1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
#!/usr/bin/env python
# Copyright 2012-2014 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
import sys
import numpy
import random
import numpy
from gnuradio import gr, gr_unittest, blocks, analog, digital
import pmt
def shift_tuple(vec, N):
""" Shifts a vector by N elements. Fills up with zeros. """
if N > 0:
return (0,) * N + tuple(vec[0:-N])
else:
N = -N
return tuple(vec[N:]) + (0,) * N
def rand_range(min_val, max_val):
""" Returns a random value (uniform) from the interval min_val, max_val """
return random.random() * (max_val - min_val) + min_val
class qa_ofdm_chanest_vcvc (gr_unittest.TestCase):
def setUp(self):
random.seed(0)
self.tb = gr.top_block()
def tearDown(self):
self.tb = None
def test_001_offset_2sym(self):
""" Add a frequency offset, check if it's correctly detected.
Also add some random tags and see if they come out at the correct
position. """
fft_len = 16
carr_offset = -2
sync_symbol1 = (0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0)
sync_symbol2 = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
data_symbol = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
tx_data = shift_tuple(sync_symbol1, carr_offset) + \
shift_tuple(sync_symbol2, carr_offset) + \
shift_tuple(data_symbol, carr_offset)
tag1 = gr.tag_t()
tag1.offset = 0
tag1.key = pmt.string_to_symbol("test_tag_1")
tag1.value = pmt.from_long(23)
tag2 = gr.tag_t()
tag2.offset = 2
tag2.key = pmt.string_to_symbol("test_tag_2")
tag2.value = pmt.from_long(42)
src = blocks.vector_source_c(tx_data, False, fft_len, (tag1, tag2))
chanest = digital.ofdm_chanest_vcvc(sync_symbol1, sync_symbol2, 1)
sink = blocks.vector_sink_c(fft_len)
self.tb.connect(src, chanest, sink)
self.tb.run()
self.assertEqual(shift_tuple(sink.data(), -carr_offset), data_symbol)
tags = sink.tags()
ptags = {}
for tag in tags:
ptag = gr.tag_to_python(tag)
ptags[ptag.key] = (ptag.value, ptag.offset)
if ptag.key == 'ofdm_sync_chan_taps':
ptags[ptag.key] = (None, ptag.offset)
expected_tags = {
'ofdm_sync_carr_offset': (-2, 0),
'ofdm_sync_chan_taps': (None, 0),
'test_tag_1': (23, 0),
'test_tag_2': (42, 0),
}
self.assertEqual(ptags, expected_tags)
def test_002_offset_1sym(self):
""" Add a frequency offset, check if it's correctly detected.
Difference to previous test is, it only uses one synchronisation symbol. """
fft_len = 16
carr_offset = -2
# This will not correct for +2 because it thinks carrier 14 is used
# (because of interpolation)
sync_symbol = (0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0)
data_symbol = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
tx_data = shift_tuple(sync_symbol, carr_offset) + \
shift_tuple(data_symbol, carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len)
# 17 is out of bounds!
chanest = digital.ofdm_chanest_vcvc(sync_symbol, (), 1, 0, 17)
sink = blocks.vector_sink_c(fft_len)
self.tb.connect(src, chanest, sink)
self.tb.run()
self.assertEqual(shift_tuple(sink.data(), -carr_offset), data_symbol)
tags = sink.tags()
for tag in tags:
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
carr_offset_hat = pmt.to_long(tag.value)
self.assertEqual(pmt.to_long(tag.value), carr_offset)
def test_003_channel_no_carroffset(self):
""" Add a channel, check if it's correctly estimated """
fft_len = 16
carr_offset = 0
sync_symbol1 = (0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0)
sync_symbol2 = (0, 0, 0, 1j, -1, 1, -1j, 1j,
0, 1, -1j, -1, -1j, 1, 0, 0)
data_symbol = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
tx_data = sync_symbol1 + sync_symbol2 + data_symbol
channel = [0, 0, 0, 2, -2, 2, 3j, 2, 0, 2, 2, 2, 2, 3, 0, 0]
src = blocks.vector_source_c(tx_data, False, fft_len)
chan = blocks.multiply_const_vcc(channel)
chanest = digital.ofdm_chanest_vcvc(sync_symbol1, sync_symbol2, 1)
sink = blocks.vector_sink_c(fft_len)
sink_chanest = blocks.vector_sink_c(fft_len)
self.tb.connect(src, chan, chanest, sink)
self.tb.connect((chanest, 1), sink_chanest)
self.tb.run()
tags = sink.tags()
self.assertEqual(shift_tuple(sink.data(), -carr_offset),
tuple(numpy.multiply(data_symbol, channel)))
for tag in tags:
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
self.assertEqual(pmt.to_long(tag.value), carr_offset)
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
self.assertEqual(pmt.c32vector_elements(tag.value), channel)
self.assertEqual(sink_chanest.data(), channel)
def test_004_channel_no_carroffset_1sym(self):
""" Add a channel, check if it's correctly estimated.
Only uses 1 synchronisation symbol. """
fft_len = 16
carr_offset = 0
sync_symbol = (0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0)
data_symbol = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
tx_data = sync_symbol + data_symbol
channel = [0, 0, 0, 2, 2, 2, 2, 3, 3, 2.5, 2.5, -3, -3, 1j, 1j, 0]
#channel = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)
src = blocks.vector_source_c(tx_data, False, fft_len)
chan = blocks.multiply_const_vcc(channel)
chanest = digital.ofdm_chanest_vcvc(sync_symbol, (), 1)
sink = blocks.vector_sink_c(fft_len)
sink_chanest = blocks.vector_sink_c(fft_len)
self.tb.connect(src, chan, chanest, sink)
self.tb.connect((chanest, 1), sink_chanest)
self.tb.run()
self.assertEqual(sink_chanest.data(), channel)
tags = sink.tags()
for tag in tags:
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
self.assertEqual(pmt.to_long(tag.value), carr_offset)
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
self.assertEqual(pmt.c32vector_elements(tag.value), channel)
def test_005_both_1sym_force(self):
""" Add a channel, check if it's correctly estimated.
Only uses 1 synchronisation symbol. """
fft_len = 16
carr_offset = 0
sync_symbol = (0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0)
ref_symbol = (0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0)
data_symbol = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
tx_data = sync_symbol + data_symbol
channel = [0, 0, 0, 2, 2, 2, 2.5, 3, 2.5, 2, 2.5, 3, 2, 1, 1, 0]
src = blocks.vector_source_c(tx_data, False, fft_len)
chan = blocks.multiply_const_vcc(channel)
chanest = digital.ofdm_chanest_vcvc(sync_symbol, ref_symbol, 1)
sink = blocks.vector_sink_c(fft_len)
self.tb.connect(src, chan, chanest, sink)
self.tb.run()
tags = sink.tags()
for tag in tags:
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
self.assertEqual(pmt.to_long(tag.value), carr_offset)
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
self.assertEqual(pmt.c32vector_elements(tag.value), channel)
def test_006_channel_and_carroffset(self):
""" Add a channel, check if it's correctly estimated """
fft_len = 16
carr_offset = 2
# Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# 15
sync_symbol1 = (0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0)
sync_symbol2 = (0, 0, 0, 1j, -1, 1, -1j, 1j,
0, 1, -1j, -1, -1j, 1, 0, 0)
data_symbol = (0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -1, -1, -1, 1, 0, 0)
# Channel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Shifted (0, 0, 0, 0, 0, 1j, -1, 1, -1j, 1j, 0, 1, -1j, -1, -1j, 1)
chanest_exp = [0, 0, 0, 5, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 0, 0]
tx_data = shift_tuple(sync_symbol1, carr_offset) + \
shift_tuple(sync_symbol2, carr_offset) + \
shift_tuple(data_symbol, carr_offset)
channel = list(range(fft_len))
src = blocks.vector_source_c(tx_data, False, fft_len)
chan = blocks.multiply_const_vcc(channel)
chanest = digital.ofdm_chanest_vcvc(sync_symbol1, sync_symbol2, 1)
sink = blocks.vector_sink_c(fft_len)
self.tb.connect(src, chan, chanest, sink)
self.tb.run()
tags = sink.tags()
chan_est = None
for tag in tags:
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
self.assertEqual(pmt.to_long(tag.value), carr_offset)
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
chan_est = pmt.c32vector_elements(tag.value)
self.assertEqual(chan_est, chanest_exp)
self.assertEqual(
sink.data(),
list(
numpy.multiply(
shift_tuple(
data_symbol,
carr_offset),
channel)))
def test_999_all_at_once(self):
"""docstring for test_999_all_at_once"""
fft_len = 32
# 6 carriers empty, 10 carriers full, 1 DC carrier, 10 carriers full, 5
# carriers empty
syncsym_mask = (
0,
0,
0,
0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
0,
0,
0,
0,
0)
carrier_mask = (
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0)
max_offset = 4
wgn_amplitude = 0.05
min_chan_ampl = 0.1
max_chan_ampl = 5
n_iter = 20 # The more the accurater
def run_flow_graph(sync_sym1, sync_sym2, data_sym):
top_block = gr.top_block()
carr_offset = random.randint(-max_offset / 2, max_offset / 2) * 2
tx_data = shift_tuple(sync_sym1, carr_offset) + \
shift_tuple(sync_sym2, carr_offset) + \
shift_tuple(data_sym, carr_offset)
channel = [
rand_range(
min_chan_ampl,
max_chan_ampl) *
numpy.exp(
1j *
rand_range(
0,
2 *
numpy.pi)) for x in range(fft_len)]
src = blocks.vector_source_c(tx_data, False, fft_len)
chan = blocks.multiply_const_vcc(channel)
noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude)
add = blocks.add_cc(fft_len)
chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1)
sink = blocks.vector_sink_c(fft_len)
top_block.connect(src, chan, (add, 0), chanest, sink)
top_block.connect(
noise, blocks.stream_to_vector(
gr.sizeof_gr_complex, fft_len), (add, 1))
top_block.run()
channel_est = None
carr_offset_hat = 0
rx_sym_est = [0, ] * fft_len
tags = sink.tags()
for tag in tags:
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
carr_offset_hat = pmt.to_long(tag.value)
self.assertEqual(carr_offset, carr_offset_hat)
if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
channel_est = shift_tuple(
pmt.c32vector_elements(
tag.value), carr_offset)
shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset)
for i in range(fft_len):
if shifted_carrier_mask[i] and channel_est[i]:
self.assertAlmostEqual(
channel[i], channel_est[i], places=0)
rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real
return (
carr_offset, list(
shift_tuple(
rx_sym_est, -carr_offset_hat)))
bit_errors = 0
for k in range(n_iter):
sync_sym = [(random.randint(0, 1) * 2 - 1) * syncsym_mask[i]
for i in range(fft_len)]
ref_sym = [(random.randint(0, 1) * 2 - 1) * carrier_mask[i]
for i in range(fft_len)]
data_sym = [(random.randint(0, 1) * 2 - 1) * carrier_mask[i]
for i in range(fft_len)]
data_sym[26] = 1
(carr_offset, rx_sym) = run_flow_graph(sync_sym, ref_sym, data_sym)
rx_sym_est = [0, ] * fft_len
for i in range(fft_len):
if carrier_mask[i] == 0:
continue
rx_sym_est[i] = {True: 1, False: -1}[rx_sym[i] > 0]
if rx_sym_est[i] != data_sym[i]:
bit_errors += 1
# This is much more than we could allow
self.assertTrue(bit_errors < n_iter)
if __name__ == '__main__':
gr_unittest.run(qa_ofdm_chanest_vcvc)
|