1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
#!/usr/bin/env python
#
# Copyright 2008,2009,2011,2012,2015 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
"""
Provide a base flow graph for USRP signal generators.
"""
from __future__ import print_function
import math
try:
from uhd_app import UHDApp
except ImportError:
from gnuradio.uhd.uhd_app import UHDApp
from gnuradio import gr, uhd, eng_notation, eng_arg
from gnuradio import analog
from gnuradio import blocks
from gnuradio.gr.pubsub import pubsub
DESC_KEY = 'desc'
SAMP_RATE_KEY = 'samp_rate'
LINK_RATE_KEY = 'link_rate'
GAIN_KEY = 'gain'
TX_FREQ_KEY = 'tx_freq'
DSP_FREQ_KEY = 'dsp_freq'
RF_FREQ_KEY = 'rf_freq'
AMPLITUDE_KEY = 'amplitude'
AMPL_RANGE_KEY = 'ampl_range'
WAVEFORM_FREQ_KEY = 'waveform_freq'
WAVEFORM_OFFSET_KEY = 'waveform_offset'
WAVEFORM2_FREQ_KEY = 'waveform2_freq'
FREQ_RANGE_KEY = 'freq_range'
GAIN_RANGE_KEY = 'gain_range'
TYPE_KEY = 'type'
n2s = eng_notation.num_to_str
WAVEFORMS = {
analog.GR_CONST_WAVE : "Constant",
analog.GR_SIN_WAVE : "Complex Sinusoid",
analog.GR_GAUSSIAN : "Gaussian Noise",
analog.GR_UNIFORM : "Uniform Noise",
"2tone" : "Two Tone",
"sweep" : "Sweep",
}
class USRPSiggen(gr.top_block, pubsub, UHDApp):
"""
GUI-unaware GNU Radio flowgraph. This may be used either with command
line applications or GUI applications.
"""
def __init__(self, args):
gr.top_block.__init__(self)
pubsub.__init__(self)
UHDApp.__init__(self, args=args, prefix="UHD-SIGGEN")
self.extra_sink = None
# Allocate some attributes
self._src1 = None
self._src2 = None
self._src = None
# Initialize device:
self.setup_usrp(
ctor=uhd.usrp_sink,
args=args,
)
print("[UHD-SIGGEN] UHD Signal Generator")
print("[UHD-SIGGEN] UHD Version: {ver}".format(ver=uhd.get_version_string()))
print("[UHD-SIGGEN] Using USRP configuration:")
print(self.get_usrp_info_string(tx_or_rx="tx"))
self.usrp_description = self.get_usrp_info_string(tx_or_rx="tx", compact=True)
### Set subscribers and publishers:
self.publish(SAMP_RATE_KEY, lambda: self.usrp.get_samp_rate())
self.publish(DESC_KEY, lambda: self.usrp_description)
self.publish(FREQ_RANGE_KEY, lambda: self.usrp.get_freq_range(self.channels[0]))
self.publish(GAIN_RANGE_KEY, lambda: self.usrp.get_gain_range(self.channels[0]))
self.publish(GAIN_KEY, lambda: self.usrp.get_gain(self.channels[0]))
self[SAMP_RATE_KEY] = args.samp_rate
self[TX_FREQ_KEY] = args.freq
self[AMPLITUDE_KEY] = args.amplitude
self[WAVEFORM_FREQ_KEY] = args.waveform_freq
self[WAVEFORM_OFFSET_KEY] = args.offset
self[WAVEFORM2_FREQ_KEY] = args.waveform2_freq
self[DSP_FREQ_KEY] = 0
self[RF_FREQ_KEY] = 0
#subscribe set methods
self.subscribe(SAMP_RATE_KEY, self.set_samp_rate)
self.subscribe(GAIN_KEY, self.set_gain)
self.subscribe(TX_FREQ_KEY, self.set_freq)
self.subscribe(AMPLITUDE_KEY, self.set_amplitude)
self.subscribe(WAVEFORM_FREQ_KEY, self.set_waveform_freq)
self.subscribe(WAVEFORM2_FREQ_KEY, self.set_waveform2_freq)
self.subscribe(TYPE_KEY, self.set_waveform)
#force update on pubsub keys
for key in (SAMP_RATE_KEY, GAIN_KEY, TX_FREQ_KEY,
AMPLITUDE_KEY, WAVEFORM_FREQ_KEY,
WAVEFORM_OFFSET_KEY, WAVEFORM2_FREQ_KEY):
self[key] = self[key]
self[TYPE_KEY] = args.type #set type last
def set_samp_rate(self, samp_rate):
"""
When sampling rate is updated, also update the signal sources.
"""
self.vprint("Setting sampling rate to: {rate} Msps".format(rate=samp_rate/1e6))
self.usrp.set_samp_rate(samp_rate)
samp_rate = self.usrp.get_samp_rate()
if self[TYPE_KEY] in (analog.GR_SIN_WAVE, analog.GR_CONST_WAVE):
self._src.set_sampling_freq(self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "2tone":
self._src1.set_sampling_freq(self[SAMP_RATE_KEY])
self._src2.set_sampling_freq(self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "sweep":
self._src1.set_sampling_freq(self[SAMP_RATE_KEY])
self._src2.set_sampling_freq(self[WAVEFORM_FREQ_KEY]*2*math.pi/self[SAMP_RATE_KEY])
else:
return True # Waveform not yet set
self.vprint("Set sample rate to: {rate} Msps".format(rate=samp_rate/1e6))
return True
def set_waveform_freq(self, freq):
" Change the frequency 1 of the generated waveform "
if self[TYPE_KEY] == analog.GR_SIN_WAVE:
self._src.set_frequency(freq)
elif self[TYPE_KEY] == "2tone":
self._src1.set_frequency(freq)
elif self[TYPE_KEY] == 'sweep':
#there is no set sensitivity, redo fg
self[TYPE_KEY] = self[TYPE_KEY]
return True
def set_waveform2_freq(self, freq):
"""
Change the frequency 2 of the generated waveform. This only
applies to 2-tone and sweep.
"""
if freq is None:
self[WAVEFORM2_FREQ_KEY] = -self[WAVEFORM_FREQ_KEY]
return
if self[TYPE_KEY] == "2tone":
self._src2.set_frequency(freq)
elif self[TYPE_KEY] == "sweep":
self._src1.set_frequency(freq)
return True
def set_waveform(self, waveform_type):
"""
Select the generated waveform
"""
self.vprint("Selecting waveform...")
self.lock()
self.disconnect_all()
if waveform_type == analog.GR_SIN_WAVE or waveform_type == analog.GR_CONST_WAVE:
self._src = analog.sig_source_c(self[SAMP_RATE_KEY], # Sample rate
waveform_type, # Waveform waveform_type
self[WAVEFORM_FREQ_KEY], # Waveform frequency
self[AMPLITUDE_KEY], # Waveform amplitude
self[WAVEFORM_OFFSET_KEY]) # Waveform offset
elif waveform_type == analog.GR_GAUSSIAN or waveform_type == analog.GR_UNIFORM:
self._src = analog.noise_source_c(waveform_type, self[AMPLITUDE_KEY])
elif waveform_type == "2tone":
self._src1 = analog.sig_source_c(self[SAMP_RATE_KEY],
analog.GR_SIN_WAVE,
self[WAVEFORM_FREQ_KEY],
self[AMPLITUDE_KEY]/2.0,
0)
if self[WAVEFORM2_FREQ_KEY] is None:
self[WAVEFORM2_FREQ_KEY] = -self[WAVEFORM_FREQ_KEY]
self._src2 = analog.sig_source_c(self[SAMP_RATE_KEY],
analog.GR_SIN_WAVE,
self[WAVEFORM2_FREQ_KEY],
self[AMPLITUDE_KEY]/2.0,
0)
self._src = blocks.add_cc()
self.connect(self._src1, (self._src, 0))
self.connect(self._src2, (self._src, 1))
elif waveform_type == "sweep":
# rf freq is center frequency
# waveform_freq is total swept width
# waveform2_freq is sweep rate
# will sweep from (rf_freq-waveform_freq/2) to (rf_freq+waveform_freq/2)
if self[WAVEFORM2_FREQ_KEY] is None:
self[WAVEFORM2_FREQ_KEY] = 0.1
self._src1 = analog.sig_source_f(self[SAMP_RATE_KEY],
analog.GR_TRI_WAVE,
self[WAVEFORM2_FREQ_KEY],
1.0,
-0.5)
self._src2 = analog.frequency_modulator_fc(self[WAVEFORM_FREQ_KEY]*2*math.pi/self[SAMP_RATE_KEY])
self._src = blocks.multiply_const_cc(self[AMPLITUDE_KEY])
self.connect(self._src1, self._src2, self._src)
else:
raise RuntimeError("[UHD-SIGGEN] Unknown waveform waveform_type")
for chan in xrange(len(self.channels)):
self.connect(self._src, (self.usrp, chan))
if self.extra_sink is not None:
self.connect(self._src, self.extra_sink)
self.unlock()
self.vprint("Set baseband modulation to:", WAVEFORMS[waveform_type])
if waveform_type == analog.GR_SIN_WAVE:
self.vprint("Modulation frequency: %sHz" % (n2s(self[WAVEFORM_FREQ_KEY]),))
self.vprint("Initial phase:", self[WAVEFORM_OFFSET_KEY])
elif waveform_type == "2tone":
self.vprint("Tone 1: %sHz" % (n2s(self[WAVEFORM_FREQ_KEY]),))
self.vprint("Tone 2: %sHz" % (n2s(self[WAVEFORM2_FREQ_KEY]),))
elif waveform_type == "sweep":
self.vprint("Sweeping across %sHz to %sHz" % (n2s(-self[WAVEFORM_FREQ_KEY]/2.0), n2s(self[WAVEFORM_FREQ_KEY]/2.0)))
self.vprint("Sweep rate: %sHz" % (n2s(self[WAVEFORM2_FREQ_KEY]),))
self.vprint("TX amplitude:", self[AMPLITUDE_KEY])
def set_amplitude(self, amplitude):
"""
amplitude subscriber
"""
if amplitude < 0.0 or amplitude > 1.0:
self.vprint("Amplitude out of range:", amplitude)
return False
if self[TYPE_KEY] in (analog.GR_SIN_WAVE, analog.GR_CONST_WAVE, analog.GR_GAUSSIAN, analog.GR_UNIFORM):
self._src.set_amplitude(amplitude)
elif self[TYPE_KEY] == "2tone":
self._src1.set_amplitude(amplitude/2.0)
self._src2.set_amplitude(amplitude/2.0)
elif self[TYPE_KEY] == "sweep":
self._src.set_k(amplitude)
else:
return True # Waveform not yet set
self.vprint("Set amplitude to:", amplitude)
return True
def setup_argparser():
"""
Create argument parser for signal generator.
"""
parser = UHDApp.setup_argparser(
description="USRP Signal Generator.",
tx_or_rx="Tx",
)
group = parser.add_argument_group('Siggen Arguments')
group.add_argument("-x", "--waveform-freq", type=eng_arg.eng_float, default=0.0,
help="Set baseband waveform frequency to FREQ")
group.add_argument("-y", "--waveform2-freq", type=eng_arg.eng_float, default=0.0,
help="Set 2nd waveform frequency to FREQ")
group.add_argument("--sine", dest="type", action="store_const", const=analog.GR_SIN_WAVE,
help="Generate a carrier modulated by a complex sine wave",
default=analog.GR_SIN_WAVE)
group.add_argument("--const", dest="type", action="store_const", const=analog.GR_CONST_WAVE,
help="Generate a constant carrier")
group.add_argument("--offset", type=eng_arg.eng_float, default=0,
help="Set waveform phase offset to OFFSET", metavar="OFFSET")
group.add_argument("--gaussian", dest="type", action="store_const", const=analog.GR_GAUSSIAN,
help="Generate Gaussian random output")
group.add_argument("--uniform", dest="type", action="store_const", const=analog.GR_UNIFORM,
help="Generate Uniform random output")
group.add_argument("--2tone", dest="type", action="store_const", const="2tone",
help="Generate Two Tone signal for IMD testing")
group.add_argument("--sweep", dest="type", action="store_const", const="sweep",
help="Generate a swept sine wave")
return parser
def main():
" Go, go, go! "
if gr.enable_realtime_scheduling() != gr.RT_OK:
print("Note: failed to enable realtime scheduling, continuing")
# Grab command line args and create top block
try:
parser = setup_argparser()
args = parser.parse_args()
tb = USRPSiggen(args)
except RuntimeError as ex:
print(ex)
exit(1)
tb.start()
raw_input('[UHD-SIGGEN] Press Enter to quit:\n')
tb.stop()
tb.wait()
if __name__ == "__main__":
main()
|