1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
#!/usr/bin/env python
#
# Copyright 2015 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import numpy as np
from gnuradio import gr, gr_unittest, blocks
from gnuradio import fec
from gnuradio.fec import extended_decoder
from gnuradio.fec.polar.encoder import PolarEncoder
from gnuradio.fec.polar import channel_construction as cc
# import os
# print('PID:', os.getpid())
# raw_input('tell me smth')
class test_polar_decoder_sc(gr_unittest.TestCase):
def setUp(self):
self.tb = gr.top_block()
def tearDown(self):
self.tb = None
def test_001_setup(self):
block_size = 16
num_info_bits = 8
frozen_bit_positions = np.arange(block_size - num_info_bits)
frozen_bit_values = np.array([],)
polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
self.assertEqual(num_info_bits, polar_decoder.get_output_size())
self.assertEqual(block_size, polar_decoder.get_input_size())
self.assertFloatTuplesAlmostEqual((float(num_info_bits) / block_size, ), (polar_decoder.rate(), ))
self.assertFalse(polar_decoder.set_frame_size(10))
def test_002_one_vector(self):
block_power = 10
block_size = 2 ** block_power
num_info_bits = 2 ** (block_power - 1)
num_frozen_bits = block_size - num_info_bits
frozen_bit_positions = cc.frozen_bit_positions(block_size, num_info_bits, 0.0)
frozen_bit_values = np.array([0] * num_frozen_bits,)
bits, gr_data = self.generate_test_data(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, 1, True)
polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
src = blocks.vector_source_f(gr_data, False)
dec_block = extended_decoder(polar_decoder, None)
snk = blocks.vector_sink_b(1)
self.tb.connect(src, dec_block)
self.tb.connect(dec_block, snk)
self.tb.run()
res = np.array(snk.data()).astype(dtype=int)
self.assertTupleEqual(tuple(res), tuple(bits))
def test_003_stream(self):
nframes = 3
block_power = 8
block_size = 2 ** block_power
num_info_bits = 2 ** (block_power - 1)
num_frozen_bits = block_size - num_info_bits
frozen_bit_positions = cc.frozen_bit_positions(block_size, num_info_bits, 0.0)
frozen_bit_values = np.array([0] * num_frozen_bits,)
bits, gr_data = self.generate_test_data(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, nframes, False)
polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
src = blocks.vector_source_f(gr_data, False)
dec_block = extended_decoder(polar_decoder, None)
snk = blocks.vector_sink_b(1)
self.tb.connect(src, dec_block)
self.tb.connect(dec_block, snk)
self.tb.run()
res = np.array(snk.data()).astype(dtype=int)
self.assertTupleEqual(tuple(res), tuple(bits))
def generate_test_data(self, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, nframes, onlyones):
encoder = PolarEncoder(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
bits = np.array([], dtype=int)
data = np.array([], dtype=int)
for n in range(nframes):
if onlyones:
b = np.ones(num_info_bits, dtype=int)
else:
b = np.random.randint(2, size=num_info_bits)
d = encoder.encode(b)
bits = np.append(bits, b)
data = np.append(data, d)
gr_data = 2.0 * data - 1.0
return bits, gr_data
if __name__ == '__main__':
gr_unittest.run(test_polar_decoder_sc, "test_polar_decoder_sc.xml")
|