summaryrefslogtreecommitdiff
path: root/gr-fft/include/gnuradio/fft/fft_vfc.h
blob: e5ec9bf3eec924784cc300a41b44d38a9ce5e493 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/* -*- c++ -*- */
/*
 * Copyright 2004,2010,2012,2018 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifndef INCLUDED_FFT_FFT_VFC_H
#define INCLUDED_FFT_FFT_VFC_H

#include <gnuradio/fft/api.h>
#include <gnuradio/sync_block.h>

namespace gr {
  namespace fft {

    /*!
     * \brief Compute forward or reverse FFT. complex vector in / complex vector out.
     * \ingroup fourier_analysis_blk
     *
     * The FFT operation is defined for a vector \f$x\f$ with \f$N\f$ uniformly
     * sampled points by
     *
     * \f[ X(a) = \sum_{k=0}^{N-1} x(a) \cdot e^{-j 2\pi k a / N} \f]
     *
     * \f$ X = FFT\{x\} \f$ is the the FFT transform of \f$x(a)\f$, \f$j\f$ is
     * the imaginary unit, \f$k\f$ and \f$a\f$ range from \f$0\f$ to \f$N-1\f$.
     *
     * The IFFT operation is defined for a vector \f$y\f$ with \f$N\f$
     * uniformly sampled points by
     *
     * \f[ Y(b) = \sum_{k=0}^{N-1} y(b) \cdot e^{j 2\pi k b / N} \f]
     *
     * \f$Y = IFFT\{y\}\f$ is the the inverse FFT transform of \f$y(b)\f$,
     * \f$j\f$ is the imaginary unit, \f$k\f$ and \f$b\f$ range from \f$0\f$ to
     * \f$N-1\f$.
     *
     * \b Note, that due to the underlying FFTW library, the output of a FFT
     * followed by an IFFT (or the other way arround) will be scaled i.e.
     * \f$FFT\{ \, IFFT\{x\} \,\} =  N \cdot x \neq x\f$.
     *
     * \see http://www.fftw.org/faq/section3.html#whyscaled
     */
   class FFT_API fft_vfc : virtual public sync_block
    {
    public:

      // gr::fft::fft_vfc::sptr
      typedef boost::shared_ptr<fft_vfc> sptr;

      /*! \brief
       * \param[in] fft_size N.
       * \param[in] forward True performs FFT, False performs IFFT.
       * \param[in] window Window function to be used.
       * \param[in] nthreads Number of underlying threads.
       */
      static sptr make(int fft_size, bool forward,
			       const std::vector<float> &window,
			       int nthreads=1);

      virtual void set_nthreads(int n) = 0;

      virtual int nthreads() const = 0;

      virtual bool set_window(const std::vector<float> &window) = 0;
    };

  } /* namespace fft */
} /* namespace gr */

#endif /* INCLUDED_FFT_FFT_VFC_H */