1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
|
/* -*- c++ -*- */
/*
* Copyright 2010-2016,2018 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#include "gr_uhd_common.h"
#include "usrp_sink_impl.h"
#include <gnuradio/io_signature.h>
#include <climits>
#include <stdexcept>
namespace gr {
namespace uhd {
usrp_sink::sptr usrp_sink::make(const ::uhd::device_addr_t& device_addr,
const ::uhd::stream_args_t& stream_args,
const std::string& length_tag_name)
{
check_abi();
return usrp_sink::sptr(new usrp_sink_impl(
device_addr, stream_args_ensure(stream_args), length_tag_name));
}
usrp_sink_impl::usrp_sink_impl(const ::uhd::device_addr_t& device_addr,
const ::uhd::stream_args_t& stream_args,
const std::string& length_tag_name)
: usrp_block("usrp_sink", args_to_io_sig(stream_args), io_signature::make(0, 0, 0)),
usrp_block_impl(device_addr, stream_args, length_tag_name),
_length_tag_key(length_tag_name.empty() ? pmt::PMT_NIL
: pmt::string_to_symbol(length_tag_name)),
_nitems_to_send(0),
_async_event_loop_running(true)
{
message_port_register_out(ASYNC_MSGS_PORT_KEY);
_async_event_thread = gr::thread::thread([this]() { this->async_event_loop(); });
_sample_rate = get_samp_rate();
}
usrp_sink_impl::~usrp_sink_impl()
{
_async_event_loop_running = false;
_async_event_thread.join();
}
::uhd::dict<std::string, std::string> usrp_sink_impl::get_usrp_info(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_usrp_tx_info(chan);
}
void usrp_sink_impl::set_subdev_spec(const std::string& spec, size_t mboard)
{
return _dev->set_tx_subdev_spec(spec, mboard);
}
std::string usrp_sink_impl::get_subdev_spec(size_t mboard)
{
return _dev->get_tx_subdev_spec(mboard).to_string();
}
void usrp_sink_impl::set_samp_rate(double rate)
{
for (const auto& chan : _stream_args.channels) {
_dev->set_tx_rate(rate, chan);
}
_sample_rate = this->get_samp_rate();
}
double usrp_sink_impl::get_samp_rate(void)
{
return _dev->get_tx_rate(_stream_args.channels[0]);
}
::uhd::meta_range_t usrp_sink_impl::get_samp_rates(void)
{
return _dev->get_tx_rates(_stream_args.channels[0]);
}
::uhd::tune_result_t
usrp_sink_impl::set_center_freq(const ::uhd::tune_request_t tune_request, size_t chan)
{
_curr_tune_req[chan] = tune_request;
chan = _stream_args.channels[chan];
return _dev->set_tx_freq(tune_request, chan);
}
::uhd::tune_result_t usrp_sink_impl::_set_center_freq_from_internals(size_t chan,
pmt::pmt_t direction)
{
_chans_to_tune.reset(chan);
if (pmt::eqv(direction, ant_direction_rx())) {
// TODO: what happens if the RX device is not instantiated? Catch error?
return _dev->set_rx_freq(_curr_tune_req[chan], _stream_args.channels[chan]);
} else {
return _dev->set_tx_freq(_curr_tune_req[chan], _stream_args.channels[chan]);
}
}
double usrp_sink_impl::get_center_freq(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_freq(chan);
}
::uhd::freq_range_t usrp_sink_impl::get_freq_range(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_freq_range(chan);
}
void usrp_sink_impl::set_gain(double gain, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->set_tx_gain(gain, chan);
}
void usrp_sink_impl::set_gain(double gain, const std::string& name, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->set_tx_gain(gain, name, chan);
}
void usrp_sink_impl::set_normalized_gain(double norm_gain, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_NORMALIZED_GAIN
_dev->set_normalized_tx_gain(norm_gain, chan);
#else
if (norm_gain > 1.0 || norm_gain < 0.0) {
throw std::runtime_error("Normalized gain out of range, must be in [0, 1].");
}
::uhd::gain_range_t gain_range = get_gain_range(chan);
double abs_gain =
(norm_gain * (gain_range.stop() - gain_range.start())) + gain_range.start();
set_gain(abs_gain, chan);
#endif
}
double usrp_sink_impl::get_gain(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_gain(chan);
}
double usrp_sink_impl::get_gain(const std::string& name, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_gain(name, chan);
}
double usrp_sink_impl::get_normalized_gain(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_NORMALIZED_GAIN
return _dev->get_normalized_tx_gain(chan);
#else
::uhd::gain_range_t gain_range = get_gain_range(chan);
double norm_gain =
(get_gain(chan) - gain_range.start()) / (gain_range.stop() - gain_range.start());
// Avoid rounding errors:
if (norm_gain > 1.0)
return 1.0;
if (norm_gain < 0.0)
return 0.0;
return norm_gain;
#endif
}
std::vector<std::string> usrp_sink_impl::get_gain_names(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_gain_names(chan);
}
::uhd::gain_range_t usrp_sink_impl::get_gain_range(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_gain_range(chan);
}
::uhd::gain_range_t usrp_sink_impl::get_gain_range(const std::string& name, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_gain_range(name, chan);
}
bool usrp_sink_impl::has_power_reference(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
if (chan >= _stream_args.channels.size()) {
throw std::out_of_range("Invalid channel: " + std::to_string(chan));
}
const size_t dev_chan = _stream_args.channels[chan];
return _dev->has_tx_power_reference(dev_chan);
#else
GR_LOG_WARN(d_logger,
"UHD version 4.0 or greater required for power reference API. ");
return false;
#endif
}
void usrp_sink_impl::set_power_reference(double power_dbm, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
if (chan >= _stream_args.channels.size()) {
throw std::out_of_range("Invalid channel: " + std::to_string(chan));
}
const size_t dev_chan = _stream_args.channels[chan];
_dev->set_tx_power_reference(power_dbm, dev_chan);
#else
GR_LOG_ERROR(d_logger,
"UHD version 4.0 or greater required for power reference API.");
throw std::runtime_error("not implemented in this version");
#endif
}
double usrp_sink_impl::get_power_reference(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
if (chan >= _stream_args.channels.size()) {
throw std::out_of_range("Invalid channel: " + std::to_string(chan));
}
const size_t dev_chan = _stream_args.channels[chan];
return _dev->get_tx_power_reference(dev_chan);
#else
GR_LOG_ERROR(d_logger,
"UHD version 4.0 or greater required for power reference API.");
throw std::runtime_error("not implemented in this version");
#endif
}
::uhd::meta_range_t usrp_sink_impl::get_power_range(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL
if (chan >= _stream_args.channels.size()) {
throw std::out_of_range("Invalid channel: " + std::to_string(chan));
}
const size_t dev_chan = _stream_args.channels[chan];
return _dev->get_tx_power_range(dev_chan);
#else
GR_LOG_ERROR(d_logger,
"UHD version 4.0 or greater required for power reference API.");
throw std::runtime_error("not implemented in this version");
#endif
}
void usrp_sink_impl::set_antenna(const std::string& ant, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->set_tx_antenna(ant, chan);
}
std::string usrp_sink_impl::get_antenna(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_antenna(chan);
}
std::vector<std::string> usrp_sink_impl::get_antennas(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_antennas(chan);
}
void usrp_sink_impl::set_bandwidth(double bandwidth, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->set_tx_bandwidth(bandwidth, chan);
}
double usrp_sink_impl::get_bandwidth(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_bandwidth(chan);
}
::uhd::freq_range_t usrp_sink_impl::get_bandwidth_range(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_bandwidth_range(chan);
}
std::vector<std::string> usrp_sink_impl::get_lo_names(size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->get_tx_lo_names(chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
const std::string usrp_sink_impl::get_lo_source(const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->get_tx_lo_source(name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
std::vector<std::string> usrp_sink_impl::get_lo_sources(const std::string& name,
size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->get_tx_lo_sources(name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
void usrp_sink_impl::set_lo_source(const std::string& src,
const std::string& name,
size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->set_tx_lo_source(src, name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
bool usrp_sink_impl::get_lo_export_enabled(const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->get_tx_lo_export_enabled(name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
void usrp_sink_impl::set_lo_export_enabled(bool enabled,
const std::string& name,
size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->set_tx_lo_export_enabled(enabled, name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
::uhd::freq_range_t usrp_sink_impl::get_lo_freq_range(const std::string& name,
size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->get_tx_lo_freq_range(name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
double usrp_sink_impl::get_lo_freq(const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->get_tx_lo_freq(name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
double usrp_sink_impl::set_lo_freq(double freq, const std::string& name, size_t chan)
{
#ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API
chan = _stream_args.channels[chan];
return _dev->set_tx_lo_freq(freq, name, chan);
#else
throw std::runtime_error("not implemented in this version");
#endif
}
void usrp_sink_impl::set_dc_offset(const std::complex<double>& offset, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->set_tx_dc_offset(offset, chan);
}
void usrp_sink_impl::set_iq_balance(const std::complex<double>& correction, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->set_tx_iq_balance(correction, chan);
}
::uhd::sensor_value_t usrp_sink_impl::get_sensor(const std::string& name, size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_sensor(name, chan);
}
std::vector<std::string> usrp_sink_impl::get_sensor_names(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_sensor_names(chan);
}
::uhd::usrp::dboard_iface::sptr usrp_sink_impl::get_dboard_iface(size_t chan)
{
chan = _stream_args.channels[chan];
return _dev->get_tx_dboard_iface(chan);
}
void usrp_sink_impl::set_stream_args(const ::uhd::stream_args_t& stream_args)
{
_update_stream_args(stream_args);
if (_tx_stream) {
_tx_stream.reset();
}
}
/***********************************************************************
* Work
**********************************************************************/
int usrp_sink_impl::work(int noutput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
int ninput_items = noutput_items; // cuz it's a sync block
// default to send a mid-burst packet
_metadata.start_of_burst = false;
_metadata.end_of_burst = false;
// collect tags in this work()
const uint64_t samp0_count = nitems_read(0);
get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items);
if (not _tags.empty())
this->tag_work(ninput_items);
if (not pmt::is_null(_length_tag_key)) {
// check if there is data left to send from a burst tagged with length_tag
// If a burst is started during this call to work(), tag_work() should have
// been called and we should have _nitems_to_send > 0.
if (_nitems_to_send > 0) {
ninput_items = std::min<long>(_nitems_to_send, ninput_items);
// if we run out of items to send, it's the end of the burst
if (_nitems_to_send - long(ninput_items) == 0)
_metadata.end_of_burst = true;
} else {
// There is a tag gap since no length_tag was found immediately following
// the last sample of the previous burst. Drop samples until the next
// length_tag is found. Notify the user of the tag gap.
GR_LOG_ERROR(d_logger, "tG");
// increment the timespec by the number of samples dropped
_metadata.time_spec += ::uhd::time_spec_t(0, ninput_items, _sample_rate);
return ninput_items;
}
}
// send all ninput_items with metadata
boost::this_thread::disable_interruption disable_interrupt;
const size_t num_sent = _tx_stream->send(input_items, ninput_items, _metadata, 1.0);
boost::this_thread::restore_interruption restore_interrupt(disable_interrupt);
// if using length_tags, decrement items left to send by the number of samples sent
if (not pmt::is_null(_length_tag_key) && _nitems_to_send > 0) {
_nitems_to_send -= long(num_sent);
}
// increment the timespec by the number of samples sent
_metadata.time_spec += ::uhd::time_spec_t(0, num_sent, _sample_rate);
// Some post-processing tasks if we actually transmitted the entire burst
if (not _pending_cmds.empty() && num_sent == size_t(ninput_items)) {
GR_LOG_DEBUG(d_debug_logger,
boost::format("Executing %d pending commands.") %
_pending_cmds.size());
for (const auto& cmd_pmt : _pending_cmds) {
msg_handler_command(cmd_pmt);
}
_pending_cmds.clear();
}
return num_sent;
}
/***********************************************************************
* Tag Work
**********************************************************************/
void usrp_sink_impl::tag_work(int& ninput_items)
{
// the for loop below assumes tags sorted by count low -> high
std::sort(_tags.begin(), _tags.end(), tag_t::offset_compare);
// extract absolute sample counts
const uint64_t samp0_count = this->nitems_read(0);
uint64_t max_count = samp0_count + ninput_items;
// Go through tag list until something indicates the end of a burst.
bool found_time_tag = false;
bool found_eob = false;
// For commands that are in the middle of the burst:
std::vector<pmt::pmt_t> commands_in_burst; // Store the command
uint64_t in_burst_cmd_offset = 0; // Store its position
for (const auto& my_tag : _tags) {
const uint64_t my_tag_count = my_tag.offset;
const pmt::pmt_t& key = my_tag.key;
const pmt::pmt_t& value = my_tag.value;
if (my_tag_count >= max_count) {
break;
}
/* I. Tags that can only be on the first sample of a burst
*
* This includes:
* - tx_time
* - tx_command TODO should also work end-of-burst
* - tx_sob
* - length tags
*
* With these tags, we check if they're on the first item, otherwise,
* we stop before that tag so they are on the first item the next time round.
*/
else if (pmt::equal(key, COMMAND_KEY)) {
if (my_tag_count != samp0_count) {
max_count = my_tag_count;
break;
}
// TODO set the command time from the sample time
msg_handler_command(value);
}
// set the time specification in the metadata
else if (pmt::equal(key, TIME_KEY)) {
if (my_tag_count != samp0_count) {
max_count = my_tag_count;
break;
}
found_time_tag = true;
_metadata.has_time_spec = true;
_metadata.time_spec =
::uhd::time_spec_t(pmt::to_uint64(pmt::tuple_ref(value, 0)),
pmt::to_double(pmt::tuple_ref(value, 1)));
}
// set the start of burst flag in the metadata; ignore if length_tag_key is not
// null
else if (pmt::is_null(_length_tag_key) && pmt::equal(key, SOB_KEY)) {
if (my_tag.offset != samp0_count) {
max_count = my_tag_count;
break;
}
// Bursty tx will not use time specs, unless a tx_time tag is also given.
_metadata.has_time_spec = false;
_metadata.start_of_burst = pmt::to_bool(value);
}
// length_tag found; set the start of burst flag in the metadata
else if (not pmt::is_null(_length_tag_key) && pmt::equal(key, _length_tag_key)) {
if (my_tag_count != samp0_count) {
max_count = my_tag_count;
break;
}
// If there are still items left to send, the current burst has been
// preempted. Set the items remaining counter to the new burst length. Notify
// the user of the tag preemption.
else if (_nitems_to_send > 0) {
GR_LOG_ERROR(d_logger, "tP");
}
_nitems_to_send = pmt::to_long(value);
_metadata.start_of_burst = true;
}
/* II. Tags that can be on the first OR last sample of a burst
*
* This includes:
* - tx_freq
*
* With these tags, we check if they're at the start of a burst, and do
* the appropriate action. Otherwise, make sure the corresponding sample
* is the last one.
*/
else if (pmt::equal(key, FREQ_KEY) && my_tag_count == samp0_count) {
// If it's on the first sample, immediately do the tune:
GR_LOG_DEBUG(d_debug_logger, "Received tx_freq on start of burst.");
pmt::pmt_t freq_cmd = pmt::make_dict();
freq_cmd = pmt::dict_add(freq_cmd, cmd_freq_key(), value);
msg_handler_command(freq_cmd);
} else if (pmt::equal(key, FREQ_KEY)) {
// If it's not on the first sample, queue this command and only tx until here:
GR_LOG_DEBUG(d_debug_logger, "Received tx_freq mid-burst.");
pmt::pmt_t freq_cmd = pmt::make_dict();
freq_cmd = pmt::dict_add(freq_cmd, cmd_freq_key(), value);
commands_in_burst.push_back(freq_cmd);
max_count = my_tag_count + 1;
in_burst_cmd_offset = my_tag_count;
}
/* III. Tags that can only be on the last sample of a burst
*
* This includes:
* - tx_eob
*
* Make sure that no more samples are allowed through.
*/
else if (pmt::is_null(_length_tag_key) && pmt::equal(key, EOB_KEY)) {
found_eob = true;
max_count = my_tag_count + 1;
_metadata.end_of_burst = pmt::to_bool(value);
}
} // end foreach
if (not pmt::is_null(_length_tag_key) &&
long(max_count - samp0_count) == _nitems_to_send) {
found_eob = true;
}
// If a command was found in-burst that may appear at the end of burst,
// there's two options:
// 1) The command was actually on the last sample (eob). Then, stash the
// commands for running after work().
// 2) The command was not on the last sample. In this case, only send()
// until before the tag, so it will be on the first sample of the next run.
if (not commands_in_burst.empty()) {
if (not found_eob) {
// ...then it's in the middle of a burst, only send() until before the tag
max_count = in_burst_cmd_offset;
} else if (in_burst_cmd_offset < max_count) {
for (const auto& cmd_pmt : commands_in_burst) {
_pending_cmds.push_back(cmd_pmt);
}
}
}
if (found_time_tag) {
_metadata.has_time_spec = true;
}
// Only transmit up to and including end of burst,
// or everything if no burst boundaries are found.
ninput_items = int(max_count - samp0_count);
} // end tag_work()
void usrp_sink_impl::set_start_time(const ::uhd::time_spec_t& time)
{
_start_time = time;
_start_time_set = true;
_stream_now = false;
}
// Send an empty start-of-burst packet to begin streaming.
// Set at a time in the near future to avoid late packets.
bool usrp_sink_impl::start(void)
{
if (not _tx_stream)
_tx_stream = _dev->get_tx_stream(_stream_args);
_metadata.start_of_burst = true;
_metadata.end_of_burst = false;
// Bursty tx will need to send a tx_time to activate time spec
_metadata.has_time_spec = !_stream_now && pmt::is_null(_length_tag_key);
_nitems_to_send = 0;
if (pmt::is_null(_length_tag_key)) { // don't execute this part in burst mode
_metadata.start_of_burst = true;
_metadata.end_of_burst = false;
_metadata.has_time_spec = false;
if (!_stream_now) {
_metadata.has_time_spec = true;
if (_start_time_set) {
_start_time_set = false; // cleared for next run
_metadata.time_spec = _start_time;
} else {
_metadata.time_spec = get_time_now() + ::uhd::time_spec_t(0.15);
}
}
_tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
}
return true;
}
// Send an empty end-of-burst packet to end streaming.
// Ending the burst avoids an underflow error on stop.
bool usrp_sink_impl::stop(void)
{
_metadata.start_of_burst = false;
_metadata.end_of_burst = true;
_metadata.has_time_spec = false;
_nitems_to_send = 0;
if (_tx_stream) {
_tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0);
}
return true;
}
void usrp_sink_impl::setup_rpc()
{
#ifdef GR_CTRLPORT
add_rpc_variable(rpcbasic_sptr(new rpcbasic_register_handler<usrp_block>(
alias(), "command", "", "UHD Commands", RPC_PRIVLVL_MIN, DISPNULL)));
#endif /* GR_CTRLPORT */
}
void usrp_sink_impl::async_event_loop()
{
typedef ::uhd::async_metadata_t md_t;
md_t metadata;
while (_async_event_loop_running) {
while (!_dev->get_device()->recv_async_msg(metadata, 0.1)) {
if (!_async_event_loop_running) {
return;
}
}
pmt::pmt_t event_list = pmt::PMT_NIL;
if (metadata.event_code & md_t::EVENT_CODE_BURST_ACK) {
event_list = pmt::list_add(event_list, BURST_ACK_KEY);
}
if (metadata.event_code & md_t::EVENT_CODE_UNDERFLOW) {
event_list = pmt::list_add(event_list, UNDERFLOW_KEY);
}
if (metadata.event_code & md_t::EVENT_CODE_UNDERFLOW_IN_PACKET) {
event_list = pmt::list_add(event_list, UNDERFLOW_IN_PACKET_KEY);
}
if (metadata.event_code & md_t::EVENT_CODE_SEQ_ERROR) {
event_list = pmt::list_add(event_list, SEQ_ERROR_KEY);
}
if (metadata.event_code & md_t::EVENT_CODE_SEQ_ERROR_IN_BURST) {
event_list = pmt::list_add(event_list, SEQ_ERROR_IN_BURST_KEY);
}
if (metadata.event_code & md_t::EVENT_CODE_TIME_ERROR) {
event_list = pmt::list_add(event_list, TIME_ERROR_KEY);
}
if (!pmt::eq(event_list, pmt::PMT_NIL)) {
pmt::pmt_t value =
pmt::dict_add(pmt::make_dict(), EVENT_CODE_KEY, event_list);
if (metadata.has_time_spec) {
pmt::pmt_t time_spec =
pmt::cons(pmt::from_long(metadata.time_spec.get_full_secs()),
pmt::from_double(metadata.time_spec.get_frac_secs()));
value = pmt::dict_add(value, TIME_SPEC_KEY, time_spec);
}
value = pmt::dict_add(value, CHANNEL_KEY, pmt::from_uint64(metadata.channel));
pmt::pmt_t msg = pmt::cons(ASYNC_MSG_KEY, value);
message_port_pub(ASYNC_MSGS_PORT_KEY, msg);
}
}
}
} /* namespace uhd */
} /* namespace gr */
|