1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
#
# GFSK modulation and demodulation.
#
#
# Copyright 2005-2007,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
# See gnuradio-examples/python/digital for examples
from math import log as ln
import numpy
from gnuradio import gr
from gnuradio import analog
from gnuradio import blocks, filter
from . import modulation_utils
from . import digital_python as digital
# default values (used in __init__ and add_options)
_def_samples_per_symbol = 2
_def_sensitivity = 1
_def_bt = 0.35
_def_verbose = False
_def_log = False
_def_do_unpack = True
_def_gain_mu = None
_def_mu = 0.5
_def_freq_error = 0.0
_def_omega_relative_limit = 0.005
# FIXME: Figure out how to make GFSK work with pfb_arb_resampler_fff for both
# transmit and receive so we don't require integer samples per symbol.
# /////////////////////////////////////////////////////////////////////////////
# GFSK modulator
# /////////////////////////////////////////////////////////////////////////////
class gfsk_mod(gr.hier_block2):
def __init__(self,
samples_per_symbol=_def_samples_per_symbol,
sensitivity=_def_sensitivity,
bt=_def_bt,
verbose=_def_verbose,
log=_def_log,
do_unpack=_def_do_unpack):
"""
Hierarchical block for Gaussian Frequency Shift Key (GFSK)
modulation.
The input is a byte stream (unsigned char) and the
output is the complex modulated signal at baseband.
Args:
samples_per_symbol: samples per baud >= 2 (integer)
bt: Gaussian filter bandwidth * symbol time (float)
verbose: Print information about modulator? (bool)
debug: Print modualtion data to files? (bool)
unpack: Unpack input byte stream? (bool)
"""
gr.hier_block2.__init__(self, "gfsk_mod",
gr.io_signature(1, 1, gr.sizeof_char), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
samples_per_symbol = int(samples_per_symbol)
self._samples_per_symbol = samples_per_symbol
self._bt = bt
self._differential = False
if not isinstance(samples_per_symbol, int) or samples_per_symbol < 2:
raise TypeError("samples_per_symbol must be an integer >= 2, is %r" % (samples_per_symbol,))
ntaps = 4 * samples_per_symbol # up to 3 bits in filter at once
#sensitivity = (pi / 2) / samples_per_symbol # phase change per bit = pi / 2
# Turn it into NRZ data.
#self.nrz = digital.bytes_to_syms()
self.nrz = digital.chunks_to_symbols_bf([-1, 1])
# Form Gaussian filter
# Generate Gaussian response (Needs to be convolved with window below).
self.gaussian_taps = filter.firdes.gaussian(
1.0, # gain
samples_per_symbol, # symbol_rate
bt, # bandwidth * symbol time
ntaps # number of taps
)
self.sqwave = (1,) * samples_per_symbol # rectangular window
self.taps = numpy.convolve(numpy.array(self.gaussian_taps),numpy.array(self.sqwave))
self.gaussian_filter = filter.interp_fir_filter_fff(samples_per_symbol, self.taps)
# FM modulation
self.fmmod = analog.frequency_modulator_fc(sensitivity)
# small amount of output attenuation to prevent clipping USRP sink
self.amp = blocks.multiply_const_cc(0.999)
if verbose:
self._print_verbage()
if log:
self._setup_logging()
# Connect & Initialize base class
if do_unpack:
self.unpack = blocks.packed_to_unpacked_bb(1, gr.GR_MSB_FIRST)
self.connect(self, self.unpack, self.nrz, self.gaussian_filter, self.fmmod, self.amp, self)
else:
self.connect(self, self.nrz, self.gaussian_filter, self.fmmod, self.amp, self)
def samples_per_symbol(self):
return self._samples_per_symbol
@staticmethod
def bits_per_symbol(self=None): # staticmethod that's also callable on an instance
return 1
def _print_verbage(self):
print("bits per symbol = %d" % self.bits_per_symbol())
print("Gaussian filter bt = %.2f" % self._bt)
def _setup_logging(self):
print("Modulation logging turned on.")
self.connect(self.nrz,
blocks.file_sink(gr.sizeof_float, "nrz.dat"))
self.connect(self.gaussian_filter,
blocks.file_sink(gr.sizeof_float, "gaussian_filter.dat"))
self.connect(self.fmmod,
blocks.file_sink(gr.sizeof_gr_complex, "fmmod.dat"))
@staticmethod
def add_options(parser):
"""
Adds GFSK modulation-specific options to the standard parser
"""
parser.add_option("", "--bt", type="float", default=_def_bt,
help="set bandwidth-time product [default=%default] (GFSK)")
@staticmethod
def extract_kwargs_from_options(options):
"""
Given command line options, create dictionary suitable for passing to __init__
"""
return modulation_utils.extract_kwargs_from_options(gfsk_mod.__init__,
('self',), options)
# /////////////////////////////////////////////////////////////////////////////
# GFSK demodulator
# /////////////////////////////////////////////////////////////////////////////
class gfsk_demod(gr.hier_block2):
def __init__(self,
samples_per_symbol=_def_samples_per_symbol,
sensitivity=_def_sensitivity,
gain_mu=_def_gain_mu,
mu=_def_mu,
omega_relative_limit=_def_omega_relative_limit,
freq_error=_def_freq_error,
verbose=_def_verbose,
log=_def_log):
"""
Hierarchical block for Gaussian Minimum Shift Key (GFSK)
demodulation.
The input is the complex modulated signal at baseband.
The output is a stream of bits packed 1 bit per byte (the LSB)
Args:
samples_per_symbol: samples per baud (integer)
verbose: Print information about modulator? (bool)
log: Print modualtion data to files? (bool)
Clock recovery parameters. These all have reasonable defaults.
Args:
gain_mu: controls rate of mu adjustment (float)
mu: unused but unremoved for backward compatibility (unused)
omega_relative_limit: sets max variation in omega (float, typically 0.000200 (200 ppm))
freq_error: bit rate error as a fraction
float:
"""
gr.hier_block2.__init__(self, "gfsk_demod",
gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
gr.io_signature(1, 1, gr.sizeof_char)) # Output signature
self._samples_per_symbol = samples_per_symbol
self._gain_mu = gain_mu
self._omega_relative_limit = omega_relative_limit
self._freq_error = freq_error
self._differential = False
if samples_per_symbol < 2:
raise TypeError("samples_per_symbol >= 2, is %f" % samples_per_symbol)
self._omega = samples_per_symbol*(1+self._freq_error)
if not self._gain_mu:
self._gain_mu = 0.175
self._gain_omega = .25 * self._gain_mu * self._gain_mu # critically damped
self._damping = 1.0
self._loop_bw = -ln((self._gain_mu + self._gain_omega)/(-2.0) + 1) # critically damped
self._max_dev = self._omega_relative_limit * self._samples_per_symbol
# Demodulate FM
#sensitivity = (pi / 2) / samples_per_symbol
self.fmdemod = analog.quadrature_demod_cf(1.0 / sensitivity)
# the clock recovery block tracks the symbol clock and resamples as needed.
# the output of the block is a stream of soft symbols (float)
self.clock_recovery = self.digital_symbol_sync_xx_0 = digital.symbol_sync_ff(digital.TED_MUELLER_AND_MULLER,
self._omega,
self._loop_bw,
self._damping,
1.0, # Expected TED gain
self._max_dev,
1, # Output sps
digital.constellation_bpsk().base(),
digital.IR_MMSE_8TAP,
128,
[])
# slice the floats at 0, outputting 1 bit (the LSB of the output byte) per sample
self.slicer = digital.binary_slicer_fb()
if verbose:
self._print_verbage()
if log:
self._setup_logging()
# Connect & Initialize base class
self.connect(self, self.fmdemod, self.clock_recovery, self.slicer, self)
def samples_per_symbol(self):
return self._samples_per_symbol
@staticmethod
def bits_per_symbol(self=None): # staticmethod that's also callable on an instance
return 1
def _print_verbage(self):
print("bits per symbol = %d" % self.bits_per_symbol())
print("Symbol Sync M&M omega = %f" % self._omega)
print("Symbol Sync M&M gain mu = %f" % self._gain_mu)
print("M&M clock recovery mu (Unused) = %f" % self._mu)
print("Symbol Sync M&M omega rel. limit = %f" % self._omega_relative_limit)
print("frequency error = %f" % self._freq_error)
def _setup_logging(self):
print("Demodulation logging turned on.")
self.connect(self.fmdemod,
blocks.file_sink(gr.sizeof_float, "fmdemod.dat"))
self.connect(self.clock_recovery,
blocks.file_sink(gr.sizeof_float, "clock_recovery.dat"))
self.connect(self.slicer,
blocks.file_sink(gr.sizeof_char, "slicer.dat"))
@staticmethod
def add_options(parser):
"""
Adds GFSK demodulation-specific options to the standard parser
"""
parser.add_option("", "--gain-mu", type="float", default=_def_gain_mu,
help="Symbol Sync M&M gain mu [default=%default] (GFSK/PSK)")
parser.add_option("", "--mu", type="float", default=_def_mu,
help="M&M clock recovery mu [default=%default] (Unused)")
parser.add_option("", "--omega-relative-limit", type="float", default=_def_omega_relative_limit,
help="Symbol Sync M&M omega relative limit [default=%default] (GFSK/PSK)")
parser.add_option("", "--freq-error", type="float", default=_def_freq_error,
help="Symbol Sync M&M frequency error [default=%default] (GFSK)")
@staticmethod
def extract_kwargs_from_options(options):
"""
Given command line options, create dictionary suitable for passing to __init__
"""
return modulation_utils.extract_kwargs_from_options(gfsk_demod.__init__,
('self',), options)
#
# Add these to the mod/demod registry
#
modulation_utils.add_type_1_mod('gfsk', gfsk_mod)
modulation_utils.add_type_1_demod('gfsk', gfsk_demod)
|