1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
/* -*- c++ -*- */
/*
* Copyright 2004,2007,2008,2010,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "fft_vcc_fftw.h"
#include <math.h>
#include <string.h>
#include <volk/volk.h>
namespace gr {
namespace fft {
fft_vcc::sptr fft_vcc::make(int fft_size,
bool forward,
const std::vector<float>& window,
bool shift,
int nthreads)
{
return gnuradio::make_block_sptr<fft_vcc_fftw>(
fft_size, forward, window, shift, nthreads);
}
fft_vcc_fftw::fft_vcc_fftw(int fft_size,
bool forward,
const std::vector<float>& window,
bool shift,
int nthreads)
: sync_block("fft_vcc_fftw",
io_signature::make(1, 1, fft_size * sizeof(gr_complex)),
io_signature::make(1, 1, fft_size * sizeof(gr_complex))),
d_fft_size(fft_size),
d_forward(forward),
d_fft(fft_size, forward, nthreads),
d_shift(shift)
{
if (!set_window(window))
throw std::runtime_error("fft_vcc: window not the same length as fft_size");
}
void fft_vcc_fftw::set_nthreads(int n) { d_fft.set_nthreads(n); }
int fft_vcc_fftw::nthreads() const { return d_fft.nthreads(); }
bool fft_vcc_fftw::set_window(const std::vector<float>& window)
{
if (window.empty() || window.size() == d_fft_size) {
d_window = window;
return true;
} else
return false;
}
int fft_vcc_fftw::work(int noutput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
const gr_complex* in = (const gr_complex*)input_items[0];
gr_complex* out = (gr_complex*)output_items[0];
unsigned int input_data_size = input_signature()->sizeof_stream_item(0);
unsigned int output_data_size = output_signature()->sizeof_stream_item(0);
int count = 0;
while (count++ < noutput_items) {
// copy input into optimally aligned buffer
if (!d_window.empty()) {
gr_complex* dst = d_fft.get_inbuf();
if (!d_forward && d_shift) {
unsigned int offset = d_fft_size / 2;
int fft_m_offset = d_fft_size - offset;
volk_32fc_32f_multiply_32fc(
&dst[fft_m_offset], &in[0], &d_window[0], offset);
volk_32fc_32f_multiply_32fc(
&dst[0], &in[offset], &d_window[offset], d_fft_size - offset);
} else {
volk_32fc_32f_multiply_32fc(&dst[0], in, &d_window[0], d_fft_size);
}
} else {
if (!d_forward && d_shift) { // apply an ifft shift on the data
gr_complex* dst = d_fft.get_inbuf();
unsigned int len = (unsigned int)(floor(
d_fft_size / 2.0)); // half length of complex array
memcpy(&dst[0], &in[len], sizeof(gr_complex) * (d_fft_size - len));
memcpy(&dst[d_fft_size - len], &in[0], sizeof(gr_complex) * len);
} else {
memcpy(d_fft.get_inbuf(), in, input_data_size);
}
}
// compute the fft
d_fft.execute();
// copy result to our output
if (d_forward && d_shift) { // apply a fft shift on the data
unsigned int len = (unsigned int)(ceil(d_fft_size / 2.0));
memcpy(&out[0],
&d_fft.get_outbuf()[len],
sizeof(gr_complex) * (d_fft_size - len));
memcpy(
&out[d_fft_size - len], &d_fft.get_outbuf()[0], sizeof(gr_complex) * len);
} else {
memcpy(out, d_fft.get_outbuf(), output_data_size);
}
in += d_fft_size;
out += d_fft_size;
}
return noutput_items;
}
} /* namespace fft */
} /* namespace gr */
|