1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
#!/usr/bin/env python
#
# Copyright 2008,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
from gnuradio import gr, gr_unittest, fft, blocks
# Note: Octave code to verify these results:
# primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
# 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311]
# src_data = primes(1:2:end) + primes(2:2:end)*i
# forward = fft(src_data(:))
# reverse = ifft(forward(:))
# windowed = fft(src_data(:).*hamming(32))
# reverse_window_shift = ifft(fftshift(forward.*hamming(32)))
primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311)
primes_transformed = ((4377 + 4516j),
(-1706.1268310546875 + 1638.4256591796875j),
(-915.2083740234375 + 660.69427490234375j),
(-660.370361328125 + 381.59600830078125j),
(-499.96044921875 + 238.41630554199219j),
(-462.26748657226562 + 152.88948059082031j),
(-377.98440551757812 + 77.5928955078125j),
(-346.85821533203125 + 47.152004241943359j),
(-295 + 20j),
(-286.33609008789062 - 22.257017135620117j),
(-271.52999877929688 - 33.081821441650391j),
(-224.6358642578125 - 67.019538879394531j),
(-244.24473571777344 - 91.524826049804688j),
(-203.09068298339844 - 108.54627227783203j),
(-198.45195007324219 - 115.90768432617188j),
(-182.97744750976562 - 128.12318420410156j),
(-167 - 180j),
(-130.33688354492188 - 173.83778381347656j),
(-141.19784545898438 - 190.28807067871094j),
(-111.09677124023438 - 214.48896789550781j),
(-70.039543151855469 - 242.41630554199219j),
(-68.960540771484375 - 228.30015563964844j),
(-53.049201965332031 - 291.47097778320312j),
(-28.695289611816406 - 317.64553833007812j),
(57 - 300j),
(45.301143646240234 - 335.69509887695312j),
(91.936195373535156 - 373.32437133789062j),
(172.09465026855469 - 439.275146484375j),
(242.24473571777344 - 504.47515869140625j),
(387.81732177734375 - 666.6788330078125j),
(689.48553466796875 - 918.2142333984375j),
(1646.539306640625 - 1694.1956787109375j))
class test_fft(gr_unittest.TestCase):
def setUp(self):
self.tb = gr.top_block()
self.fft_size = 32
def tearDown(self):
pass
def assert_fft_ok2(self, expected_result, result_data):
expected_result = expected_result[:len(result_data)]
self.assertComplexTuplesAlmostEqual2(expected_result, result_data,
abs_eps=1e-9, rel_eps=4e-4)
def test_forward(self):
src_data = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)])
expected_result = primes_transformed
src = blocks.vector_source_c(src_data)
s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
op = fft.fft_vcc(self.fft_size, True, [], False)
v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size)
dst = blocks.vector_sink_c()
self.tb.connect(src, s2v, op, v2s, dst)
self.tb.run()
result_data = dst.data()
self.assert_fft_ok2(expected_result, result_data)
def test_reverse(self):
src_data = tuple([x / self.fft_size for x in primes_transformed])
expected_result = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)])
src = blocks.vector_source_c(src_data)
s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
op = fft.fft_vcc(self.fft_size, False, [], False)
v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size)
dst = blocks.vector_sink_c()
self.tb.connect(src, s2v, op, v2s, dst)
self.tb.run()
result_data = dst.data()
self.assert_fft_ok2(expected_result, result_data)
def test_multithreaded(self):
# Same test as above, only use 2 threads
src_data = tuple([x / self.fft_size for x in primes_transformed])
expected_result = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)])
nthreads = 2
src = blocks.vector_source_c(src_data)
s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
op = fft.fft_vcc(self.fft_size, False, [], False, nthreads)
v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size)
dst = blocks.vector_sink_c()
self.tb.connect(src, s2v, op, v2s, dst)
self.tb.run()
result_data = dst.data()
self.assert_fft_ok2(expected_result, result_data)
def test_window(self):
src_data = tuple([complex(primes[2 * i], primes[2 * i + 1]) for i in range(self.fft_size)])
expected_result = ((2238.9174 + 2310.4750j),
(-1603.7416 - 466.7420j),
(116.7449 - 70.8553j),
(-13.9157 + 19.0855j),
(-4.8283 + 16.7025j),
(-43.7425 + 16.9871j),
(-16.1904 + 1.7494j),
(-32.3797 + 6.9964j),
(-13.5283 + 7.7721j),
(-24.3276 - 7.5378j),
(-29.2711 + 4.5709j),
(-2.7124 - 6.6307j),
(-33.5486 - 8.3485j),
(-8.3016 - 9.9534j),
(-18.8590 - 8.3501j),
(-13.9092 - 1.1396j),
(-17.7626 - 26.9281j),
(0.0182 - 8.9000j),
(-19.9143 - 14.1320j),
(-10.3073 - 15.5759j),
(3.5800 - 29.1835j),
(-7.5263 - 1.5900j),
(-3.0392 - 31.7445j),
(-15.1355 - 33.6158j),
(28.2345 - 11.4373j),
(-6.0055 - 27.0418j),
(5.2074 - 21.2431j),
(23.1617 - 31.8610j),
(13.6494 - 11.1982j),
(14.7145 - 14.4113j),
(-60.0053 + 114.7418j),
(-440.1561 - 1632.9807j))
window = fft.window.hamming(ntaps=self.fft_size)
src = blocks.vector_source_c(src_data)
s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
op = fft.fft_vcc(self.fft_size, True, window, False)
v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size)
dst = blocks.vector_sink_c()
self.tb.connect(src, s2v, op, v2s, dst)
self.tb.run()
result_data = dst.data()
self.assert_fft_ok2(expected_result, result_data)
def test_reverse_window_shift(self):
src_data = tuple([x / self.fft_size for x in primes_transformed])
expected_result = ((-74.8629 - 63.2502j),
(-3.5446 - 2.0365j),
(2.9231 + 1.6827j),
(-2.7852 - 0.8613j),
(2.4763 + 2.7881j),
(-2.7457 - 3.2602j),
(4.7748 + 2.4145j),
(-2.8807 - 4.5313j),
(5.9949 + 4.1976j),
(-6.1095 - 6.0681j),
(5.2248 + 5.7743j),
(-6.0436 - 6.3773j),
(9.7184 + 9.2482j),
(-8.2791 - 8.6507j),
(6.3273 + 6.1560j),
(-12.2841 - 12.4692j),
(10.5816 + 10.0241j),
(-13.0312 - 11.9451j),
(12.2983 + 13.3644j),
(-13.0372 - 14.0795j),
(14.4682 + 13.3079j),
(-16.7673 - 16.7287j),
(14.3946 + 11.5916j),
(-16.8368 - 21.3156j),
(20.4528 + 16.8499j),
(-18.4075 - 18.2446j),
(17.7507 + 19.2109j),
(-21.5207 - 20.7159j),
(22.2183 + 19.8012j),
(-22.2144 - 20.0343j),
(17.0359 + 17.6910j),
(-91.8955 - 103.1093j))
window = fft.window.hamming(ntaps=self.fft_size)
src = blocks.vector_source_c(src_data)
s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
op = fft.fft_vcc(self.fft_size, False, window, True)
v2s = blocks.vector_to_stream(gr.sizeof_gr_complex, self.fft_size)
dst = blocks.vector_sink_c()
self.tb.connect(src, s2v, op, v2s, dst)
self.tb.run()
result_data = dst.data()
self.assert_fft_ok2(expected_result, result_data)
if __name__ == '__main__':
gr_unittest.run(test_fft, "test_fft.xml")
|