summaryrefslogtreecommitdiff
path: root/gr-fec/python/fec/polar/encoder.py
blob: 6f87a22191d93ca2e0fc585221e3c7ce26c6d8a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
#
# Copyright 2015 Free Software Foundation, Inc.
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#

import numpy as np
from common import PolarCommon


class PolarEncoder(PolarCommon):
    def __init__(self, n, k, frozen_bit_position, frozenbits=None):
        PolarCommon.__init__(self, n, k, frozen_bit_position, frozenbits)
        self.G = self._gn(n)

    def _gn(self, n):
        # this matrix is called generator matrix
        if n == 1:
            return np.array([1, ])
        f = self._fn(n)
        return f

    def _fn(self, n):
        # this matrix defines the actual channel combining.
        if n == 1:
            return np.array([1, ])
        f2 = np.array([[1, 0], [1, 1]], np.int)
        nump = int(np.log2(n)) - 1  # number of Kronecker products to calculate
        fn = f2
        for i in range(nump):
            fn = np.kron(fn, f2)
        return fn

    def get_gn(self):
        return self.G

    def _prepare_input_data(self, vec):
        vec = self._insert_frozen_bits(vec)
        vec = self._reverse_bits(vec)
        return vec

    def _encode_matrix(self, data):
        data = np.dot(data, self.G) % 2
        data = data.astype(dtype=int)
        return data

    def _encode_efficient(self, vec):
        nstages = int(np.log2(self.N))
        pos = np.arange(self.N, dtype=int)
        for i in range(nstages):
            splitted = np.reshape(pos, (2 ** (i + 1), -1))
            upper_branch = splitted[0::2].flatten()
            lower_branch = splitted[1::2].flatten()
            vec[upper_branch] = (vec[upper_branch] + vec[lower_branch]) % 2
        return vec

    def encode(self, data, is_packed=False):
        if not len(data) == self.K:
            raise ValueError("len(data)={0} is not equal to k={1}!".format(len(data), self.K))
        if is_packed:
            data = np.unpackbits(data)
        if np.max(data) > 1 or np.min(data) < 0:
            raise ValueError("can only encode bits!")
        data = self._prepare_input_data(data)
        data = self._encode_efficient(data)
        if is_packed:
            data = np.packbits(data)
        return data


def compare_results(encoder, ntests, k):
    for n in range(ntests):
        bits = np.random.randint(2, size=k)
        preped = encoder._prepare_input_data(bits)
        menc = encoder._encode_matrix(preped)
        fenc = encoder._encode_efficient(preped)
        if (menc == fenc).all() == False:
            return False
    return True


def test_pseudo_rate_1_encoder(encoder, ntests, k):
    for n in range(ntests):
        bits = np.random.randint(2, size=k)
        u = encoder._prepare_input_data(bits)
        fenc = encoder._encode_efficient(u)
        u_hat = encoder._encode_efficient(fenc)
        if not (u_hat == u).all():
            print('rate-1 encoder/decoder failed')
            print u
            print u_hat
            return False
    return True


def test_encoder_impls():
    print('comparing encoder implementations, matrix vs. efficient')
    ntests = 1000
    n = 16
    k = 8
    frozenbits = np.zeros(n - k)
    # frozenbitposition8 = np.array((0, 1, 2, 4), dtype=int)  # keep it!
    frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
    encoder = PolarEncoder(n, k, frozenbitposition, frozenbits)
    print 'result:', compare_results(encoder, ntests, k)

    print('Test rate-1 encoder/decoder chain results')
    r1_test = test_pseudo_rate_1_encoder(encoder, ntests, k)
    print 'test rate-1 encoder/decoder:', r1_test



def main():
    print "main in encoder"
    test_encoder_impls()




if __name__ == '__main__':
    main()