1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/* -*- c++ -*- */
/*
* Copyright 2002,2015,2018 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
/*
* Copyright 1997 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of M.I.T. not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. M.I.T. makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <gnuradio/math.h>
#include <gnuradio/random.h>
#include <chrono>
#include <cmath>
namespace gr {
random::random(uint64_t seed, int64_t min_integer, int64_t max_integer)
: d_rng(seed), d_integer_dis(0, 1)
{
d_gauss_stored = false; // set gasdev (gauss distributed numbers) on calculation state
// Setup random number generators
set_integer_limits(min_integer, max_integer);
}
random::~random() {}
/*
* Seed is initialized with time if the given seed is 0. Otherwise the seed is taken
* directly. Sets the seed for the random number generator.
*/
void random::reseed(uint64_t seed)
{
d_seed = seed;
if (d_seed == 0) {
auto now = std::chrono::system_clock::now().time_since_epoch();
auto ns = std::chrono::duration_cast<std::chrono::nanoseconds>(now).count();
d_rng.seed(ns);
} else {
d_rng.seed(d_seed);
}
}
void random::set_integer_limits(int64_t minimum, int64_t maximum)
{
// boost expects integer limits defined as [minimum, maximum] which is unintuitive.
// use the expected half open interval behavior! [minimum, maximum)!
d_integer_dis = std::uniform_int_distribution<int64_t>(minimum, maximum - 1);
}
/*!
* Uniform random integers in the range set by 'set_integer_limits' [min, max).
*/
int64_t random::ran_int() { return d_integer_dis(d_rng); }
/*
* Returns uniformly distributed numbers in [0,1) taken from boost.random using a Mersenne
* twister
*/
float random::ran1() { return d_uniform(d_rng); }
/*
* Returns a normally distributed deviate with zero mean and variance 1.
* Used is the Marsaglia polar method.
* Every second call a number is stored because the transformation works only in pairs.
* Otherwise half calculation is thrown away.
*/
float random::gasdev()
{
if (d_gauss_stored) { // just return the stored value if available
d_gauss_stored = false;
return d_gauss_value;
} else { // generate a pair of gaussian distributed numbers
float x, y, s;
do {
x = 2.0 * ran1() - 1.0;
y = 2.0 * ran1() - 1.0;
s = x * x + y * y;
} while (s >= 1.0f || s == 0.0f);
d_gauss_stored = true;
d_gauss_value = x * sqrtf(-2.0 * logf(s) / s);
return y * sqrtf(-2.0 * logf(s) / s);
}
}
float random::laplacian()
{
float z = ran1();
if (z > 0.5f) {
return -logf(2.0f * (1.0f - z));
}
return logf(2 * z);
}
/*
* Copied from The KC7WW / OH2BNS Channel Simulator
* FIXME Need to check how good this is at some point
*/
// 5 => scratchy, 8 => Geiger
float random::impulse(float factor = 5)
{
float z = -GR_M_SQRT2 * logf(ran1());
if (fabsf(z) <= factor)
return 0.0;
else
return z;
}
gr_complex random::rayleigh_complex() { return gr_complex(gasdev(), gasdev()); }
float random::rayleigh() { return sqrtf(-2.0 * logf(ran1())); }
} /* namespace gr */
|