summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital/qam.py
blob: 6e8951ef1e5e30c2b96b8db2506b2462248211eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#
# Copyright 2005,2006,2011,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#

"""
QAM modulation and demodulation.
"""

from math import pi, sqrt, log

from gnuradio import gr
from .generic_mod_demod import generic_mod, generic_demod
from .generic_mod_demod import shared_mod_args, shared_demod_args
from .utils.gray_code import gray_code
from .utils import mod_codes
from . import modulation_utils
from . import digital_python as digital

# Default number of points in constellation.
_def_constellation_points = 16
# Whether the quadrant bits are coded differentially.
_def_differential = True
# Whether gray coding is used.  If differential is True then gray
# coding is used within but not between each quadrant.
_def_mod_code = mod_codes.NO_CODE


def is_power_of_four(x):
    v = log(x) / log(4)
    return int(v) == v


def get_bit(x, n):
    """ Get the n'th bit of integer x (from little end)."""
    return (x & (0x01 << n)) >> n


def get_bits(x, n, k):
    """ Get the k bits of integer x starting at bit n(from little end)."""
    # Remove the n smallest bits
    v = x >> n
    # Remove all bits bigger than n+k-1
    return v % pow(2, k)


def make_differential_constellation(m, gray_coded):
    """
    Create a constellation with m possible symbols where m must be
    a power of 4.

    Points are laid out in a square grid.

    Bits referring to the quadrant are differentilly encoded,
    remaining bits are gray coded.

    """
    sqrtm = pow(m, 0.5)
    if (not isinstance(m, int) or m < 4 or not is_power_of_four(m)):
        raise ValueError("m must be a power of 4 integer.")
    # Each symbol holds k bits.
    k = int(log(m) / log(2.0))
    # First create a constellation for one quadrant containing m/4 points.
    # The quadrant has 'side' points along each side of a quadrant.
    side = int(sqrtm / 2)
    if gray_coded:
        # Number rows and columns using gray codes.
        gcs = gray_code(side)
        # Get inverse gray codes.
        i_gcs = dict([(v, key) for key, v in enumerate(gcs)])
    else:
        i_gcs = dict([(i, i) for i in range(0, side)])
    # The distance between points is found.
    step = 1 / (side - 0.5)

    gc_to_x = [(i_gcs[gc] + 0.5) * step for gc in range(0, side)]

    # Takes the (x, y) location of the point with the quadrant along
    # with the quadrant number. (x, y) are integers referring to which
    # point within the quadrant it is.
    # A complex number representing this location of this point is returned.
    def get_c(gc_x, gc_y, quad):
        if quad == 0:
            return complex(gc_to_x[gc_x], gc_to_x[gc_y])
        if quad == 1:
            return complex(-gc_to_x[gc_y], gc_to_x[gc_x])
        if quad == 2:
            return complex(-gc_to_x[gc_x], -gc_to_x[gc_y])
        if quad == 3:
            return complex(gc_to_x[gc_y], -gc_to_x[gc_x])
        raise Exception("Impossible!")

    # First two bits determine quadrant.
    # Next (k-2)/2 bits determine x position.
    # Following (k-2)/2 bits determine y position.
    # How x and y relate to real and imag depends on quadrant (see get_c
    # function).
    const_map = []
    for i in range(m):
        y = get_bits(i, 0, (k - 2) // 2)
        x = get_bits(i, (k - 2) // 2, (k - 2) // 2)
        quad = get_bits(i, k - 2, 2)
        const_map.append(get_c(x, y, quad))

    return const_map


def make_non_differential_constellation(m, gray_coded):
    side = int(pow(m, 0.5))
    if (not isinstance(m, int) or m < 4 or not is_power_of_four(m)):
        raise ValueError("m must be a power of 4 integer.")
    # Each symbol holds k bits.
    k = int(log(m) / log(2.0))
    if gray_coded:
        # Number rows and columns using gray codes.
        gcs = gray_code(side)
        # Get inverse gray codes.
        i_gcs = mod_codes.invert_code(gcs)
    else:
        i_gcs = list(range(0, side))
    # The distance between points is found.
    step = 2.0 / (side - 1)

    gc_to_x = [-1 + i_gcs[gc] * step for gc in range(0, side)]
    # First k/2 bits determine x position.
    # Following k/2 bits determine y position.
    const_map = []
    for i in range(m):
        y = gc_to_x[get_bits(i, 0, k // 2)]
        x = gc_to_x[get_bits(i, k // 2, k // 2)]
        const_map.append(complex(x, y))
    return const_map

# /////////////////////////////////////////////////////////////////////////////
#                           QAM constellation
# /////////////////////////////////////////////////////////////////////////////


def qam_constellation(constellation_points=_def_constellation_points,
                      differential=_def_differential,
                      mod_code=_def_mod_code,
                      large_ampls_to_corners=False):
    """
    Creates a QAM constellation object.

    If large_ampls_to_corners=True then sectors that are probably
    occupied due to a phase offset, are not mapped to the closest
    constellation point.  Rather we take into account the fact that a
    phase offset is probably the problem and map them to the closest
    corner point.  It's a bit hackish but it seems to improve
    frequency locking.
    """
    if mod_code == mod_codes.GRAY_CODE:
        gray_coded = True
    elif mod_code == mod_codes.NO_CODE:
        gray_coded = False
    else:
        raise ValueError("Mod code is not implemented for QAM")
    if differential:
        points = make_differential_constellation(
            constellation_points, gray_coded=False)
    else:
        points = make_non_differential_constellation(
            constellation_points, gray_coded)
    side = int(sqrt(constellation_points))
    width = 2.0 / (side - 1)

    # No pre-diff code
    # Should add one so that we can gray-code the quadrant bits too.
    pre_diff_code = []
    if not large_ampls_to_corners:
        constellation = digital.constellation_rect(points, pre_diff_code, 4,
                                                   side, side, width, width)
    else:
        sector_values = large_ampls_to_corners_mapping(side, points, width)
        constellation = digital.constellation_expl_rect(
            points, pre_diff_code, 4, side, side, width, width, sector_values)

    return constellation


def find_closest_point(p, qs):
    """
    Return in index of the closest point in 'qs' to 'p'.
    """
    min_dist = None
    min_i = None
    for i, q in enumerate(qs):
        dist = abs(q - p)
        if min_dist is None or dist < min_dist:
            min_dist = dist
            min_i = i
    return min_i


def large_ampls_to_corners_mapping(side, points, width):
    """
    We have a grid that we use for decision making.  One additional row/column
    is placed on each side of the grid.  Points in these additional rows/columns
    are mapped to the corners rather than the closest constellation points.

    Args:
        side: The number of rows/columns in the grid that we use to do
              decision making.
        points: The list of constellation points.
        width: The width of the rows/columns.

    Returns:
        sector_values maps the sector index to the constellation
        point index.
    """
    # First find the indices of the corner points.
    # Assume the corner points are the 4 points with the largest magnitudes.
    corner_indices = []
    corner_points = []
    max_mag = 0
    for i, p in enumerate(points):
        if abs(p) > max_mag:
            corner_indices = [i]
            corner_points = [p]
            max_mag = abs(p)
        elif abs(p) == max_mag:
            corner_indices.append(i)
            corner_points.append(p)
    if len(corner_indices) != 4:
        raise ValueError("Found {0} corner indices.  Expected 4."
                         .format(len(corner_indices)))
    # We want an additional layer around the constellation
    # Value in this extra layer will be mapped to the closest corner rather
    # than the closest constellation point.
    extra_layers = 1
    side = side + extra_layers * 2
    # Calculate sector values
    sector_values = []
    for real_x in range(side):
        for imag_x in range(side):
            sector = real_x * side + imag_x
            # If this sector is a normal constellation sector then
            # use the center point.
            c = ((real_x - side / 2.0 + 0.5) * width +
                 (imag_x - side / 2.0 + 0.5) * width * 1j)
            if (real_x >= extra_layers and real_x < side - extra_layers and
                    imag_x >= extra_layers and imag_x < side - extra_layers):
                # This is not an edge row/column.  Find closest point.
                index = find_closest_point(c, points)
            else:
                # This is an edge. Find closest corner point.
                index = corner_indices[find_closest_point(c, corner_points)]
            sector_values.append(index)
    return sector_values


modulation_utils.add_type_1_constellation('qam', qam_constellation)