) ### Param init / sanity check ######################################## self.fft_len = fft_len self.cp_len = cp_len self.packet_length_tag_key = packet_length_tag_key self.occupied_carriers = occupied_carriers self.pilot_carriers = pilot_carriers self.pilot_symbols = pilot_symbols self.bps_header = bps_header self.bps_payload = bps_payload n_sync_words = 1 self.sync_word1 = sync_word1 if sync_word1 is None: self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers, pilot_carriers) else: if len(sync_word1) != self.fft_len: raise ValueError("Length of sync sequence(s) must be FFT length.") self.sync_words = [self.sync_word1,] self.sync_word2 = () if sync_word2 is None: self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers, pilot_carriers) if len(self.sync_word2): if len(self.sync_word2) != fft_len: raise ValueError("Length of sync sequence(s) must be FFT length.") self.sync_word2 = list(self.sync_word2) n_sync_words = 2 self.sync_words.append(self.sync_word2) ### Header modulation ################################################ crc = digital.crc32_bb(False, self.packet_length_tag_key) header_constellation = _get_constellation(bps_header) header_mod = digital.chunks_to_symbols_bc(header_constellation.points()) formatter_object = digital.packet_header_ofdm( occupied_carriers=occupied_carriers, n_syms=1, bits_per_header_sym=self.bps_header, bits_per_payload_sym=self.bps_payload ) header_gen = digital.packet_headergenerator_bb(formatter_object.base(), self.packet_length_tag_key) header_payload_mux = blocks.tagged_stream_mux(gr.sizeof_gr_complex*1, self.packet_length_tag_key) self.connect(self, crc, header_gen, header_mod, (header_payload_mux, 0)) if debug_log: self.connect(header_gen, blocks.file_sink(1, 'tx-hdr.dat')) ### Payload modulation ############################################### payload_constellation = _get_constellation(bps_payload) payload_mod = digital.chunks_to_symbols_bc(payload_constellation.points()) self.connect( crc, blocks.repack_bits_bb( 8, # Unpack 8 bits per byte bps_payload, self.packet_length_tag_key ), payload_mod, (header_payload_mux, 1) ) ### Create OFDM frame ################################################ allocator = digital.ofdm_carrier_allocator_cvc( self.fft_len, occupied_carriers=self.occupied_carriers, pilot_carriers=self.pilot_carriers, pilot_symbols=self.pilot_symbols, sync_words=self.sync_words, len_tag_key=self.packet_length_tag_key ) ffter = fft.fft_vcc( self.fft_len, False, # Inverse FFT (), # No window True # Shift ) cyclic_prefixer = digital.ofdm_cyclic_prefixer( self.fft_len, self.fft_len+self.cp_len, rolloff, self.packet_length_tag_key ) self.connect(header_payload_mux, allocator, ffter, cyclic_prefixer, self) if debug_log: self.connect(allocator, blocks.file_sink(8*64, 'tx-post-allocator.dat')) self.connect(cyclic_prefixer, blocks.file_sink(8, 'tx-signal.dat')) class ofdm_rx(gr.hier_block2): """ Hierarchical block for OFDM demodulation. The input is a complex baseband signal (e.g. from a UHD source). The detected packets are output as a stream of packed bits on the output. Args: fft_len: The length of FFT (integer). cp_len: The length of cyclic prefix in total samples (integer). frame_length_tag_key: Used internally to tag the length of the OFDM frame. packet_length_tag_key: The name of the tag giving packet length at the input. occupied_carriers: A vector of vectors describing which OFDM carriers are occupied. pilot_carriers: A vector of vectors describing which OFDM carriers are occupied with pilot symbols. pilot_symbols: The pilot symbols. bps_header: Bits per symbol (header). bps_payload: Bits per symbol (payload). sync_word1: The first sync preamble symbol. This has to be with zeros on alternating carriers. Used for fine and coarse frequency offset and timing estimation. sync_word2: The second sync preamble symbol. This has to be filled entirely. Also used for coarse frequency offset and channel estimation. """ def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len, frame_length_tag_key=_def_frame_length_tag_key, packet_length_tag_key=_def_packet_length_tag_key, packet_num_tag_key=_def_packet_num_tag_key, occupied_carriers=_def_occupied_carriers, pilot_carriers=_def_pilot_carriers, pilot_symbols=_def_pilot_symbols, bps_header=1, bps_payload=1, sync_word1=None, sync_word2=None, debug_log=False ): gr.hier_block2.__init__(self, "ofdm_rx", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_char)) ### Param init / sanity check ######################################## self.fft_len = fft_len self.cp_len = cp_len self.frame_length_tag_key = frame_length_tag_key self.packet_length_tag_key = packet_length_tag_key self.occupied_carriers = occupied_carriers self.bps_header = bps_header self.bps_payload = bps_payload n_sync_words = 1 if sync_word1 is None: self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers, pilot_carriers) else: if len(sync_word1) != self.fft_len: raise ValueError("Length of sync sequence(s) must be FFT length.") self.sync_word1 = sync_word1 self.sync_word2 = () if sync_word2 is None: self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers, pilot_carriers) n_sync_words = 2 elif len(sync_word2): if len(sync_word2) != fft_len: raise ValueError("Length of sync sequence(s) must be FFT length.") self.sync_word2 = sync_word2 n_sync_words = 2 ### Sync ############################################################ sync_detect = digital.ofdm_sync_sc_cfb(fft_len, cp_len) delay = blocks.delay(gr.sizeof_gr_complex, fft_len+cp_len) oscillator = analog.frequency_modulator_fc(-2.0 / fft_len) mixer = blocks.multiply_cc() hpd = digital.header_payload_demux( n_sync_words+1, # Number of OFDM symbols before payload (sync + 1 sym header) fft_len, cp_len, # FFT length, guard interval frame_length_tag_key, # Frame length tag key "", # We're not using trigger tags True # One output item is one OFDM symbol (False would output complex scalars) ) self.connect(self, sync_detect) self.connect(self, delay, (mixer, 0), (hpd, 0)) self.connect((sync_detect, 0), oscillator, (mixer, 1)) self.connect((sync_detect, 1), (hpd, 1)) if debug_log: self.connect((sync_detect, 0), blocks.file_sink(gr.sizeof_float, 'freq-offset.dat')) self.connect((sync_detect, 1), blocks.file_sink(gr.sizeof_char, 'sync-detect.dat')) ### Header demodulation ############################################## header_fft = fft.fft_vcc(self.fft_len, True, (), True) chanest = digital.ofdm_chanest_vcvc(self.sync_word1, self.sync_word2, 1) header_constellation = _get_constellation(bps_header) header_equalizer = digital.ofdm_equalizer_simpledfe( fft_len, header_constellation.base(), occupied_carriers, pilot_carriers, pilot_symbols, 0, 0 ) header_eq = digital.ofdm_frame_equalizer_vcvc( header_equalizer.base(), cp_len, self.frame_length_tag_key, True, 1 # Header is 1 symbol long ) header_serializer = digital.ofdm_serializer_vcc( fft_len, occupied_carriers, self.frame_length_tag_key ) header_demod = digital.constellation_decoder_cb(header_constellation.base()) header_formatter = digital.packet_header_ofdm( occupied_carriers, 1, packet_length_tag_key, frame_length_tag_key, packet_num_tag_key, bps_header ) header_parser = digital.packet_headerparser_b(header_formatter.formatter()) self.connect((hpd, 0), header_fft, chanest, header_eq, header_serializer, header_demod, header_parser) self.msg_connect(header_parser, "header_data", hpd, "header_data") if debug_log: self.connect((chanest, 1), blocks.file_sink(512, 'channel-estimate.dat')) self.connect((chanest, 0), blocks.file_sink(512, 'post-hdr-chanest.dat')) self.connect(header_eq, blocks.file_sink(512, 'post-hdr-eq.dat')) self.connect(header_serializer, blocks.file_sink(8, 'post-hdr-serializer.dat')) self.connect(header_demod, blocks.file_sink(1, 'post-hdr-demod.dat')) self.connect(header_demod, blocks.tag_debug(1, 'post-hdr-demod.dat')) ### Payload demod #################################################### payload_fft = fft.fft_vcc(self.fft_len, True, (), True) payload_constellation = _get_constellation(bps_payload) payload_equalizer = digital.ofdm_equalizer_simpledfe( fft_len, payload_constellation.base(), occupied_carriers, pilot_carriers, pilot_symbols, 1 # Skip 1 symbol (that was already in the header) ) payload_eq = digital.ofdm_frame_equalizer_vcvc( payload_equalizer.base(), cp_len, self.frame_length_tag_key ) payload_serializer = digital.ofdm_serializer_vcc( fft_len, occupied_carriers, self.frame_length_tag_key, self.packet_length_tag_key, 1 # Skip 1 symbol (that was already in the header) ) payload_demod = digital.constellation_decoder_cb(payload_constellation.base()) repack = blocks.repack_bits_bb(bps_payload, 8, self.packet_length_tag_key, True) crc = digital.crc32_bb(True, self.packet_length_tag_key) self.connect((hpd, 1), payload_fft, payload_eq, payload_serializer, payload_demod, repack, crc, self) if debug_log: self.connect((hpd, 1), blocks.tag_debug(8*64, 'post-hpd')); self.connect(payload_fft, blocks.file_sink(8*64, 'post-payload-fft.dat')) self.connect(payload_eq, blocks.file_sink(8*64, 'post-payload-eq.dat')) self.connect(payload_serializer, blocks.file_sink(8, 'post-payload-serializer.dat')) self.connect(payload_demod, blocks.file_sink(1, 'post-payload-demod.dat')) self.connect(repack, blocks.file_sink(1, 'post-payload-repack.dat')) self.connect(crc, blocks.file_sink(1, 'post-payload-crc.dat')) self.connect(crc, blocks.tag_debug(1, 'post-payload-crc'))