summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital/qa_linear_equalizer.py
blob: 1ad3c3bece53f52f0dfb857b2d9c37404fa88e89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
#
# Copyright 2020 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#

from gnuradio import gr, gr_unittest

import random
import numpy
from gnuradio import digital, blocks, channels


class qa_linear_equalizer(gr_unittest.TestCase):

    def unpack_values(self, values_in, bits_per_value, bits_per_symbol):
        # verify that 8 is divisible by bits_per_symbol
        m = bits_per_value / bits_per_symbol
        # print(m)
        mask = 2**(bits_per_symbol) - 1

        if bits_per_value != m * bits_per_symbol:
            print(
                "error - bits per symbols must fit nicely into bits_per_value bit values")
            return []

        num_values = len(values_in)
        num_symbols = int(num_values * (m))

        cur_byte = 0
        cur_bit = 0
        out = []
        for i in range(num_symbols):
            s = (
                values_in[cur_byte] >> (
                    bits_per_value -
                    bits_per_symbol -
                    cur_bit)) & mask
            out.append(s)
            cur_bit += bits_per_symbol

            if cur_bit >= bits_per_value:
                cur_bit = 0
                cur_byte += 1

        return out

    def map_symbols_to_constellation(self, symbols, cons):
        l = list(map(lambda x: cons.points()[x], symbols))
        return l

    def setUp(self):
        random.seed(987654)
        self.tb = gr.top_block()
        self.num_data = num_data = 10000

        self.sps = sps = 4
        self.eb = eb = 0.35
        self.preamble = preamble = [
            0x27,
            0x2F,
            0x18,
            0x5D,
            0x5B,
            0x2A,
            0x3F,
            0x71,
            0x63,
            0x3C,
            0x17,
            0x0C,
            0x0A,
            0x41,
            0xD6,
            0x1F,
            0x4C,
            0x23,
            0x65,
            0x68,
            0xED,
            0x1C,
            0x77,
            0xA7,
            0x0E,
            0x0A,
            0x9E,
            0x47,
            0x82,
            0xA4,
            0x57,
            0x24,
        ]

        self.payload_size = payload_size = 300  # bytes
        self.data = data = [0] * 4 + \
            [random.getrandbits(8) for i in range(payload_size)]
        self.gain = gain = .001  # LMS gain
        self.corr_thresh = corr_thresh = 3e6
        self.num_taps = num_taps = 16

    def tearDown(self):
        self.tb = None

    def transform(self, src_data, gain, const):
        SRC = blocks.vector_source_c(src_data, False)
        EQU = digital.lms_dd_equalizer_cc(4, gain, 1, const.base())
        DST = blocks.vector_sink_c()
        self.tb.connect(SRC, EQU, DST)
        self.tb.run()
        return DST.data()

    def test_001_identity(self):
        # Constant modulus signal so no adjustments
        const = digital.constellation_qpsk()
        src_data = const.points() * 1000

        N = 100  # settling time
        expected_data = src_data[N:]
        result = self.transform(src_data, 0.1, const)[N:]

        N = -500
        self.assertComplexTuplesAlmostEqual(expected_data[N:], result[N:], 5)

    def test_qpsk_3tap_lms_training(self):
        # set up fg
        gain = 0.01  # LMS gain
        num_taps = 16
        num_samp = 2000
        num_test = 500
        cons = digital.constellation_qpsk().base()
        rxmod = digital.generic_mod(
            cons, False, self.sps, True, self.eb, False, False)
        modulated_sync_word_pre = digital.modulate_vector_bc(
            rxmod.to_basic_block(), self.preamble + self.preamble, [1])
        # compensate for the RRC filter delay
        modulated_sync_word = modulated_sync_word_pre[86:(512 + 86)]
        corr_max = numpy.abs(
            numpy.dot(
                modulated_sync_word,
                numpy.conj(modulated_sync_word)))
        corr_calc = self.corr_thresh / (corr_max * corr_max)
        preamble_symbols = self.map_symbols_to_constellation(
            self.unpack_values(self.preamble, 8, 2), cons)

        alg = digital.adaptive_algorithm_lms(cons, gain).base()
        evm = digital.meas_evm_cc(cons, digital.evm_measurement_t.EVM_PERCENT)
        leq = digital.linear_equalizer(
            num_taps,
            self.sps,
            alg,
            False,
            preamble_symbols,
            'corr_est')
        correst = digital.corr_est_cc(
            modulated_sync_word,
            self.sps,
            12,
            corr_calc,
            digital.THRESHOLD_ABSOLUTE)
        constmod = digital.generic_mod(
            constellation=cons,
            differential=False,
            samples_per_symbol=4,
            pre_diff_code=True,
            excess_bw=0.35,
            verbose=False,
            log=False)
        chan = channels.channel_model(
            noise_voltage=0.0,
            frequency_offset=0.0,
            epsilon=1.0,
            taps=(1.0 + 1.0j, 0.63 - .22j, -.1 + .07j),
            noise_seed=0,
            block_tags=False)
        vso = blocks.vector_source_b(self.preamble + self.data, True, 1, [])
        head = blocks.head(gr.sizeof_float * 1, num_samp)
        vsi = blocks.vector_sink_f()

        self.tb.connect(vso, constmod, chan, correst, leq, evm, head, vsi)
        self.tb.run()

        # look at the last 1000 samples, should converge quickly, below 5% EVM
        upper_bound = list(20.0 * numpy.ones((num_test,)))
        lower_bound = list(0.0 * numpy.zeros((num_test,)))
        output_data = vsi.data()
        output_data = output_data[-num_test:]
        self.assertLess(output_data, upper_bound)
        self.assertGreater(output_data, lower_bound)


if __name__ == '__main__':
    gr_unittest.run(qa_linear_equalizer)