summaryrefslogtreecommitdiff
path: root/gr-fec/python/fec/polar/encoder.py
blob: c5c7c05d5b42713aba2c818bb2fd2bcb2992188f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
#
# Copyright 2015 Free Software Foundation, Inc.
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#

from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals

import numpy as np
from .common import PolarCommon
from . import helper_functions as hf


class PolarEncoder(PolarCommon):
    def __init__(self, n, k, frozen_bit_position, frozenbits=None):
        PolarCommon.__init__(self, n, k, frozen_bit_position, frozenbits)
        self.G = hf.get_Fn(n)

    def get_gn(self):
        return self.G

    def _prepare_input_data(self, vec):
        vec = self._insert_frozen_bits(vec)
        vec = self._reverse_bits(vec)
        return vec

    def _encode_matrix(self, data):
        data = np.dot(data, self.G) % 2
        data = data.astype(dtype=int)
        return data

    def encode(self, data, is_packed=False):
        if not len(data) == self.K:
            raise ValueError("len(data)={0} is not equal to k={1}!".format(len(data), self.K))
        if is_packed:
            data = np.unpackbits(data)
        if np.max(data) > 1 or np.min(data) < 0:
            raise ValueError("can only encode bits!")
        data = self._prepare_input_data(data)
        data = self._encode_efficient(data)
        if is_packed:
            data = np.packbits(data)
        return data

    def encode_systematic(self, data):
        if not len(data) == self.K:
            raise ValueError("len(data)={0} is not equal to k={1}!".format(len(data), self.K))
        if np.max(data) > 1 or np.min(data) < 0:
            raise ValueError("can only encode bits!")

        d = self._insert_frozen_bits(data)
        d = self._encode_natural_order(d)
        d = self._reverse_bits(d)
        d[self.frozen_bit_position] = 0
        d = self._encode_natural_order(d)
        # d = self._reverse_bits(d) # for more accuracy, do another bit-reversal. or don't for computational simplicity.
        return d


def test_systematic_encoder(encoder, ntests, k):
    for n in range(ntests):
        bits = np.random.randint(2, size=k)
        x = encoder.encode_systematic(bits)
        x = encoder._reverse_bits(x)
        u_hat = encoder._extract_info_bits(x)

        assert (bits == u_hat).all()
        # print((bits == u_hat).all())


def compare_results(encoder, ntests, k):
    for n in range(ntests):
        bits = np.random.randint(2, size=k)
        preped = encoder._prepare_input_data(bits)
        menc = encoder._encode_matrix(preped)
        fenc = encoder._encode_efficient(preped)
        if (menc == fenc).all() == False:
            return False
    return True


def test_pseudo_rate_1_encoder(encoder, ntests, k):
    for n in range(ntests):
        bits = np.random.randint(2, size=k)
        u = encoder._prepare_input_data(bits)
        fenc = encoder._encode_efficient(u)
        u_hat = encoder._encode_efficient(fenc)
        if not (u_hat == u).all():
            print('rate-1 encoder/decoder failed')
            print(u)
            print(u_hat)
            return False
    return True


def test_encoder_impls():
    print('Compare encoder implementations, matrix vs. efficient')
    ntests = 1000
    n = 16
    k = 8
    # frozenbits = np.zeros(n - k)
    # frozenbitposition8 = np.array((0, 1, 2, 4), dtype=int)  # keep it!
    frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
    encoder = PolarEncoder(n, k, frozenbitposition)  #, frozenbits)
    print('result:', compare_results(encoder, ntests, k))

    print('Test rate-1 encoder/decoder chain results')
    r1_test = test_pseudo_rate_1_encoder(encoder, ntests, k)
    print('Test rate-1 encoder/decoder:', r1_test)
    test_systematic_encoder(encoder, ntests, k)


def main():
    test_encoder_impls()


if __name__ == '__main__':
    main()