1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
#!/usr/bin/env python
#
# Copyright 2011,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
import random
import cmath
import time
from gnuradio import gr, gr_unittest, filter, digital, blocks
class test_pfb_clock_sync(gr_unittest.TestCase):
def setUp(self):
random.seed(0)
self.tb = gr.top_block()
def tearDown(self):
self.tb = None
def test01(self):
# Test BPSK sync
excess_bw = 0.35
sps = 4
loop_bw = cmath.pi / 100.0
nfilts = 32
init_phase = nfilts / 2
max_rate_deviation = 0.5
osps = 1
ntaps = 11 * int(sps * nfilts)
taps = filter.firdes.root_raised_cosine(nfilts, nfilts * sps,
1.0, excess_bw, ntaps)
self.test = digital.pfb_clock_sync_ccf(sps, loop_bw, taps,
nfilts, init_phase,
max_rate_deviation,
osps)
data = 10000 * [complex(1, 0), complex(-1, 0)]
self.src = blocks.vector_source_c(data, False)
# pulse shaping interpolation filter
rrc_taps = filter.firdes.root_raised_cosine(
nfilts, # gain
nfilts, # sampling rate based on 32 filters in resampler
1.0, # symbol rate
excess_bw, # excess bandwidth (roll-off factor)
ntaps)
self.rrc_filter = filter.pfb_arb_resampler_ccf(sps, rrc_taps)
self.snk = blocks.vector_sink_c()
self.tb.connect(self.src, self.rrc_filter, self.test, self.snk)
self.tb.run()
expected_result = 10000 * [complex(1, 0), complex(-1, 0)]
dst_data = self.snk.data()
# Only compare last Ncmp samples
Ncmp = 1000
len_e = len(expected_result)
len_d = len(dst_data)
expected_result = expected_result[len_e - Ncmp:]
dst_data = dst_data[len_d - Ncmp:]
# for e,d in zip(expected_result, dst_data):
# print e, d
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
def test02(self):
# Test real BPSK sync
excess_bw = 0.35
sps = 4
loop_bw = cmath.pi / 100.0
nfilts = 32
init_phase = nfilts / 2
max_rate_deviation = 0.5
osps = 1
ntaps = 11 * int(sps * nfilts)
taps = filter.firdes.root_raised_cosine(nfilts, nfilts * sps,
1.0, excess_bw, ntaps)
self.test = digital.pfb_clock_sync_fff(sps, loop_bw, taps,
nfilts, init_phase,
max_rate_deviation,
osps)
data = 10000 * [1, -1]
self.src = blocks.vector_source_f(data, False)
# pulse shaping interpolation filter
rrc_taps = filter.firdes.root_raised_cosine(
nfilts, # gain
nfilts, # sampling rate based on 32 filters in resampler
1.0, # symbol rate
excess_bw, # excess bandwidth (roll-off factor)
ntaps)
self.rrc_filter = filter.pfb_arb_resampler_fff(sps, rrc_taps)
self.snk = blocks.vector_sink_f()
self.tb.connect(self.src, self.rrc_filter, self.test, self.snk)
self.tb.run()
expected_result = 10000 * [1, -1]
dst_data = self.snk.data()
# Only compare last Ncmp samples
Ncmp = 1000
len_e = len(expected_result)
len_d = len(dst_data)
expected_result = expected_result[len_e - Ncmp:]
dst_data = dst_data[len_d - Ncmp:]
# for e,d in zip(expected_result, dst_data):
# print e, d
self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 1)
def test03(self):
# Test resting of taps
excess_bw0 = 0.35
excess_bw1 = 0.22
sps = 4
loop_bw = cmath.pi / 100.0
nfilts = 32
init_phase = nfilts / 2
max_rate_deviation = 0.5
osps = 1
ntaps = 11 * int(sps * nfilts)
taps = filter.firdes.root_raised_cosine(nfilts, nfilts * sps,
1.0, excess_bw0, ntaps)
self.test = digital.pfb_clock_sync_ccf(sps, loop_bw, taps,
nfilts, init_phase,
max_rate_deviation,
osps)
self.src = blocks.null_source(gr.sizeof_gr_complex)
self.snk = blocks.null_sink(gr.sizeof_gr_complex)
self.tb.connect(self.src, self.test, self.snk)
self.tb.start()
time.sleep(0.1)
taps = filter.firdes.root_raised_cosine(nfilts, nfilts * sps,
1.0, excess_bw1, ntaps)
self.test.update_taps(taps)
self.tb.stop()
self.tb.wait()
self.assertTrue(True)
def test03_f(self):
# Test resting of taps
excess_bw0 = 0.35
excess_bw1 = 0.22
sps = 4
loop_bw = cmath.pi / 100.0
nfilts = 32
init_phase = nfilts / 2
max_rate_deviation = 0.5
osps = 1
ntaps = 11 * int(sps * nfilts)
taps = filter.firdes.root_raised_cosine(nfilts, nfilts * sps,
1.0, excess_bw0, ntaps)
self.test = digital.pfb_clock_sync_fff(sps, loop_bw, taps,
nfilts, init_phase,
max_rate_deviation,
osps)
self.src = blocks.null_source(gr.sizeof_float)
self.snk = blocks.null_sink(gr.sizeof_float)
self.tb.connect(self.src, self.test, self.snk)
self.tb.start()
time.sleep(0.1)
taps = filter.firdes.root_raised_cosine(nfilts, nfilts * sps,
1.0, excess_bw1, ntaps)
self.test.update_taps(taps)
self.tb.stop()
self.tb.wait()
self.assertTrue(True)
if __name__ == '__main__':
gr_unittest.run(test_pfb_clock_sync)
|