diff options
Diffstat (limited to 'docs/exploring-gnuradio/fm_demod.py')
-rwxr-xr-x | docs/exploring-gnuradio/fm_demod.py | 214 |
1 files changed, 76 insertions, 138 deletions
diff --git a/docs/exploring-gnuradio/fm_demod.py b/docs/exploring-gnuradio/fm_demod.py index c6d8eaa582..8e8b6425f9 100755 --- a/docs/exploring-gnuradio/fm_demod.py +++ b/docs/exploring-gnuradio/fm_demod.py @@ -1,149 +1,87 @@ #!/usr/bin/env python +# +# Copyright 2013 Free Software Foundation, Inc. +# +# This file is part of GNU Radio +# +# GNU Radio is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GNU Radio is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GNU Radio; see the file COPYING. If not, write to +# the Free Software Foundation, Inc., 51 Franklin Street, +# Boston, MA 02110-1301, USA. +# from gnuradio import gr +from gnuradio import blocks +from gnuradio import filter from gnuradio import analog from gnuradio import audio -from gnuradio import mc4020 -import sys - -def high_speed_adc(fg, input_rate): - # return blocks.file_source (gr.sizeof_short, "dummy.dat", False) - return mc4020.source(input_rate, mc4020.MCC_CH3_EN | mc4020.MCC_ALL_1V) - -# -# return a gr.flow_graph -# -def build_graph(freq1, freq2): - input_rate = 20e6 - cfir_decimation = 125 - audio_decimation = 5 - - quad_rate = input_rate / cfir_decimation - audio_rate = quad_rate / audio_decimation - - fg = gr.flow_graph() - - # use high speed ADC as input source - src = high_speed_adc(fg, input_rate) - - # compute FIR filter taps for channel selection - channel_coeffs = \ - filter.firdes.low_pass(1.0, # gain - input_rate, # sampling rate - 250e3, # low pass cutoff freq - 8*100e3, # width of trans. band - filter.firdes.WIN_HAMMING) - - # input: short; output: complex - chan_filter1 = \ - filter.freq_xlating_fir_filter_scf(cfir_decimation, - channel_coeffs, - freq1, # 1st station freq - input_rate) - - (head1, tail1) = build_pipeline(fg, quad_rate, audio_decimation) - - # sound card as final sink - audio_sink = audio.sink(int (audio_rate)) - - # now wire it all together - fg.connect(src, chan_filter1) - fg.connect(chan_filter1, head1) - fg.connect(tail1, (audio_sink, 0)) - - # two stations at once? - if freq2: - # Extract the second station and connect - # it to a second pipeline... - - # input: short; output: complex - chan_filter2 = \ - filter.freq_xlating_fir_filter_scf(cfir_decimation, - channel_coeffs, - freq2, # 2nd station freq - input_rate) - - (head2, tail2) = build_pipeline(fg, quad_rate, audio_decimation) - - fg.connect(src, chan_filter2) - fg.connect(chan_filter2, head2) - fg.connect(tail2, (audio_sink, 1)) - - return fg - -def build_pipeline(fg, quad_rate, audio_decimation): - '''Given a flow_graph, fg, construct a pipeline - for demodulating a broadcast FM signal. The - input is the downconverteed complex baseband - signal. The output is the demodulated audio. - - build_pipeline returns a two element tuple - containing the input and output endpoints. - ''' - fm_demod_gain = 2200.0/32768.0 - audio_rate = quad_rate / audio_decimation - volume = 1.0 - - # input: complex; output: float - fm_demod = analog.quadrature_demod_cf(volume*fm_demod_gain) - - # compute FIR filter taps for audio filter - width_of_transition_band = audio_rate / 32 - audio_coeffs = filter.firdes.low_pass(1.0, # gain - quad_rate, # sampling rate - audio_rate/2 - width_of_transition_band, - width_of_transition_band, - filter.firdes.WIN_HAMMING) - - # input: float; output: float - audio_filter = filter.fir_filter_fff(audio_decimation, audiocoeffs) - - fg.connect(fm_demod, audio_filter) - return ((fm_demod, 0), (audio_filter, 0)) - +from gnuradio.filter import firdes +import sys, math + +# Create a top_block +class build_graph(gr.top_block): + def __init__(self): + gr.top_block.__init__(self) + + input_rate = 200e3 # rate of a broadcast FM station + audio_rate = 44.1e3 # Rate we send the signal to the speaker + + # resample from the output of the demodulator to the rate of + # the audio sink. + resamp_rate = audio_rate / input_rate + + # use a file as a dummy source. Replace this with a real radio + # receiver to capture signals over-the-air. + src = blocks.file_source(gr.sizeof_gr_complex, "dummy.dat", True) + + # Set the demodulator using the same deviation as the receiver. + max_dev = 75e3 + fm_demod_gain = input_rate/(2*math.pi*max_dev/8.0) + fm_demod = analog.quadrature_demod_cf(fm_demod_gain) + + # Create a filter for the resampler and filter the audio + # signal to 15 kHz. The nfilts is the number of filters in the + # arbitrary resampler. It logically operates at a rate of + # nfilts*input_rate, so we make those adjustments when + # building the filter. + volume = 0.20 + nfilts = 32 + resamp_taps = firdes.low_pass_2(volume*nfilts, # gain + nfilts*input_rate, # sampling rate + 15e3, # low pass cutoff freq + 1e3, # width of trans. band + 60, # stop band attenuaton + firdes.WIN_KAISER) + + # Build the resampler and filter + resamp_filter = filter.pfb_arb_resampler_fff(resamp_rate, + resamp_taps, nfilts) + + # sound card as final sink You may have to add a specific + # device name as a second argument here, something like + # "pulse" if using pulse audio or "plughw:0,0". + audio_sink = audio.sink(int(audio_rate)) + + # now wire it all together + self.connect(src, fm_demod) + self.connect(fm_demod, resamp_filter) + self.connect(resamp_filter, (audio_sink,0)) def main(args): - nargs = len(args) - if nargs == 1: - freq1 = float(args[0]) * 1e6 - freq2 = None - elif nargs == 2: - freq1 = float(args[0]) * 1e6 - freq2 = float(args[1]) * 1e6 - else: - sys.stderr.write('usage: fm_demod freq1 [freq2]\n') - sys.exit(1) - - # connect to RF front end - rf_front_end = gr.microtune_4937_eval_board() - if not rf_front_end.board_present_p(): - raise IOError, 'RF front end not found' - - # set front end gain - rf_front_end.set_AGC(300) - IF_freq = rf_front_end.get_output_freq() - IF_freq = 5.75e6 - - if not freq2: # one station - - rf_front_end.set_RF_freq(freq1) - fg = build_graph(IF_freq, None) - - else: # two stations - - if abs(freq1 - freq2) > 5.5e6: - raise IOError, 'freqs too far apart' - - target_freq = (freq1 + freq2) / 2 - actual_freq = rf_front_end.set_RF_freq(target_freq) - #actual_freq = target_freq - - fg = build_graph(IF_freq + freq1 - actual_freq, - IF_freq + freq2 - actual_freq) - - fg.start() # fork thread(s) and return + tb = build_graph() + tb.start() # fork thread and return raw_input('Press Enter to quit: ') - fg.stop() + tb.stop() if __name__ == '__main__': main(sys.argv[1:]) |