summaryrefslogtreecommitdiff
path: root/gr-digital/lib/digital_constellation.cc
diff options
context:
space:
mode:
authorTom Rondeau <trondeau@vt.edu>2011-04-08 21:43:25 -0400
committerTom Rondeau <trondeau@vt.edu>2011-04-08 21:43:25 -0400
commit78078fe0015fe87b15777b94858f5110e65244c5 (patch)
treed696a766c62e15507b4d5b2390f8c06779ced5ef /gr-digital/lib/digital_constellation.cc
parent2ce3ebb921bba17a11eda2253b5670b8a50684e9 (diff)
gr-digital: moved consetellation object into gr-digital space.
Diffstat (limited to 'gr-digital/lib/digital_constellation.cc')
-rw-r--r--gr-digital/lib/digital_constellation.cc368
1 files changed, 368 insertions, 0 deletions
diff --git a/gr-digital/lib/digital_constellation.cc b/gr-digital/lib/digital_constellation.cc
new file mode 100644
index 0000000000..eede99ffd8
--- /dev/null
+++ b/gr-digital/lib/digital_constellation.cc
@@ -0,0 +1,368 @@
+/* -*- c++ -*- */
+/*
+ * Copyright 2010, 2011 Free Software Foundation, Inc.
+ *
+ * This file is part of GNU Radio
+ *
+ * GNU Radio is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3, or (at your option)
+ * any later version.
+ *
+ * GNU Radio is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNU Radio; see the file COPYING. If not, write to
+ * the Free Software Foundation, Inc., 51 Franklin Street,
+ * Boston, MA 02110-1301, USA.
+ */
+
+#include <gr_io_signature.h>
+#include <gr_constellation.h>
+#include <gr_metric_type.h>
+#include <gr_math.h>
+#include <gr_complex.h>
+#include <math.h>
+#include <iostream>
+#include <stdlib.h>
+#include <float.h>
+#include <stdexcept>
+
+#define M_TWOPI (2*M_PI)
+#define SQRT_TWO 0.707107
+
+// Base Constellation Class
+
+gr_constellation::gr_constellation (std::vector<gr_complex> constellation, std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry, unsigned int dimensionality) :
+ d_constellation(constellation),
+ d_pre_diff_code(pre_diff_code),
+ d_rotational_symmetry(rotational_symmetry),
+ d_dimensionality(dimensionality)
+{
+ if (pre_diff_code.size() == 0)
+ d_apply_pre_diff_code = false;
+ else if (pre_diff_code.size() != constellation.size())
+ throw std::runtime_error ("The constellation and pre-diff code must be of the same length.");
+ else
+ d_apply_pre_diff_code = true;
+ calc_arity();
+}
+
+gr_constellation::gr_constellation () :
+ d_apply_pre_diff_code(false),
+ d_rotational_symmetry(0),
+ d_dimensionality(1)
+{
+ calc_arity();
+}
+
+//! Returns the constellation points for a symbol value
+void gr_constellation::map_to_points(unsigned int value, gr_complex *points) {
+ for (unsigned int i=0; i<d_dimensionality; i++)
+ points[i] = d_constellation[value*d_dimensionality + i];
+}
+
+std::vector<gr_complex> gr_constellation::map_to_points_v(unsigned int value) {
+ std::vector<gr_complex> points_v;
+ points_v.resize(d_dimensionality);
+ map_to_points(value, &(points_v[0]));
+ return points_v;
+}
+
+float gr_constellation::get_distance(unsigned int index, const gr_complex *sample) {
+ float dist = 0;
+ for (unsigned int i=0; i<d_dimensionality; i++) {
+ dist += norm(sample[i] - d_constellation[index*d_dimensionality + i]);
+ }
+ return dist;
+}
+
+unsigned int gr_constellation::get_closest_point(const gr_complex *sample) {
+
+ unsigned int min_index = 0;
+ float min_euclid_dist;
+ float euclid_dist;
+
+ min_euclid_dist = get_distance(0, sample);
+ min_index = 0;
+ for (unsigned int j = 1; j < d_arity; j++){
+ euclid_dist = get_distance(j, sample);
+ if (euclid_dist < min_euclid_dist){
+ min_euclid_dist = euclid_dist;
+ min_index = j;
+ }
+ }
+ return min_index;
+}
+
+unsigned int gr_constellation::decision_maker_pe(const gr_complex *sample, float *phase_error)
+{
+ unsigned int index = decision_maker(sample);
+ *phase_error = 0;
+ for (unsigned int d=0; d<d_dimensionality; d++)
+ *phase_error += -arg(sample[d]*conj(d_constellation[index+d]));
+ return index;
+}
+
+/*
+unsigned int gr_constellation::decision_maker_e(const gr_complex *sample, float *error)
+{
+ unsigned int index = decision_maker(sample);
+ *error = 0;
+ for (unsigned int d=0; d<d_dimensionality; d++)
+ *error += sample[d]*conj(d_constellation[index+d]);
+ return index;
+}
+*/
+
+std::vector<gr_complex> gr_constellation::s_points () {
+ if (d_dimensionality != 1)
+ throw std::runtime_error ("s_points only works for dimensionality 1 constellations.");
+ else
+ return d_constellation;
+}
+
+std::vector<std::vector<gr_complex> > gr_constellation::v_points () {
+ std::vector<std::vector<gr_complex> > vv_const;
+ vv_const.resize(d_arity);
+ for (unsigned int p=0; p<d_arity; p++) {
+ std::vector<gr_complex> v_const;
+ v_const.resize(d_dimensionality);
+ for (unsigned int d=0; d<d_dimensionality; d++) {
+ v_const[d] = d_constellation[p*d_dimensionality+d];
+ }
+ vv_const[p] = v_const;
+ }
+ return vv_const;
+}
+
+void gr_constellation::calc_metric(const gr_complex *sample, float *metric, trellis_metric_type_t type) {
+ switch (type){
+ case TRELLIS_EUCLIDEAN:
+ calc_euclidean_metric(sample, metric);
+ break;
+ case TRELLIS_HARD_SYMBOL:
+ calc_hard_symbol_metric(sample, metric);
+ break;
+ case TRELLIS_HARD_BIT:
+ throw std::runtime_error ("Invalid metric type (not yet implemented).");
+ break;
+ default:
+ throw std::runtime_error ("Invalid metric type.");
+ }
+}
+
+void gr_constellation::calc_euclidean_metric(const gr_complex *sample, float *metric) {
+ for (unsigned int o=0; o<d_arity; o++) {
+ metric[o] = get_distance(o, sample);
+ }
+}
+
+void gr_constellation::calc_hard_symbol_metric(const gr_complex *sample, float *metric){
+ float minm = FLT_MAX;
+ unsigned int minmi = 0;
+ for (unsigned int o=0; o<d_arity; o++) {
+ float dist = get_distance(o, sample);
+ if (dist < minm) {
+ minm = dist;
+ minmi = o;
+ }
+ }
+ for(unsigned int o=0; o<d_arity; o++) {
+ metric[o] = (o==minmi?0.0:1.0);
+ }
+}
+
+void gr_constellation::calc_arity () {
+ if (d_constellation.size() % d_dimensionality != 0)
+ throw std::runtime_error ("Constellation vector size must be a multiple of the dimensionality.");
+ d_arity = d_constellation.size()/d_dimensionality;
+}
+
+unsigned int gr_constellation::decision_maker_v (std::vector<gr_complex> sample) {
+ assert(sample.size() == d_dimensionality);
+ return decision_maker (&(sample[0]));
+}
+
+gr_constellation_calcdist_sptr
+gr_make_constellation_calcdist(std::vector<gr_complex> constellation, std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry, unsigned int dimensionality)
+{
+ return gr_constellation_calcdist_sptr(new gr_constellation_calcdist (constellation, pre_diff_code, rotational_symmetry,
+ dimensionality));
+}
+
+gr_constellation_calcdist::gr_constellation_calcdist(std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry,
+ unsigned int dimensionality) :
+ gr_constellation(constellation, pre_diff_code, rotational_symmetry, dimensionality)
+{}
+
+// Chooses points base on shortest distance.
+// Inefficient.
+unsigned int gr_constellation_calcdist::decision_maker(const gr_complex *sample)
+{
+ return get_closest_point(sample);
+}
+
+gr_constellation_sector::gr_constellation_sector (std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry,
+ unsigned int dimensionality,
+ unsigned int n_sectors) :
+ gr_constellation(constellation, pre_diff_code, rotational_symmetry, dimensionality),
+ n_sectors(n_sectors)
+{
+}
+
+unsigned int gr_constellation_sector::decision_maker (const gr_complex *sample) {
+ unsigned int sector;
+ sector = get_sector(sample);
+ return sector_values[sector];
+}
+
+void gr_constellation_sector::find_sector_values () {
+ unsigned int i;
+ sector_values.clear();
+ for (i=0; i<n_sectors; i++) {
+ sector_values.push_back(calc_sector_value(i));
+ }
+}
+
+gr_constellation_rect_sptr
+gr_make_constellation_rect(std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry,
+ unsigned int real_sectors, unsigned int imag_sectors,
+ float width_real_sectors, float width_imag_sectors)
+{
+ return gr_constellation_rect_sptr(new gr_constellation_rect (constellation, pre_diff_code, rotational_symmetry,
+ real_sectors, imag_sectors, width_real_sectors,
+ width_imag_sectors));
+ }
+
+gr_constellation_rect::gr_constellation_rect (std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry,
+ unsigned int real_sectors, unsigned int imag_sectors,
+ float width_real_sectors, float width_imag_sectors) :
+ gr_constellation_sector(constellation, pre_diff_code, rotational_symmetry, 1, real_sectors * imag_sectors),
+ n_real_sectors(real_sectors), n_imag_sectors(imag_sectors),
+ d_width_real_sectors(width_real_sectors), d_width_imag_sectors(width_imag_sectors)
+{
+ find_sector_values();
+}
+
+unsigned int gr_constellation_rect::get_sector (const gr_complex *sample) {
+ int real_sector, imag_sector;
+ unsigned int sector;
+ real_sector = int(real(*sample)/d_width_real_sectors + n_real_sectors/2.0);
+ if (real_sector < 0) real_sector = 0;
+ if (real_sector >= n_real_sectors) real_sector = n_real_sectors-1;
+ imag_sector = int(imag(*sample)/d_width_imag_sectors + n_imag_sectors/2.0);
+ if (imag_sector < 0) imag_sector = 0;
+ if (imag_sector >= n_imag_sectors) imag_sector = n_imag_sectors-1;
+ sector = real_sector * n_imag_sectors + imag_sector;
+ return sector;
+}
+
+unsigned int gr_constellation_rect::calc_sector_value (unsigned int sector) {
+ unsigned int real_sector, imag_sector;
+ gr_complex sector_center;
+ unsigned int closest_point;
+ real_sector = float(sector)/n_imag_sectors;
+ imag_sector = sector - real_sector * n_imag_sectors;
+ sector_center = gr_complex((real_sector + 0.5 - n_real_sectors/2.0) * d_width_real_sectors,
+ (imag_sector + 0.5 - n_imag_sectors/2.0) * d_width_imag_sectors);
+ closest_point = get_closest_point(&sector_center);
+ return closest_point;
+}
+
+
+gr_constellation_psk_sptr
+gr_make_constellation_psk(std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int n_sectors)
+{
+ return gr_constellation_psk_sptr(new gr_constellation_psk (constellation, pre_diff_code,
+ n_sectors));
+}
+
+gr_constellation_psk::gr_constellation_psk (std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int n_sectors) :
+ gr_constellation_sector(constellation, pre_diff_code, constellation.size(), 1, n_sectors)
+{
+ find_sector_values();
+}
+
+unsigned int gr_constellation_psk::get_sector (const gr_complex *sample) {
+ float phase = arg(*sample);
+ float width = M_TWOPI / n_sectors;
+ int sector = floor(phase/width + 0.5);
+ unsigned int u_sector;
+ if (sector < 0) sector += n_sectors;
+ u_sector = sector;
+ return sector;
+}
+
+unsigned int gr_constellation_psk::calc_sector_value (unsigned int sector) {
+ float phase = sector * M_TWOPI / n_sectors;
+ gr_complex sector_center = gr_complex(cos(phase), sin(phase));
+ unsigned int closest_point = get_closest_point(&sector_center);
+ return closest_point;
+}
+
+
+gr_constellation_bpsk_sptr
+gr_make_constellation_bpsk()
+{
+ return gr_constellation_bpsk_sptr(new gr_constellation_bpsk ());
+}
+
+gr_constellation_bpsk::gr_constellation_bpsk ()
+{
+ d_constellation.resize(2);
+ d_constellation[0] = gr_complex(-1, 0);
+ d_constellation[1] = gr_complex(1, 0);
+ d_rotational_symmetry = 2;
+ d_dimensionality = 1;
+ calc_arity();
+}
+
+unsigned int gr_constellation_bpsk::decision_maker(const gr_complex *sample)
+{
+ return (real(*sample) > 0);
+}
+
+
+gr_constellation_qpsk_sptr
+gr_make_constellation_qpsk()
+{
+ return gr_constellation_qpsk_sptr(new gr_constellation_qpsk ());
+}
+
+gr_constellation_qpsk::gr_constellation_qpsk ()
+{
+ d_constellation.resize(4);
+ // Gray-coded
+ d_constellation[0] = gr_complex(-SQRT_TWO, -SQRT_TWO);
+ d_constellation[1] = gr_complex(SQRT_TWO, -SQRT_TWO);
+ d_constellation[2] = gr_complex(-SQRT_TWO, SQRT_TWO);
+ d_constellation[3] = gr_complex(SQRT_TWO, SQRT_TWO);
+ d_rotational_symmetry = 4;
+ d_dimensionality = 1;
+ calc_arity();
+}
+
+unsigned int gr_constellation_qpsk::decision_maker(const gr_complex *sample)
+{
+ // Real component determines small bit.
+ // Imag component determines big bit.
+ return 2*(imag(*sample)>0) + (real(*sample)>0);
+}