1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/* -*- c++ -*- */
/*
* Copyright 2004,2010,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "siso_combined_f_impl.h"
#include <gr_io_signature.h>
#include <stdexcept>
#include <assert.h>
#include <iostream>
namespace gr {
namespace trellis {
static const float INF = 1.0e9;
siso_combined_f::sptr
siso_combined_f::make(const fsm &FSM, int K,
int S0, int SK,
bool POSTI, bool POSTO,
siso_type_t SISO_TYPE,
int D, const std::vector<float> &TABLE,
digital::trellis_metric_type_t TYPE)
{
return gnuradio::get_initial_sptr
(new siso_combined_f_impl(FSM, K, S0, SK, POSTI, POSTO,
SISO_TYPE, D, TABLE, TYPE));
}
siso_combined_f_impl::siso_combined_f_impl(const fsm &FSM, int K,
int S0, int SK,
bool POSTI, bool POSTO,
siso_type_t SISO_TYPE,
int D, const std::vector<float> &TABLE,
digital::trellis_metric_type_t TYPE)
: gr_block("siso_combined_f",
gr_make_io_signature(1, -1, sizeof(float)),
gr_make_io_signature(1, -1, sizeof(float))),
d_FSM(FSM), d_K(K), d_S0(S0), d_SK(SK),
d_POSTI(POSTI), d_POSTO(POSTO),
d_SISO_TYPE(SISO_TYPE),
d_D(D), d_TABLE(TABLE), d_TYPE(TYPE)//,
//d_alpha(FSM.S()*(K+1)),
//d_beta(FSM.S()*(K+1))
{
int multiple;
if(d_POSTI && d_POSTO)
multiple = d_FSM.I()+d_FSM.O();
else if(d_POSTI)
multiple = d_FSM.I();
else if(d_POSTO)
multiple = d_FSM.O();
else
throw std::runtime_error ("Not both POSTI and POSTO can be false.");
//printf("constructor: Multiple = %d\n",multiple);
set_output_multiple(d_K*multiple);
//what is the meaning of relative rate for a block with 2 inputs?
//set_relative_rate ( multiple / ((double) d_FSM.I()) );
// it turns out that the above gives problems in the scheduler, so
// let's try (assumption O>I)
//set_relative_rate ( multiple / ((double) d_FSM.O()) );
// I am tempted to automate like this
if(d_FSM.I() <= d_D)
set_relative_rate(multiple / ((double)d_D));
else
set_relative_rate(multiple / ((double)d_FSM.I()));
}
siso_combined_f_impl::~siso_combined_f_impl()
{
}
void
siso_combined_f_impl::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
int multiple;
if(d_POSTI && d_POSTO)
multiple = d_FSM.I()+d_FSM.O();
else if(d_POSTI)
multiple = d_FSM.I();
else if(d_POSTO)
multiple = d_FSM.O();
else
throw std::runtime_error ("Not both POSTI and POSTO can be false.");
//printf("forecast: Multiple = %d\n",multiple);
int input_required1 = d_FSM.I() * (noutput_items/multiple) ;
int input_required2 = d_D * (noutput_items/multiple) ;
//printf("forecast: Output requirements: %d\n",noutput_items);
//printf("forecast: Input requirements: %d %d\n",input_required1,input_required2);
unsigned ninputs = ninput_items_required.size();
for(unsigned int i = 0; i < ninputs/2; i++) {
ninput_items_required[2*i] = input_required1;
ninput_items_required[2*i+1] = input_required2;
}
}
int
siso_combined_f_impl::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
int nstreams = output_items.size();
//printf("general_work:Streams: %d\n",nstreams);
int multiple;
if(d_POSTI && d_POSTO)
multiple = d_FSM.I()+d_FSM.O();
else if(d_POSTI)
multiple = d_FSM.I();
else if(d_POSTO)
multiple = d_FSM.O();
else
throw std::runtime_error("siso_combined_f_impl:: Not both POSTI and POSTO can be false.");
int nblocks = noutput_items / (d_K*multiple);
//printf("general_work:Blocks: %d\n",nblocks);
//for(int i=0;i<ninput_items.size();i++)
//printf("general_work:Input items available: %d\n",ninput_items[i]);
float (*p2min)(float, float) = NULL;
if(d_SISO_TYPE == TRELLIS_MIN_SUM)
p2min = &min;
else if(d_SISO_TYPE == TRELLIS_SUM_PRODUCT)
p2min = &min_star;
for(int m=0;m<nstreams;m++) {
const float *in1 = (const float*)input_items[2*m];
const float *in2 = (const float*)input_items[2*m+1];
float *out = (float *) output_items[m];
for(int n=0;n<nblocks;n++) {
siso_algorithm_combined(d_FSM.I(),d_FSM.S(),d_FSM.O(),
d_FSM.NS(),d_FSM.OS(),d_FSM.PS(),d_FSM.PI(),
d_K,d_S0,d_SK,
d_POSTI,d_POSTO,
p2min,
d_D,d_TABLE,d_TYPE,
&(in1[n*d_K*d_FSM.I()]),&(in2[n*d_K*d_D]),
&(out[n*d_K*multiple])//,
//d_alpha,d_beta
);
}
}
for(unsigned int i = 0; i < input_items.size()/2; i++) {
consume(2*i,d_FSM.I() * noutput_items / multiple );
consume(2*i+1,d_D * noutput_items / multiple );
}
return noutput_items;
}
} /* namespace trellis */
} /* namespace gr */
|