summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital/qa_ofdm_sync_sc_cfb.py
blob: 254479363ee40d2b6c1556f2bf19d71f6635e571 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
#
# Copyright 2012,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#


import random
import numpy

from gnuradio import gr, gr_unittest, blocks, analog, channels
from gnuradio import digital
from gnuradio.digital.utils import tagged_streams
from gnuradio.digital.ofdm_txrx import ofdm_tx


def make_bpsk_burst(fft_len, cp_len, num_bits):
    """ Create a burst of a sync symbol and some BPSK bits """
    sync_symbol = [
        (random.randint(0, 1) * 2) - 1
        for x in range(fft_len // 2)
    ] * 2
    sync_symbols = sync_symbol[-cp_len:] + sync_symbol
    mod_symbols = [
        (random.randint(0, 1) * 2) - 1
        for x in range(num_bits)
    ]
    return sync_symbols + mod_symbols


class qa_ofdm_sync_sc_cfb (gr_unittest.TestCase):

    def setUp(self):
        random.seed(0)
        self.tb = gr.top_block()

    def tearDown(self):
        self.tb = None

    def test_001_detect(self):
        """ Send two bursts, with zeros in between, and check
        they are both detected at the correct position and no
        false alarms occur """
        n_zeros = 15
        fft_len = 32
        cp_len = 4
        sig_len = (fft_len + cp_len) * 10
        tx_signal = [0, ] * n_zeros + make_bpsk_burst(fft_len, cp_len, sig_len)
        tx_signal = tx_signal * 2
        add = blocks.add_cc()
        sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
        sink_freq = blocks.vector_sink_f()
        sink_detect = blocks.vector_sink_b()
        self.tb.connect(blocks.vector_source_c(tx_signal), (add, 0))
        self.tb.connect(
            analog.noise_source_c(
                analog.GR_GAUSSIAN, .01), (add, 1))
        self.tb.connect(add, sync)
        self.tb.connect((sync, 0), sink_freq)
        self.tb.connect((sync, 1), sink_detect)
        self.tb.run()
        sig1_detect = sink_detect.data()[0:len(tx_signal) // 2]
        sig2_detect = sink_detect.data()[len(tx_signal) // 2:]
        self.assertTrue(abs(sig1_detect.index(
            1) - (n_zeros + fft_len + cp_len)) < cp_len)
        self.assertTrue(abs(sig2_detect.index(
            1) - (n_zeros + fft_len + cp_len)) < cp_len)
        self.assertEqual(numpy.sum(sig1_detect), 1)
        self.assertEqual(numpy.sum(sig2_detect), 1)

    def test_002_freq(self):
        """ Add a fine frequency offset and see if that gets detected properly """
        fft_len = 32
        cp_len = 4
        # This frequency offset is normalized to rads, i.e. \pi == f_s/2
        max_freq_offset = 2 * numpy.pi / fft_len  # Otherwise, it's coarse
        freq_offset = ((2 * random.random()) - 1) * max_freq_offset
        sig_len = (fft_len + cp_len) * 10
        tx_signal = make_bpsk_burst(fft_len, cp_len, sig_len)
        sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len, True)
        sink_freq = blocks.vector_sink_f()
        sink_detect = blocks.vector_sink_b()
        channel = channels.channel_model(0.005, freq_offset / 2.0 / numpy.pi)
        self.tb.connect(blocks.vector_source_c(tx_signal), channel, sync)
        self.tb.connect((sync, 0), sink_freq)
        self.tb.connect((sync, 1), sink_detect)
        self.tb.run()
        phi_hat = sink_freq.data()[sink_detect.data().index(1)]
        est_freq_offset = 2 * phi_hat / fft_len
        self.assertAlmostEqual(est_freq_offset, freq_offset, places=2)

    def test_003_multiburst(self):
        """ Send several bursts, see if the number of detects is correct.
        Burst lengths and content are random.

        The channel is assumed AWGN for this test.
        """
        n_bursts = 42
        fft_len = 32
        cp_len = 4
        tx_signal = []
        for _ in range(n_bursts):
            gap = [0, ] * random.randint(0, 2 * fft_len)
            tx_signal += gap + \
                make_bpsk_burst(fft_len, cp_len, fft_len * random.randint(5, 23))
        # Very loose definition of SNR here
        snr = 20  # dB
        sigma = 10**(-snr / 10)
        # Add noise -- we don't use the channel model blocks, we want to keep
        # this test as self-contained as possible, and all randomness should
        # derive from random.seed() above
        def complex_randn(N): return (numpy.random.randn(
            N) + 1j * numpy.random.randn(N)) * sigma / numpy.sqrt(2)
        tx_signal += complex_randn(len(tx_signal))
        sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
        sink_freq = blocks.vector_sink_f()
        sink_detect = blocks.vector_sink_b()
        self.tb.connect(blocks.vector_source_c(tx_signal), sync)
        self.tb.connect((sync, 0), sink_freq)
        self.tb.connect((sync, 1), sink_detect)
        self.tb.run()
        n_bursts_detected = numpy.sum(sink_detect.data())
        self.assertEqual(
            n_bursts_detected, n_bursts,
            msg="Detection error (missed bursts): {}".format(
                (numpy.sum(sink_detect.data()) - n_bursts))
        )

    def test_004_ofdm_packets(self):
        """
        Send several bursts using ofdm_tx, see if the number of detects is correct.
        Burst lengths and content are random.
        """
        n_bursts = 42
        fft_len = 64
        cp_len = 16
        # Here, coarse freq offset is allowed
        max_freq_offset = 2 * numpy.pi / fft_len * 4
        freq_offset = ((2 * random.random()) - 1) * max_freq_offset
        packets = []
        tagname = "packet_length"
        min_packet_length = 10
        max_packet_length = 50
        for _ in range(n_bursts):
            packet_length = random.randint(min_packet_length,
                                           max_packet_length + 1)
            packet = [random.randint(0, 255) for i in range(packet_length)]
            packets.append(packet)
        data, tags = tagged_streams.packets_to_vectors(
            packets, tagname, vlen=1)
        src = blocks.vector_source_b(data, False, 1, tags)
        mod = ofdm_tx(packet_length_tag_key=tagname)
        sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
        sink_freq = blocks.vector_sink_f()
        sink_detect = blocks.vector_sink_b()
        noise_level = 0.005
        channel = channels.channel_model(
            noise_level, freq_offset / 2 / numpy.pi)
        self.tb.connect(src, mod, channel, sync, sink_freq)
        self.tb.connect((sync, 1), sink_detect)
        self.tb.run()
        self.assertEqual(numpy.sum(sink_detect.data()), n_bursts)


if __name__ == '__main__':
    gr_unittest.run(qa_ofdm_sync_sc_cfb)