1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/* -*- c++ -*- */
/*
* Copyright 2004,2010,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "siso_f_impl.h"
#include <gnuradio/io_signature.h>
#include <assert.h>
#include <iostream>
#include <stdexcept>
namespace gr {
namespace trellis {
siso_f::sptr siso_f::make(
const fsm& FSM, int K, int S0, int SK, bool POSTI, bool POSTO, siso_type_t SISO_TYPE)
{
return gnuradio::get_initial_sptr(
new siso_f_impl(FSM, K, S0, SK, POSTI, POSTO, SISO_TYPE));
}
void siso_f_impl::recalculate()
{
int multiple;
if (d_POSTI && d_POSTO)
multiple = d_FSM.I() + d_FSM.O();
else if (d_POSTI)
multiple = d_FSM.I();
else if (d_POSTO)
multiple = d_FSM.O();
else
throw std::runtime_error("Not both POSTI and POSTO can be false.");
set_output_multiple(d_K * multiple);
// what is the meaning of relative rate for a block with 2 inputs?
// set_relative_rate ( (uint64_t) multiple, (uint64_t) d_FSM.I() );
// it turns out that the above gives problems in the scheduler, so
// let's try (assumption O>I)
// set_relative_rate ( (uint64_t) multiple, (uint64_t) d_FSM.O() );
// I am tempted to automate like this
if (d_FSM.I() <= d_FSM.O())
set_relative_rate((uint64_t)multiple, (uint64_t)d_FSM.O());
else
set_relative_rate((uint64_t)multiple, (uint64_t)d_FSM.I());
}
siso_f_impl::siso_f_impl(
const fsm& FSM, int K, int S0, int SK, bool POSTI, bool POSTO, siso_type_t SISO_TYPE)
: block("siso_f",
io_signature::make(1, -1, sizeof(float)),
io_signature::make(1, -1, sizeof(float))),
d_FSM(FSM),
d_K(K),
d_S0(S0),
d_SK(SK),
d_POSTI(POSTI),
d_POSTO(POSTO),
d_SISO_TYPE(SISO_TYPE) //,
// d_alpha(FSM.S()*(K+1)),
// d_beta(FSM.S()*(K+1))
{
recalculate();
}
void siso_f_impl::set_FSM(const fsm& FSM)
{
gr::thread::scoped_lock guard(d_setlock);
d_FSM = FSM;
recalculate();
}
void siso_f_impl::set_K(int K)
{
gr::thread::scoped_lock guard(d_setlock);
d_K = K;
recalculate();
}
void siso_f_impl::set_POSTI(bool POSTI)
{
gr::thread::scoped_lock guard(d_setlock);
d_POSTI = POSTI;
recalculate();
}
void siso_f_impl::set_POSTO(bool POSTO)
{
gr::thread::scoped_lock guard(d_setlock);
d_POSTO = POSTO;
recalculate();
}
void siso_f_impl::set_S0(int S0)
{
gr::thread::scoped_lock guard(d_setlock);
d_S0 = S0;
}
void siso_f_impl::set_SK(int SK)
{
gr::thread::scoped_lock guard(d_setlock);
d_SK = SK;
}
void siso_f_impl::set_SISO_TYPE(trellis::siso_type_t type)
{
gr::thread::scoped_lock guard(d_setlock);
d_SISO_TYPE = type;
}
siso_f_impl::~siso_f_impl() {}
void siso_f_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required)
{
int multiple;
if (d_POSTI && d_POSTO)
multiple = d_FSM.I() + d_FSM.O();
else if (d_POSTI)
multiple = d_FSM.I();
else if (d_POSTO)
multiple = d_FSM.O();
else
throw std::runtime_error("Not both POSTI and POSTO can be false.");
// printf("forecast: Multiple = %d\n",multiple);
int input_required1 = d_FSM.I() * (noutput_items / multiple);
int input_required2 = d_FSM.O() * (noutput_items / multiple);
// printf("forecast: Output requirements: %d\n",noutput_items);
// printf("forecast: Input requirements: %d %d\n",input_required1,input_required2);
unsigned ninputs = ninput_items_required.size();
for (unsigned int i = 0; i < ninputs / 2; i++) {
ninput_items_required[2 * i] = input_required1;
ninput_items_required[2 * i + 1] = input_required2;
}
}
int siso_f_impl::general_work(int noutput_items,
gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
gr::thread::scoped_lock guard(d_setlock);
int nstreams = output_items.size();
// printf("general_work:Streams: %d\n",nstreams);
int multiple;
if (d_POSTI && d_POSTO)
multiple = d_FSM.I() + d_FSM.O();
else if (d_POSTI)
multiple = d_FSM.I();
else if (d_POSTO)
multiple = d_FSM.O();
else
throw std::runtime_error("siso_f_impl: Not both POSTI and POSTO can be false.");
int nblocks = noutput_items / (d_K * multiple);
// printf("general_work:Blocks: %d\n",nblocks);
// for(int i=0;i<ninput_items.size();i++)
// printf("general_work:Input items available: %d\n",ninput_items[i]);
float (*p2min)(float, float) = NULL;
if (d_SISO_TYPE == TRELLIS_MIN_SUM)
p2min = &min;
else if (d_SISO_TYPE == TRELLIS_SUM_PRODUCT)
p2min = &min_star;
for (int m = 0; m < nstreams; m++) {
const float* in1 = (const float*)input_items[2 * m];
const float* in2 = (const float*)input_items[2 * m + 1];
float* out = (float*)output_items[m];
for (int n = 0; n < nblocks; n++) {
siso_algorithm(d_FSM.I(),
d_FSM.S(),
d_FSM.O(),
d_FSM.NS(),
d_FSM.OS(),
d_FSM.PS(),
d_FSM.PI(),
d_K,
d_S0,
d_SK,
d_POSTI,
d_POSTO,
p2min,
&(in1[n * d_K * d_FSM.I()]),
&(in2[n * d_K * d_FSM.O()]),
&(out[n * d_K * multiple]) //,
// d_alpha,d_beta
);
}
}
for (unsigned int i = 0; i < input_items.size() / 2; i++) {
consume(2 * i, d_FSM.I() * noutput_items / multiple);
consume(2 * i + 1, d_FSM.O() * noutput_items / multiple);
}
return noutput_items;
}
} /* namespace trellis */
} /* namespace gr */
|