1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#!/usr/bin/env python
#
# Copyright 2020 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
from gnuradio import gr, gr_unittest
from gnuradio import blocks
import random
import numpy
from gnuradio import digital
from gnuradio import channels
class qa_meas_evm_cc(gr_unittest.TestCase):
def setUp(self):
random.seed(987654)
self.tb = gr.top_block()
self.num_data = num_data = 1000
def tearDown(self):
self.tb = None
def test_qpsk(self):
# set up fg
expected_result = list(numpy.zeros((self.num_data,)))
self.cons = cons = digital.constellation_qpsk().base()
self.data = data = [random.randrange(
len(cons.points())) for x in range(self.num_data)]
self.symbols = symbols = numpy.squeeze(
[cons.map_to_points_v(i) for i in data])
evm = digital.meas_evm_cc(cons, digital.evm_measurement_t.EVM_PERCENT)
vso = blocks.vector_source_c(symbols, False, 1, [])
# mc = blocks.multiply_const_cc(3.0+2.0j)
vsi = blocks.vector_sink_f()
self.tb.connect(vso, evm, vsi)
self.tb.run()
# check data
output_data = vsi.data()
self.assertEqual(expected_result, output_data)
def test_qpsk_nonzeroevm(self):
# set up fg
expected_result = list(numpy.zeros((self.num_data,)))
self.cons = cons = digital.constellation_qpsk().base()
self.data = data = [random.randrange(
len(cons.points())) for x in range(self.num_data)]
self.symbols = symbols = numpy.squeeze(
[cons.map_to_points_v(i) for i in data])
evm = digital.meas_evm_cc(cons, digital.evm_measurement_t.EVM_PERCENT)
vso = blocks.vector_source_c(symbols, False, 1, [])
mc = blocks.multiply_const_cc(3.0 + 2.0j)
vsi = blocks.vector_sink_f()
self.tb.connect(vso, mc, evm, vsi)
self.tb.run()
# check data
output_data = vsi.data()
self.assertNotEqual(expected_result, output_data)
def test_qpsk_channel(self):
upper_bound = list(50.0 * numpy.ones((self.num_data,)))
lower_bound = list(0.0 * numpy.zeros((self.num_data,)))
self.cons = cons = digital.constellation_qpsk().base()
self.data = data = [random.randrange(
len(cons.points())) for x in range(self.num_data)]
self.symbols = symbols = numpy.squeeze(
[cons.map_to_points_v(i) for i in data])
chan = channels.channel_model(
noise_voltage=0.1,
frequency_offset=0.0,
epsilon=1.0,
taps=[1.0 + 0.0j],
noise_seed=0,
block_tags=False)
evm = digital.meas_evm_cc(cons, digital.evm_measurement_t.EVM_PERCENT)
vso = blocks.vector_source_c(symbols, False, 1, [])
mc = blocks.multiply_const_cc(3.0 + 2.0j)
vsi = blocks.vector_sink_f()
self.tb.connect(vso, chan, evm, vsi)
self.tb.run()
# check data
output_data = vsi.data()
self.assertLess(output_data, upper_bound)
self.assertGreater(output_data, lower_bound)
def test_qam16_channel(self):
upper_bound = list(50.0 * numpy.ones((self.num_data,)))
lower_bound = list(0.0 * numpy.zeros((self.num_data,)))
self.cons = cons = digital.constellation_16qam().base()
self.data = data = [random.randrange(
len(cons.points())) for x in range(self.num_data)]
self.symbols = symbols = numpy.squeeze(
[cons.map_to_points_v(i) for i in data])
chan = channels.channel_model(
noise_voltage=0.1,
frequency_offset=0.0,
epsilon=1.0,
taps=[1.0 + 0.0j],
noise_seed=0,
block_tags=False)
evm = digital.meas_evm_cc(cons, digital.evm_measurement_t.EVM_PERCENT)
vso = blocks.vector_source_c(symbols, False, 1, [])
mc = blocks.multiply_const_cc(3.0 + 2.0j)
vsi = blocks.vector_sink_f()
self.tb.connect(vso, chan, evm, vsi)
self.tb.run()
# check data
output_data = vsi.data()
self.assertLess(output_data, upper_bound)
self.assertGreater(output_data, lower_bound)
if __name__ == '__main__':
gr_unittest.run(qa_meas_evm_cc)
|