1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
#!/usr/bin/env python
#
# Copyright 2011,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
import random
import math
import pmt
from gnuradio import gr, gr_unittest, filter, analog, blocks, digital
from gnuradio.digital.utils import mod_codes, alignment
from gnuradio.digital import packet_utils
from gnuradio.digital.generic_mod_demod import generic_mod, generic_demod
from qa_constellation import tested_constellations, twod_constell
# Set a seed so that if errors turn up they are reproducible.
SEED = 1239
# TESTING PARAMETERS
# The number of symbols to test with.
# We need this many to let the frequency recovery block converge.
DATA_LENGTH = 1000
# Test fails if fraction of output that is correct is less than this.
EASY_REQ_CORRECT = 0.9
# For constellations that aren't expected to work so well.
MEDIUM_REQ_CORRECT = 0.8
# CHANNEL PARAMETERS
NOISE_VOLTAGE = 0.01
FREQUENCY_OFFSET = 0.01
TIMING_OFFSET = 1.0
# RECEIVER PARAMETERS
FREQ_BW = 2 * math.pi / 100.0
PHASE_BW = 2 * math.pi / 100.0
class channel_model(gr.hier_block2):
def __init__(self, noise_voltage, freq, timing):
gr.hier_block2.__init__(self, "channel_model",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(1, 1, gr.sizeof_gr_complex))
timing_offset = filter.mmse_resampler_cc(0, timing)
noise_adder = blocks.add_cc()
noise = analog.noise_source_c(analog.GR_GAUSSIAN,
noise_voltage, 0)
freq_offset = analog.sig_source_c(1, analog.GR_SIN_WAVE,
freq, 1.0, 0.0)
mixer_offset = blocks.multiply_cc()
self.connect(self, timing_offset)
self.connect(timing_offset, (mixer_offset, 0))
self.connect(freq_offset, (mixer_offset, 1))
self.connect(mixer_offset, (noise_adder, 1))
self.connect(noise, (noise_adder, 0))
self.connect(noise_adder, self)
class test_constellation_receiver(gr_unittest.TestCase):
# We ignore the first half of the output data since often it takes
# a while for the receiver to lock on.
ignore_fraction = 0.8
max_data_length = DATA_LENGTH * 6
max_num_samples = 1000
def setUp(self):
random.seed(0)
def test_basic(self):
"""
Tests a bunch of different constellations by using generic
modulation, a channel, and generic demodulation. The generic
demodulation uses constellation_receiver which is what
we're really trying to test.
"""
rndm = random.Random()
rndm.seed(SEED)
# Assumes not more than 64 points in a constellation
# Generates some random input data to use.
self.src_data = tuple(
[rndm.randint(0, 1) for i in range(0, self.max_data_length)])
# Generates some random indices to use for comparing input and
# output data (a full comparison is too slow in python).
self.indices = alignment.random_sample(
self.max_data_length, self.max_num_samples, SEED)
requirements = (
(EASY_REQ_CORRECT,
tested_constellations(
easy=True,
medium=False,
difficult=False)),
(MEDIUM_REQ_CORRECT,
tested_constellations(
easy=False,
medium=True,
difficult=False)),
)
for req_correct, tcs in requirements:
for constellation, differential in tcs:
# The constellation_receiver doesn't work for constellations
# of multiple dimensions (i.e. multiple complex numbers to a
# single symbol).
# That is not implemented since the receiver has no way of
# knowing where the beginning of a symbol is.
# It also doesn't work for non-differential modulation.
if constellation.dimensionality() != 1 or not differential:
continue
data_length = DATA_LENGTH * constellation.bits_per_symbol()
tb = rec_test_tb(constellation, differential,
src_data=self.src_data[:data_length])
tb.run()
data = tb.dst.data()
d1 = tb.src_data[:int(len(tb.src_data) * self.ignore_fraction)]
d2 = data[:int(len(data) * self.ignore_fraction)]
correct, overlap, offset, indices = alignment.align_sequences(
d1, d2, indices=self.indices)
if correct <= req_correct:
print(
"Constellation is {0}. Differential is {1}. Required correct is {2}. Correct is {3}. FAIL.". format(
constellation, differential, req_correct, correct))
self.assertTrue(correct > req_correct)
def test_tag(self):
# Send data through bpsk receiver
# followed by qpsk receiver
data = [0.9 + 0j, 0.1 + 0.9j, -1 - 0.1j, -0.1 - 0.6j] * 2
bpsk_data = [1, 1, 0, 0]
qpsk_data = [1, 3, 0, 0]
first_tag = gr.tag_t()
first_tag.key = pmt.intern("set_constellation")
first_tag.value = digital.bpsk_constellation().as_pmt()
first_tag.offset = 0
second_tag = gr.tag_t()
second_tag.key = pmt.intern("set_constellation")
second_tag.value = digital.qpsk_constellation().as_pmt()
second_tag.offset = 4
src = blocks.vector_source_c(data, False, 1, [first_tag, second_tag])
decoder = digital.constellation_receiver_cb(
digital.bpsk_constellation().base(), 0, 0, 0)
snk = blocks.vector_sink_b()
tb = gr.top_block()
tb.connect(src, decoder, snk)
tb.run()
self.assertEqual(list(snk.data()), bpsk_data + qpsk_data)
class rec_test_tb(gr.top_block):
"""
Takes a constellation an runs a generic modulation, channel,
and generic demodulation.
"""
def __init__(self, constellation, differential,
data_length=None, src_data=None, freq_offset=True):
"""
Args:
constellation: a constellation object
differential: whether differential encoding is used
data_length: the number of bits of data to use
src_data: a list of the bits to use
freq_offset: whether to use a frequency offset in the channel
"""
super(rec_test_tb, self).__init__()
# Transmission Blocks
if src_data is None:
self.src_data = tuple([random.randint(0, 1)
for i in range(0, data_length)])
else:
self.src_data = src_data
packer = blocks.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST)
src = blocks.vector_source_b(self.src_data)
mod = generic_mod(constellation, differential=differential)
# Channel
if freq_offset:
channel = channel_model(
NOISE_VOLTAGE, FREQUENCY_OFFSET, TIMING_OFFSET)
else:
channel = channel_model(NOISE_VOLTAGE, 0, TIMING_OFFSET)
# Receiver Blocks
if freq_offset:
demod = generic_demod(constellation, differential=differential,
freq_bw=FREQ_BW,
phase_bw=PHASE_BW)
else:
demod = generic_demod(constellation, differential=differential,
freq_bw=0, phase_bw=0)
self.dst = blocks.vector_sink_b()
self.connect(src, packer, mod, channel, demod, self.dst)
if __name__ == '__main__':
gr_unittest.run(test_constellation_receiver)
|