summaryrefslogtreecommitdiff
path: root/gr-blocks/python/blocks/qa_ctrlport_probes.py
blob: 33b5a02e9b952331b65f27d6fc9c228235b4eabd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python
#
# Copyright 2013,2015 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#


import sys
import time
import random
import numpy
from gnuradio import gr, gr_unittest, blocks
import os
import struct
import re

from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient


class test_ctrlport_probes(gr_unittest.TestCase):

    def setUp(self):
        os.environ['GR_CONF_CONTROLPORT_ON'] = 'True'
        self.tb = gr.top_block()

    def tearDown(self):
        self.tb = None

    def test_001(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_c(data, True)
        self.probe = blocks.ctrlport_probe2_c("samples", "Complex",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        # Probes return complex values as list of floats with re, im
        # Imaginary parts of this data set are 0.
        expected_result = [1, 2, 3, 4,
                           5, 6, 7, 8]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(complex(1.0, 0.0))
            result = result[i:] + result[0:i]
            self.assertComplexTuplesAlmostEqual(expected_result, result, 4)

        self.tb.stop()
        self.tb.wait()

    def test_002(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_f(data, True)
        self.probe = blocks.ctrlport_probe2_f("samples", "Floats",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(1.0)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()

    def test_003(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_i(data, True)
        self.probe = blocks.ctrlport_probe2_i("samples", "Integers",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(1.0)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()

    def test_004(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_s(data, True)
        self.probe = blocks.ctrlport_probe2_s("samples", "Shorts",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(1.0)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()

    def test_005(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_b(data, True)
        self.probe = blocks.ctrlport_probe2_b("samples", "Bytes",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            result = list(struct.unpack(len(result) * 'b', result))
            i = result.index(1)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()


if __name__ == '__main__':
    gr_unittest.run(test_ctrlport_probes)