summaryrefslogtreecommitdiff
path: root/gr-trellis/python/trellis/fsm_utils.py
blob: b704768de0b5f88a6def00be595820f50abd059d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
#
# Copyright 2004 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#

from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals

import math
import sys

import numpy

try:
    import scipy.linalg
except ImportError:
    print("Error: Program requires scipy (see: www.scipy.org).")
    sys.exit(1)


def dec2base(num, base, l):
    """
    Decimal to any base conversion.
    Convert 'num' to a list of 'l' numbers representing 'num'
    to base 'base' (most significant symbol first).
    """
    s = list(range(l))
    n = num
    for i in range(l):
        s[l-i-1]=n%base
        n=int(n / base)
    if n!=0:
        print('Number ', num, ' requires more than ', l, 'digits.')
    return s


def base2dec(s, base):
    """
    Conversion from any base to decimal.
    Convert a list 's' of symbols to a decimal number
    (most significant symbol first)
    """
    num = 0
    for i in range(len(s)):
        num = num * base + s[i]
    return num


def make_isi_lookup(mod, channel, normalize):
    """
    Automatically generate the lookup table that maps the FSM outputs
    to channel inputs corresponding to a channel 'channel' and a modulation
    'mod'. Optional normalization of channel to unit energy.
    This table is used by the 'metrics' block to translate
    channel outputs to metrics for use with the Viterbi algorithm.
    Limitations: currently supports only one-dimensional modulations.
    """
    dim = mod[0]
    constellation = mod[1]

    if normalize:
        p = 0
        for i in range(len(channel)):
            p = p + channel[i]**2
        for i in range(len(channel)):
            channel[i] = channel[i] / math.sqrt(p)

    lookup=list(range(len(constellation)**len(channel)))
    for o in range(len(constellation)**len(channel)):
        ss = dec2base(o, len(constellation), len(channel))
        ll = 0
        for i in range(len(channel)):
            ll=ll+constellation[ss[i]]*channel[i]
        lookup[o]=ll
    return (1,lookup)


def make_cpm_signals(K, P, M, L, q, frac):
    """
    Automatically generate the signals appropriate for CPM
    decomposition.
    This decomposition is based on the paper by B. Rimoldi
    "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988
    See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf
    """
    Q = numpy.size(q) / L
    h = (1.0 * K) / P
    f0 = -h * (M - 1) / 2
    dt = 0.0
    # maybe start at t=0.5
    t = (dt + numpy.arange(0, Q)) / Q
    qq = numpy.zeros(Q)
    for m in range(L):
        qq = qq + q[m * Q:m * Q + Q]
        w = math.pi * h * (M - 1) * t - 2 * math.pi * h * (
            M - 1) * qq + math.pi * h * (L - 1) * (M - 1)

    X = (M**L) * P
    PSI = numpy.empty((X, Q))
    for x in range(X):
       xv=dec2base(x / P,M,L)
       xv=numpy.append(xv, x%P)
       qq1=numpy.zeros(Q)
       for m in range(L):
          qq1=qq1+xv[m]*q[m*Q:m*Q+Q]
       psi=2*math.pi*h*xv[-1]+4*math.pi*h*qq1+w
       #print(psi)
       PSI[x]=psi
    PSI = numpy.transpose(PSI)
    SS=numpy.exp(1j*PSI) # contains all signals as columns
    #print(SS)


    # Now we need to orthogonalize the signals
    F = scipy.linalg.orth(SS) # find an orthonormal basis for SS
    #print(numpy.dot(numpy.transpose(F.conjugate()),F) # check for orthonormality)
    S = numpy.dot(numpy.transpose(F.conjugate()),SS)
    #print(F)
    #print(S)

    # We only want to keep those dimensions that contain most
    # of the energy of the overall constellation (eg, frac=0.9 ==> 90%)
    # evaluate mean energy in each dimension
    E=numpy.sum(numpy.absolute(S)**2, axis=1) / Q
    E=E / numpy.sum(E)
    #print(E)
    Es = -numpy.sort(-E)
    Esi = numpy.argsort(-E)
    #print(Es)
    #print(Esi)
    Ecum=numpy.cumsum(Es)
    #print(Ecum)
    v0=numpy.searchsorted(Ecum,frac)
    N = v0+1
    #print(v0)
    #print(Esi[0:v0+1])
    Ff=numpy.transpose(numpy.transpose(F)[Esi[0:v0+1]])
    #print(Ff)
    Sf = S[Esi[0:v0+1]]
    #print(Sf)

    return (f0, SS, S, F, Sf, Ff, N)


#return f0

######################################################################
# A list of common modulations.
# Format: (dimensionality,constellation)
######################################################################
pam2 = (1, [-1, 1])
pam4 = (1, [-3, -1, 3, 1])  # includes Gray mapping
pam8 = (1, [-7, -5, -3, -1, 1, 3, 5, 7])

psk4=(2,[1, 0, \
         0, 1, \
         0, -1,\
         -1, 0])    # includes Gray mapping

psk8=(2,[math.cos(2*math.pi*0/8), math.sin(2*math.pi*0/8),  \
         math.cos(2*math.pi*1/8), math.sin(2*math.pi*1/8),  \
         math.cos(2*math.pi*2/8), math.sin(2*math.pi*2/8),  \
         math.cos(2*math.pi*3/8), math.sin(2*math.pi*3/8),  \
         math.cos(2*math.pi*4/8), math.sin(2*math.pi*4/8),  \
         math.cos(2*math.pi*5/8), math.sin(2*math.pi*5/8),  \
         math.cos(2*math.pi*6/8), math.sin(2*math.pi*6/8),  \
         math.cos(2*math.pi*7/8), math.sin(2*math.pi*7/8)])

psk2x3 = (3,[-1,-1,-1, \
             -1,-1,1, \
             -1,1,-1, \
             -1,1,1, \
             1,-1,-1, \
             1,-1,1, \
             1,1,-1, \
             1,1,1])

psk2x4 = (4,[-1,-1,-1,-1, \
             -1,-1,-1,1,  \
             -1,-1,1,-1,  \
             -1,-1,1,1,   \
             -1,1,-1,-1,  \
             -1,1,-1,1,   \
             -1,1,1,-1,   \
             -1,1,1,1,    \
             1,-1,-1,-1,  \
             1,-1,-1,1,   \
             1,-1,1,-1,   \
             1,-1,1,1,    \
             1,1,-1,-1,   \
             1,1,-1,1,    \
             1,1,1,-1,    \
             1,1,1,1])

orth2 = (2,[1, 0, \
            0, 1])
orth4=(4,[1, 0, 0, 0, \
          0, 1, 0, 0, \
          0, 0, 1, 0, \
          0, 0, 0, 1])

######################################################################
# A list of channels to be tested
######################################################################

# C test channel (J. Proakis, Digital Communications, McGraw-Hill Inc., 2001)
c_channel = [0.227, 0.460, 0.688, 0.460, 0.227]