summaryrefslogtreecommitdiff
path: root/gr-filter/examples/interpolate.py
blob: 976b1b0f7dc0e0229919aac869d698d8bb687e29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
#
# Copyright 2009,2012,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#

from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from gnuradio import gr
from gnuradio import blocks
from gnuradio import filter
import sys, time
import numpy

try:
    from gnuradio import analog
except ImportError:
    sys.stderr.write("Error: Program requires gr-analog.\n")
    sys.exit(1)

try:
    import pylab
    from pylab import mlab
except ImportError:
    sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n")
    sys.exit(1)

class pfb_top_block(gr.top_block):
    def __init__(self):
        gr.top_block.__init__(self)

        self._N = 100000        # number of samples to use
        self._fs = 2000         # initial sampling rate
        self._interp = 5        # Interpolation rate for PFB interpolator
        self._ainterp = 5.5       # Resampling rate for the PFB arbitrary resampler

        # Frequencies of the signals we construct
        freq1 = 100
        freq2 = 200

        # Create a set of taps for the PFB interpolator
        # This is based on the post-interpolation sample rate
        self._taps = filter.firdes.low_pass_2(self._interp,
                                              self._interp*self._fs,
                                              freq2+50, 50,
                                              attenuation_dB=120,
                                              window=filter.firdes.WIN_BLACKMAN_hARRIS)

        # Create a set of taps for the PFB arbitrary resampler
        # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes,
        # and larger numbers will reduce these even farther
        # The taps in this filter are based on a sampling rate of the filter size since it acts
        # internally as an interpolator.
        flt_size = 32
        self._taps2 = filter.firdes.low_pass_2(flt_size,
                                               flt_size*self._fs,
                                               freq2+50, 150,
                                               attenuation_dB=120,
                                               window=filter.firdes.WIN_BLACKMAN_hARRIS)

        # Calculate the number of taps per channel for our own information
        tpc = numpy.ceil(float(len(self._taps)) / float(self._interp))
        print("Number of taps:     ", len(self._taps))
        print("Number of filters:  ", self._interp)
        print("Taps per channel:   ", tpc)

        # Create a couple of signals at different frequencies
        self.signal1 = analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freq1, 0.5)
        self.signal2 = analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freq2, 0.5)
        self.signal = blocks.add_cc()

        self.head = blocks.head(gr.sizeof_gr_complex, self._N)

        # Construct the PFB interpolator filter
        self.pfb = filter.pfb.interpolator_ccf(self._interp, self._taps)

        # Construct the PFB arbitrary resampler filter
        self.pfb_ar = filter.pfb.arb_resampler_ccf(self._ainterp, self._taps2, flt_size)
        self.snk_i = blocks.vector_sink_c()

        #self.pfb_ar.pfb.print_taps()
        #self.pfb.pfb.print_taps()

        # Connect the blocks
        self.connect(self.signal1, self.head, (self.signal,0))
        self.connect(self.signal2, (self.signal,1))
        self.connect(self.signal, self.pfb)
        self.connect(self.signal, self.pfb_ar)
        self.connect(self.signal, self.snk_i)

        # Create the sink for the interpolated signals
        self.snk1 = blocks.vector_sink_c()
        self.snk2 = blocks.vector_sink_c()
        self.connect(self.pfb, self.snk1)
        self.connect(self.pfb_ar, self.snk2)


def main():
    tb = pfb_top_block()

    tstart = time.time()
    tb.run()
    tend = time.time()
    print("Run time: %f" % (tend - tstart))


    if 1:
        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")

        Ns = 10000
        Ne = 10000

        fftlen = 8192
        winfunc = numpy.blackman

        # Plot input signal
        fs = tb._fs

        d = tb.snk_i.data()[Ns:Ns+Ne]
        sp1_f = fig1.add_subplot(2, 1, 1)

        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs,
                          window = lambda d: d*winfunc(fftlen),
                          scale_by_freq=True)
        X_in = 10.0*numpy.log10(abs(numpy.fft.fftshift(X)))
        f_in = numpy.arange(-fs / 2.0, fs / 2.0, fs / float(X_in.size))
        p1_f = sp1_f.plot(f_in, X_in, "b")
        sp1_f.set_xlim([min(f_in), max(f_in)+1])
        sp1_f.set_ylim([-200.0, 50.0])


        sp1_f.set_title("Input Signal", weight="bold")
        sp1_f.set_xlabel("Frequency (Hz)")
        sp1_f.set_ylabel("Power (dBW)")

        Ts = 1.0 / fs
        Tmax = len(d)*Ts

        t_in = numpy.arange(0, Tmax, Ts)
        x_in = numpy.array(d)
        sp1_t = fig1.add_subplot(2, 1, 2)
        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
        sp1_t.set_ylim([-2.5, 2.5])

        sp1_t.set_title("Input Signal", weight="bold")
        sp1_t.set_xlabel("Time (s)")
        sp1_t.set_ylabel("Amplitude")


        # Plot output of PFB interpolator
        fs_int = tb._fs*tb._interp

        sp2_f = fig2.add_subplot(2, 1, 1)
        d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs,
                          window = lambda d: d*winfunc(fftlen),
                          scale_by_freq=True)
        X_o = 10.0*numpy.log10(abs(numpy.fft.fftshift(X)))
        f_o = numpy.arange(-fs_int / 2.0, fs_int / 2.0, fs_int / float(X_o.size))
        p2_f = sp2_f.plot(f_o, X_o, "b")
        sp2_f.set_xlim([min(f_o), max(f_o)+1])
        sp2_f.set_ylim([-200.0, 50.0])

        sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
        sp2_f.set_xlabel("Frequency (Hz)")
        sp2_f.set_ylabel("Power (dBW)")

        Ts_int = 1.0 / fs_int
        Tmax = len(d)*Ts_int

        t_o = numpy.arange(0, Tmax, Ts_int)
        x_o1 = numpy.array(d)
        sp2_t = fig2.add_subplot(2, 1, 2)
        p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
        #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
        sp2_t.set_ylim([-2.5, 2.5])

        sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
        sp2_t.set_xlabel("Time (s)")
        sp2_t.set_ylabel("Amplitude")


        # Plot output of PFB arbitrary resampler
        fs_aint = tb._fs * tb._ainterp

        sp3_f = fig3.add_subplot(2, 1, 1)
        d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs,
                          window = lambda d: d*winfunc(fftlen),
                          scale_by_freq=True)
        X_o = 10.0*numpy.log10(abs(numpy.fft.fftshift(X)))
        f_o = numpy.arange(-fs_aint / 2.0, fs_aint / 2.0, fs_aint / float(X_o.size))
        p3_f = sp3_f.plot(f_o, X_o, "b")
        sp3_f.set_xlim([min(f_o), max(f_o)+1])
        sp3_f.set_ylim([-200.0, 50.0])

        sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
        sp3_f.set_xlabel("Frequency (Hz)")
        sp3_f.set_ylabel("Power (dBW)")

        Ts_aint = 1.0 / fs_aint
        Tmax = len(d)*Ts_aint

        t_o = numpy.arange(0, Tmax, Ts_aint)
        x_o2 = numpy.array(d)
        sp3_f = fig3.add_subplot(2, 1, 2)
        p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
        p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
        #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
        sp3_f.set_ylim([-2.5, 2.5])

        sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
        sp3_f.set_xlabel("Time (s)")
        sp3_f.set_ylabel("Amplitude")

        pylab.show()


if __name__ == "__main__":
    try:
        main()
    except KeyboardInterrupt:
        pass