/* -*- c++ -*- */ /* * Copyright 2002,2015,2018 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ /* * Copyright 1997 Massachusetts Institute of Technology * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of M.I.T. not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. M.I.T. makes no representations about the * suitability of this software for any purpose. It is provided "as is" * without express or implied warranty. * */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <gnuradio/math.h> #include <gnuradio/random.h> #include <chrono> #include <cmath> namespace gr { random::random(uint64_t seed, int64_t min_integer, int64_t max_integer) : d_rng(seed), d_integer_dis(0, 1) { d_gauss_stored = false; // set gasdev (gauss distributed numbers) on calculation state // Setup random number generators set_integer_limits(min_integer, max_integer); } random::~random() {} /* * Seed is initialized with time if the given seed is 0. Otherwise the seed is taken * directly. Sets the seed for the random number generator. */ void random::reseed(uint64_t seed) { d_seed = seed; if (d_seed == 0) { auto now = std::chrono::system_clock::now().time_since_epoch(); auto ns = std::chrono::duration_cast<std::chrono::nanoseconds>(now).count(); d_rng.seed(ns); } else { d_rng.seed(d_seed); } } void random::set_integer_limits(int64_t minimum, int64_t maximum) { // boost expects integer limits defined as [minimum, maximum] which is unintuitive. // use the expected half open interval behavior! [minimum, maximum)! d_integer_dis = std::uniform_int_distribution<int64_t>(minimum, maximum - 1); } /*! * Uniform random integers in the range set by 'set_integer_limits' [min, max). */ int64_t random::ran_int() { return d_integer_dis(d_rng); } /* * Returns uniformly distributed numbers in [0,1) taken from boost.random using a Mersenne * twister */ float random::ran1() { return d_uniform(d_rng); } /* * Returns a normally distributed deviate with zero mean and variance 1. * Used is the Marsaglia polar method. * Every second call a number is stored because the transformation works only in pairs. * Otherwise half calculation is thrown away. */ float random::gasdev() { if (d_gauss_stored) { // just return the stored value if available d_gauss_stored = false; return d_gauss_value; } else { // generate a pair of gaussian distributed numbers float x, y, s; do { x = 2.0 * ran1() - 1.0; y = 2.0 * ran1() - 1.0; s = x * x + y * y; } while (s >= 1.0f || s == 0.0f); d_gauss_stored = true; d_gauss_value = x * sqrtf(-2.0 * logf(s) / s); return y * sqrtf(-2.0 * logf(s) / s); } } float random::laplacian() { float z = ran1(); if (z > 0.5f) { return -logf(2.0f * (1.0f - z)); } return logf(2 * z); } /* * Copied from The KC7WW / OH2BNS Channel Simulator * FIXME Need to check how good this is at some point */ // 5 => scratchy, 8 => Geiger float random::impulse(float factor = 5) { float z = -GR_M_SQRT2 * logf(ran1()); if (fabsf(z) <= factor) return 0.0; else return z; } gr_complex random::rayleigh_complex() { return gr_complex(gasdev(), gasdev()); } float random::rayleigh() { return sqrtf(-2.0 * logf(ran1())); } } /* namespace gr */