1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
#!/usr/bin/env python
#
# Copyright 2015 Free Software Foundation, Inc.
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals
import numpy as np
from .helper_functions import *
'''
PolarCommon holds value checks and common initializer code for both Encoder and Decoder.
'''
class PolarCommon(object):
def __init__(self, n, k, frozen_bit_position, frozenbits=None):
if not is_power_of_two(n):
raise ValueError("n={0} is not a power of 2!".format(n))
if frozenbits is None:
frozenbits = np.zeros(n - k, dtype=np.int)
if not len(frozenbits) == n - k:
raise ValueError("len(frozenbits)={0} is not equal to n-k={1}!".format(len(frozenbits), n - k))
if not frozenbits.dtype == np.int:
frozenbits = frozenbits.astype(dtype=int)
if not len(frozen_bit_position) == (n - k):
raise ValueError("len(frozen_bit_position)={0} is not equal to n-k={1}!".format(len(frozen_bit_position), n - k))
if not frozen_bit_position.dtype == np.int:
frozen_bit_position = frozen_bit_position.astype(dtype=int)
self.bit_reverse_positions = self._vector_bit_reversed(np.arange(n, dtype=int), int(np.log2(n)))
self.N = n
self.power = int(np.log2(self.N))
self.K = k
self.frozenbits = frozenbits
self.frozen_bit_position = frozen_bit_position
self.info_bit_position = np.delete(np.arange(self.N), self.frozen_bit_position)
def _insert_frozen_bits(self, u):
prototype = np.empty(self.N, dtype=int)
prototype[self.frozen_bit_position] = self.frozenbits
prototype[self.info_bit_position] = u
return prototype
def _extract_info_bits(self, y):
return y[self.info_bit_position]
def _reverse_bits(self, vec):
return vec[self.bit_reverse_positions]
def _vector_bit_reversed(self, vec, n):
return bit_reverse_vector(vec, n)
def _encode_efficient(self, vec):
n_stages = self.power
pos = np.arange(self.N, dtype=int)
for i in range(n_stages):
splitted = np.reshape(pos, (2 ** (i + 1), -1))
upper_branch = splitted[0::2].flatten()
lower_branch = splitted[1::2].flatten()
vec[upper_branch] = (vec[upper_branch] + vec[lower_branch]) % 2
return vec
def _encode_natural_order(self, vec):
# use this function. It reflects the encoding process implemented in VOLK.
vec = vec[self.bit_reverse_positions]
return self._encode_efficient(vec)
def info_print(self):
print("POLAR code ({0}, {1})".format(self.N, self.K))
|