GNU Radio 3.7.1 C++ API
Miscellaneous

Classes

class  gr::feval_dd
 base class for evaluating a function: double -> doubleThis class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. More...
class  gr::feval_cc
 base class for evaluating a function: complex -> complexThis class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. More...
class  gr::feval_ll
 base class for evaluating a function: long -> longThis class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. More...
class  gr::feval
 base class for evaluating a function: void -> voidThis class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. More...
class  gr::feval_p
 base class for evaluating a function: pmt -> voidThis class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. More...
class  gr::fxpt
 fixed point sine and cosine and friends.fixed pt radians More...
class  gr::fxpt_nco
 Numerically Controlled Oscillator (NCO) More...
class  gr::fxpt_vco
 Voltage Controlled Oscillator (VCO) More...
class  gr::message
 Message class. More...
class  gr::msg_queue
 thread-safe message queue More...
class  gr::nco< o_type, i_type >
 base class template for Numerically Controlled Oscillator (NCO) More...
class  gr::prefs
 Base class for representing user preferences a la windows INI files.The real implementation is in Python, and is accessable from C++ via the magic of SWIG directors. More...
class  gr::blocks::lfsr_15_1_0
 Linear Feedback Shift Register using primitive polynomial x^15 + x + 1. More...
class  gr::blocks::lfsr_32k
 generate pseudo-random sequence of length 32768 bits. More...
class  gr::digital::lfsr
 Fibonacci Linear Feedback Shift Register using specified polynomial mask. More...
class  gr::fft::fft_complex
 FFT: complex in, complex out. More...
class  gr::fft::fft_real_fwd
 FFT: real in, complex out. More...
class  gr::fft::fft_real_rev
 FFT: complex in, float out. More...
class  gr::fft::goertzel
 Implements Goertzel single-bin DFT calculation. More...
class  gr::wavelet::squash_ff
 Implements cheap resampling of spectrum directly from spectral points, using gsl interpolation. More...

Functions

GR_RUNTIME_API float gr::fast_atan2f (float y, float x)
 Fast arc tangent using table lookup and linear interpolation.
GR_RUNTIME_API rt_status_t gr::enable_realtime_scheduling ()
 If possible, enable high-priority "real time" scheduling.
GR_RUNTIME_API rt_status_t gr::impl::enable_realtime_scheduling (rt_sched_param=rt_sched_param())
 If possible, enable "realtime" scheduling.In general, this means that the code will be scheduled before any non-realtime (normal) processes. Note that if your code contains an non-blocking infinite loop and you enable realtime scheduling, it's possible to hang the system.

Function Documentation

If possible, enable high-priority "real time" scheduling.

GR_RUNTIME_API rt_status_t gr::impl::enable_realtime_scheduling ( rt_sched_param  = rt_sched_param())

If possible, enable "realtime" scheduling.In general, this means that the code will be scheduled before any non-realtime (normal) processes. Note that if your code contains an non-blocking infinite loop and you enable realtime scheduling, it's possible to hang the system.

GR_RUNTIME_API float gr::fast_atan2f ( float  y,
float  x 
)

Fast arc tangent using table lookup and linear interpolation.

Parameters:
ycomponent of input vector
xcomponent of input vector
Returns:
float angle angle of vector (x, y) in radians

This function calculates the angle of the vector (x,y) based on a table lookup and linear interpolation. The table uses a 256 point table covering -45 to +45 degrees and uses symetry to determine the final angle value in the range of -180 to 180 degrees. Note that this function uses the small angle approximation for values close to zero. This routine calculates the arc tangent with an average error of +/- 0.045 degrees.

Referenced by gr::fast_atan2f().