1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
#!/usr/bin/env python
#
# Copyright 2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import numpy
import random
from gnuradio import gr, gr_unittest
try:
# This will work when feature #505 is added.
from gnuradio import digital
from gnuradio.digital.utils import tagged_streams
from gnuradio.digital.ofdm_txrx import ofdm_tx
except ImportError:
# Until then this will work.
import digital_swig as digital
from utils import tagged_streams
from ofdm_txrx import ofdm_tx
class qa_ofdm_sync_sc_cfb (gr_unittest.TestCase):
def setUp (self):
self.tb = gr.top_block ()
def tearDown (self):
self.tb = None
def test_001_detect (self):
""" Send two bursts, with zeros in between, and check
they are both detected at the correct position and no
false alarms occur """
n_zeros = 15
fft_len = 32
cp_len = 4
sig_len = (fft_len + cp_len) * 10
sync_symbol = [(random.randint(0, 1)*2)-1 for x in range(fft_len/2)] * 2
tx_signal = [0,] * n_zeros + \
sync_symbol[-cp_len:] + \
sync_symbol + \
[(random.randint(0, 1)*2)-1 for x in range(sig_len)]
tx_signal = tx_signal * 2
add = gr.add_cc()
sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
sink_freq = gr.vector_sink_f()
sink_detect = gr.vector_sink_b()
self.tb.connect(gr.vector_source_c(tx_signal), (add, 0))
self.tb.connect(gr.noise_source_c(gr.GR_GAUSSIAN, .01), (add, 1))
self.tb.connect(add, sync)
self.tb.connect((sync, 0), sink_freq)
self.tb.connect((sync, 1), sink_detect)
self.tb.run()
sig1_detect = sink_detect.data()[0:len(tx_signal)/2]
sig2_detect = sink_detect.data()[len(tx_signal)/2:]
self.assertTrue(abs(sig1_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len)
self.assertTrue(abs(sig2_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len)
self.assertEqual(numpy.sum(sig1_detect), 1)
self.assertEqual(numpy.sum(sig2_detect), 1)
def test_002_freq (self):
""" Add a fine frequency offset and see if that get's detected properly """
fft_len = 32
cp_len = 4
freq_offset = 0.1 # Must stay < 2*pi/fft_len = 0.196 (otherwise, it's coarse)
sig_len = (fft_len + cp_len) * 10
sync_symbol = [(random.randint(0, 1)*2)-1 for x in range(fft_len/2)] * 2
tx_signal = sync_symbol[-cp_len:] + \
sync_symbol + \
[(random.randint(0, 1)*2)-1 for x in range(sig_len)]
mult = gr.multiply_cc()
add = gr.add_cc()
sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
sink_freq = gr.vector_sink_f()
sink_detect = gr.vector_sink_b()
self.tb.connect(gr.vector_source_c(tx_signal), (mult, 0), (add, 0))
self.tb.connect(gr.sig_source_c(2 * numpy.pi, gr.GR_SIN_WAVE, freq_offset, 1.0), (mult, 1))
self.tb.connect(gr.noise_source_c(gr.GR_GAUSSIAN, .01), (add, 1))
self.tb.connect(add, sync)
self.tb.connect((sync, 0), sink_freq)
self.tb.connect((sync, 1), sink_detect)
self.tb.run()
phi_hat = sink_freq.data()[sink_detect.data().index(1)]
est_freq_offset = 2 * phi_hat / fft_len
self.assertAlmostEqual(est_freq_offset, freq_offset, places=2)
def test_003_multiburst (self):
""" Send several bursts, see if the number of detects is correct.
Burst lengths and content are random.
"""
n_bursts = 42
fft_len = 32
cp_len = 4
tx_signal = []
for i in xrange(n_bursts):
sync_symbol = [(random.randint(0, 1)*2)-1 for x in range(fft_len/2)] * 2
tx_signal += [0,] * random.randint(0, 2*fft_len) + \
sync_symbol[-cp_len:] + \
sync_symbol + \
[(random.randint(0, 1)*2)-1 for x in range(fft_len * random.randint(5,23))]
add = gr.add_cc()
sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
sink_freq = gr.vector_sink_f()
sink_detect = gr.vector_sink_b()
self.tb.connect(gr.vector_source_c(tx_signal), (add, 0))
self.tb.connect(gr.noise_source_c(gr.GR_GAUSSIAN, .005), (add, 1))
self.tb.connect(add, sync)
self.tb.connect((sync, 0), sink_freq)
self.tb.connect((sync, 1), sink_detect)
self.tb.run()
self.assertEqual(numpy.sum(sink_detect.data()), n_bursts,
msg="""Because of statistics, it is possible (though unlikely)
that the number of detected bursts differs slightly. If the number of detects is
off by one or two, run the test again and see what happen.
Detection error was: %d """ % (numpy.sum(sink_detect.data()) - n_bursts)
)
# FIXME ofdm_mod is currently not working
#def test_004_ofdm_packets (self):
#"""
#Send several bursts, see if the number of detects is correct.
#Burst lengths and content are random.
#"""
#n_bursts = 42
#fft_len = 64
#cp_len = 12
#tx_signal = []
#packets = []
#tagname = "length"
#min_packet_length = 100
#max_packet_length = 100
#sync_sequence = [random.randint(0, 1)*2-1 for x in range(fft_len/2)]
#for i in xrange(n_bursts):
#packet_length = random.randint(min_packet_length,
#max_packet_length+1)
#packet = [random.randint(0, 255) for i in range(packet_length)]
#packets.append(packet)
#data, tags = tagged_streams.packets_to_vectors(
#packets, tagname, vlen=1)
#total_length = len(data)
#src = gr.vector_source_b(data, False, 1, tags)
#mod = ofdm_tx(
#fft_len=fft_len,
#cp_len=cp_len,
#length_tag_name=tagname,
#occupied_carriers=(range(1, 27) + range(38, 64),),
#pilot_carriers=((0,),),
#pilot_symbols=((100,),),
#)
#rate_in = 16000
#rate_out = 48000
#ratio = float(rate_out) / rate_in
#throttle1 = gr.throttle(gr.sizeof_gr_complex, rate_in)
#insert_zeros = digital.ts_insert_zeros_cc(tagname)
#throttle2 = gr.throttle(gr.sizeof_gr_complex, rate_out)
#sink_countbursts = gr.vector_sink_c()
#head = gr.head(gr.sizeof_gr_complex, int(total_length * ratio*2))
#add = gr.add_cc()
#sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
#sink_freq = gr.vector_sink_f()
#sink_detect = gr.vector_sink_b()
#noise_level = 0.01
#noise = gr.noise_source_c(gr.GR_GAUSSIAN, noise_level)
#self.tb.connect(src, mod, gr.null_sink(gr.sizeof_gr_complex))
#self.tb.connect(insert_zeros, sink_countbursts)
#self.tb.connect(noise, (add, 1))
#self.tb.connect(add, sync)
#self.tb.connect((sync, 0), sink_freq)
#self.tb.connect((sync, 1), sink_detect)
#self.tb.run()
#count_data = sink_countbursts.data()
#count_tags = sink_countbursts.tags()
#burstcount = tagged_streams.count_bursts(count_data, count_tags, tagname)
#self.assertEqual(numpy.sum(sink_detect.data()), burstcount)
if __name__ == '__main__':
#gr_unittest.run(qa_ofdm_sync_sc_cfb, "qa_ofdm_sync_sc_cfb.xml")
gr_unittest.run(qa_ofdm_sync_sc_cfb)
|