1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
#!/usr/bin/env python
#
# Copyright 2011-2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import random
import cmath
import time
from gnuradio import gr, gr_unittest, digital, filter, blocks
class test_mpsk_receiver(gr_unittest.TestCase):
def setUp(self):
self.tb = gr.top_block()
def tearDown(self):
self.tb = None
def test01(self):
# Test BPSK sync
M = 2
theta = 0
loop_bw = cmath.pi/100.0
fmin = -0.5
fmax = 0.5
mu = 0.5
gain_mu = 0.01
omega = 2
gain_omega = 0.001
omega_rel = 0.001
self.test = digital.mpsk_receiver_cc(M, theta, loop_bw,
fmin, fmax, mu, gain_mu,
omega, gain_omega,
omega_rel)
data = 10000*[complex(1,0), complex(-1,0)]
#data = [2*random.randint(0,1)-1 for x in xrange(10000)]
self.src = blocks.vector_source_c(data, False)
self.snk = blocks.vector_sink_c()
# pulse shaping interpolation filter
nfilts = 32
excess_bw = 0.35
ntaps = 11 * int(omega*nfilts)
rrc_taps0 = filter.firdes.root_raised_cosine(
nfilts, nfilts, 1.0, excess_bw, ntaps)
rrc_taps1 = filter.firdes.root_raised_cosine(
1, omega, 1.0, excess_bw, 11*omega)
self.rrc0 = filter.pfb_arb_resampler_ccf(omega, rrc_taps0)
self.rrc1 = filter.fir_filter_ccf(1, rrc_taps1)
self.tb.connect(self.src, self.rrc0, self.rrc1, self.test, self.snk)
self.tb.run()
expected_result = [-0.5*d for d in data]
dst_data = self.snk.data()
# Only Ncmp samples after Nstrt samples
Nstrt = 9000
Ncmp = 1000
expected_result = expected_result[Nstrt:Nstrt+Ncmp]
dst_data = dst_data[Nstrt:Nstrt+Ncmp]
#for e,d in zip(expected_result, dst_data):
# print "{0:+.02f} {1:+.02f}".format(e, d)
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
def test02(self):
# Test QPSK sync
M = 4
theta = 0
loop_bw = cmath.pi/100.0
fmin = -0.5
fmax = 0.5
mu = 0.5
gain_mu = 0.01
omega = 2
gain_omega = 0.001
omega_rel = 0.001
self.test = digital.mpsk_receiver_cc(M, theta, loop_bw,
fmin, fmax, mu, gain_mu,
omega, gain_omega,
omega_rel)
data = 10000*[complex( 0.707, 0.707),
complex(-0.707, 0.707),
complex(-0.707, -0.707),
complex( 0.707, -0.707)]
data = [0.5*d for d in data]
self.src = blocks.vector_source_c(data, False)
self.snk = blocks.vector_sink_c()
# pulse shaping interpolation filter
nfilts = 32
excess_bw = 0.35
ntaps = 11 * int(omega*nfilts)
rrc_taps0 = filter.firdes.root_raised_cosine(
nfilts, nfilts, 1.0, excess_bw, ntaps)
rrc_taps1 = filter.firdes.root_raised_cosine(
1, omega, 1.0, excess_bw, 11*omega)
self.rrc0 = filter.pfb_arb_resampler_ccf(omega, rrc_taps0)
self.rrc1 = filter.fir_filter_ccf(1, rrc_taps1)
self.tb.connect(self.src, self.rrc0, self.rrc1, self.test, self.snk)
self.tb.run()
expected_result = 10000*[complex(-0.5, +0.0), complex(+0.0, -0.5),
complex(+0.5, +0.0), complex(+0.0, +0.5)]
dst_data = self.snk.data()
# Only Ncmp samples after Nstrt samples
Nstrt = 9000
Ncmp = 1000
expected_result = expected_result[Nstrt:Nstrt+Ncmp]
dst_data = dst_data[Nstrt:Nstrt+Ncmp]
#for e,d in zip(expected_result, dst_data):
# print "{0:+.02f} {1:+.02f}".format(e, d)
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
if __name__ == '__main__':
gr_unittest.run(test_mpsk_receiver, "test_mpsk_receiver.xml")
|