#!/usr/bin/env python
#
# Copyright 2013,2015 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#


import sys
import time
import random
import numpy
from gnuradio import gr, gr_unittest, blocks
import os
import struct
import re

from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient


class test_ctrlport_probes(gr_unittest.TestCase):

    def setUp(self):
        os.environ['GR_CONF_CONTROLPORT_ON'] = 'True'
        self.tb = gr.top_block()

    def tearDown(self):
        self.tb = None

    def test_001(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_c(data, True)
        self.probe = blocks.ctrlport_probe2_c("samples", "Complex",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        # Probes return complex values as list of floats with re, im
        # Imaginary parts of this data set are 0.
        expected_result = [1, 2, 3, 4,
                           5, 6, 7, 8]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(complex(1.0, 0.0))
            result = result[i:] + result[0:i]
            self.assertComplexTuplesAlmostEqual(expected_result, result, 4)

        self.tb.stop()
        self.tb.wait()

    def test_002(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_f(data, True)
        self.probe = blocks.ctrlport_probe2_f("samples", "Floats",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(1.0)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()

    def test_003(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_i(data, True)
        self.probe = blocks.ctrlport_probe2_i("samples", "Integers",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(1.0)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()

    def test_004(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_s(data, True)
        self.probe = blocks.ctrlport_probe2_s("samples", "Shorts",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            i = result.index(1.0)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()

    def test_005(self):
        data = list(range(1, 9))

        self.src = blocks.vector_source_b(data, True)
        self.probe = blocks.ctrlport_probe2_b("samples", "Bytes",
                                              len(data), gr.DISPNULL)
        probe_name = self.probe.alias()

        self.tb.connect(self.src, self.probe)
        self.tb.start()

        expected_result = [1, 2, 3, 4, 5, 6, 7, 8, ]

        # Make sure we have time for flowgraph to run
        time.sleep(0.1)

        # Get available endpoint
        ep = gr.rpcmanager_get().endpoints()[0]
        hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1)
        portnum = re.search(r"-p (\d+)", ep).group(1)

        # Initialize a simple ControlPort client from endpoint
        from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient
        radiosys = GNURadioControlPortClient(
            hostname, portnum, rpcmethod='thrift')
        radio = radiosys.client

        # Get all exported knobs
        ret = radio.getKnobs([probe_name + "::samples"])
        for name in list(ret.keys()):
            # Get data in probe, which might be offset; find the
            # beginning and unwrap.
            result = ret[name].value
            result = list(struct.unpack(len(result) * 'b', result))
            i = result.index(1)
            result = result[i:] + result[0:i]
            self.assertEqual(expected_result, result)

        self.tb.stop()
        self.tb.wait()


if __name__ == '__main__':
    gr_unittest.run(test_ctrlport_probes)