summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital/qa_clock_recovery_mm.py
blob: 1475eacf15f895395c6ec42bc5c8aaaf149553b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
#
# Copyright 2011-2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#


import random
import cmath

from gnuradio import gr, gr_unittest, digital, blocks


class test_clock_recovery_mm(gr_unittest.TestCase):

    def setUp(self):
        random.seed(0)
        self.tb = gr.top_block()

    def tearDown(self):
        self.tb = None

    def test01(self):
        # Test complex/complex version
        omega = 2
        gain_omega = 0.001
        mu = 0.5
        gain_mu = 0.01
        omega_rel_lim = 0.001

        self.test = digital.clock_recovery_mm_cc(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 100 * [complex(1, 1), ]
        self.src = blocks.vector_source_c(data, False)
        self.snk = blocks.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        # doesn't quite get to 1.0
        expected_result = 100 * [complex(0.99972, 0.99972)]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 30
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5)

    def test02(self):
        # Test float/float version
        omega = 2
        gain_omega = 0.01
        mu = 0.5
        gain_mu = 0.01
        omega_rel_lim = 0.001

        self.test = digital.clock_recovery_mm_ff(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 100 * [1, ]
        self.src = blocks.vector_source_f(data, False)
        self.snk = blocks.vector_sink_f()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 100 * [0.9997, ]  # doesn't quite get to 1.0
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 30
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 4)

    def test03(self):
        # Test complex/complex version with varying input
        omega = 2
        gain_omega = 0.01
        mu = 0.25
        gain_mu = 0.01
        omega_rel_lim = 0.0001

        self.test = digital.clock_recovery_mm_cc(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 1000 * [complex(1, 1), complex(1, 1),
                       complex(-1, -1), complex(-1, -1)]
        self.src = blocks.vector_source_c(data, False)
        self.snk = blocks.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 1000 * [complex(-1.2, -1.2), complex(1.2, 1.2)]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 100
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)

    def test04(self):
        # Test float/float version
        omega = 2
        gain_omega = 0.01
        mu = 0.25
        gain_mu = 0.1
        omega_rel_lim = 0.001

        self.test = digital.clock_recovery_mm_ff(omega, gain_omega,
                                                 mu, gain_mu,
                                                 omega_rel_lim)

        data = 1000 * [1, 1, -1, -1]
        self.src = blocks.vector_source_f(data, False)
        self.snk = blocks.vector_sink_f()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 1000 * [-1.2, 1.2]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 100
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        # print expected_result
        # print dst_data

        self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 1)


if __name__ == '__main__':
    gr_unittest.run(test_clock_recovery_mm)