1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
/* -*- c++ -*- */
/*
* Copyright 2009,2010,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cmath>
#include <cstdio>
#include "pfb_clock_sync_fff_impl.h"
#include <gnuradio/io_signature.h>
#include <gnuradio/math.h>
namespace gr {
namespace digital {
pfb_clock_sync_fff::sptr pfb_clock_sync_fff::make(double sps,
float gain,
const std::vector<float>& taps,
unsigned int filter_size,
float init_phase,
float max_rate_deviation,
int osps)
{
return gnuradio::get_initial_sptr(new pfb_clock_sync_fff_impl(
sps, gain, taps, filter_size, init_phase, max_rate_deviation, osps));
}
static int ios[] = { sizeof(float), sizeof(float), sizeof(float), sizeof(float) };
static std::vector<int> iosig(ios, ios + sizeof(ios) / sizeof(int));
pfb_clock_sync_fff_impl::pfb_clock_sync_fff_impl(double sps,
float loop_bw,
const std::vector<float>& taps,
unsigned int filter_size,
float init_phase,
float max_rate_deviation,
int osps)
: block("pfb_clock_sync_fff",
io_signature::make(1, 1, sizeof(float)),
io_signature::makev(1, 4, iosig)),
d_updated(false),
d_nfilters(filter_size),
d_max_dev(max_rate_deviation),
d_osps(osps),
d_error(0),
d_out_idx(0)
{
if (taps.empty())
throw std::runtime_error("pfb_clock_sync_fff: please specify a filter.");
// Let scheduler adjust our relative_rate.
enable_update_rate(true);
d_sps = floor(sps);
// Set the damping factor for a critically damped system
d_damping = 2 * d_nfilters;
// Set the bandwidth, which will then call update_gains()
set_loop_bandwidth(loop_bw);
// Store the last filter between calls to work
// The accumulator keeps track of overflow to increment the stride correctly.
// set it here to the fractional difference based on the initial phaes
d_k = init_phase;
d_rate = (sps - floor(sps)) * (double)d_nfilters;
d_rate_i = (int)floor(d_rate);
d_rate_f = d_rate - (float)d_rate_i;
d_filtnum = (int)floor(d_k);
d_filters = std::vector<kernel::fir_filter_fff*>(d_nfilters);
d_diff_filters = std::vector<kernel::fir_filter_fff*>(d_nfilters);
// Create an FIR filter for each channel and zero out the taps
std::vector<float> vtaps(1, 0);
for (int i = 0; i < d_nfilters; i++) {
d_filters[i] = new kernel::fir_filter_fff(1, vtaps);
d_diff_filters[i] = new kernel::fir_filter_fff(1, vtaps);
}
// Now, actually set the filters' taps
std::vector<float> dtaps;
create_diff_taps(taps, dtaps);
set_taps(taps, d_taps, d_filters);
set_taps(dtaps, d_dtaps, d_diff_filters);
set_relative_rate((uint64_t)d_osps, (uint64_t)d_sps);
}
pfb_clock_sync_fff_impl::~pfb_clock_sync_fff_impl()
{
for (int i = 0; i < d_nfilters; i++) {
delete d_filters[i];
delete d_diff_filters[i];
}
}
bool pfb_clock_sync_fff_impl::check_topology(int ninputs, int noutputs)
{
return noutputs == 1 || noutputs == 4;
}
void pfb_clock_sync_fff_impl::forecast(int noutput_items,
gr_vector_int& ninput_items_required)
{
unsigned ninputs = ninput_items_required.size();
for (unsigned i = 0; i < ninputs; i++)
ninput_items_required[i] = (noutput_items + history()) * (d_sps / d_osps);
}
void pfb_clock_sync_fff_impl::update_taps(const std::vector<float>& taps)
{
d_updated_taps = taps;
d_updated = true;
}
/*******************************************************************
SET FUNCTIONS
*******************************************************************/
void pfb_clock_sync_fff_impl::set_loop_bandwidth(float bw)
{
if (bw < 0) {
throw std::out_of_range("pfb_clock_sync_fff: invalid bandwidth. Must be >= 0.");
}
d_loop_bw = bw;
update_gains();
}
void pfb_clock_sync_fff_impl::set_damping_factor(float df)
{
if (df < 0 || df > 1.0) {
throw std::out_of_range(
"pfb_clock_sync_fff: invalid damping factor. Must be in [0,1].");
}
d_damping = df;
update_gains();
}
void pfb_clock_sync_fff_impl::set_alpha(float alpha)
{
if (alpha < 0 || alpha > 1.0) {
throw std::out_of_range("pfb_clock_sync_fff: invalid alpha. Must be in [0,1].");
}
d_alpha = alpha;
}
void pfb_clock_sync_fff_impl::set_beta(float beta)
{
if (beta < 0 || beta > 1.0) {
throw std::out_of_range("pfb_clock_sync_fff: invalid beta. Must be in [0,1].");
}
d_beta = beta;
}
/*******************************************************************
GET FUNCTIONS
*******************************************************************/
float pfb_clock_sync_fff_impl::loop_bandwidth() const { return d_loop_bw; }
float pfb_clock_sync_fff_impl::damping_factor() const { return d_damping; }
float pfb_clock_sync_fff_impl::alpha() const { return d_alpha; }
float pfb_clock_sync_fff_impl::beta() const { return d_beta; }
float pfb_clock_sync_fff_impl::clock_rate() const { return d_rate_f; }
/*******************************************************************
*******************************************************************/
void pfb_clock_sync_fff_impl::update_gains()
{
const float denom = (1.0 + 2.0 * d_damping * d_loop_bw + d_loop_bw * d_loop_bw);
d_alpha = (4 * d_damping * d_loop_bw) / denom;
d_beta = (4 * d_loop_bw * d_loop_bw) / denom;
}
void pfb_clock_sync_fff_impl::set_taps(const std::vector<float>& newtaps,
std::vector<std::vector<float>>& ourtaps,
std::vector<kernel::fir_filter_fff*>& ourfilter)
{
int i, j;
const unsigned int ntaps = newtaps.size();
d_taps_per_filter = (unsigned int)ceil((double)ntaps / (double)d_nfilters);
// Create d_numchan vectors to store each channel's taps
ourtaps.resize(d_nfilters);
// Make a vector of the taps plus fill it out with 0's to fill
// each polyphase filter with exactly d_taps_per_filter
std::vector<float> tmp_taps;
tmp_taps = newtaps;
while ((float)(tmp_taps.size()) < d_nfilters * d_taps_per_filter) {
tmp_taps.push_back(0.0);
}
// Partition the filter
for (i = 0; i < d_nfilters; i++) {
// Each channel uses all d_taps_per_filter with 0's if not enough taps to fill out
ourtaps[i] = std::vector<float>(d_taps_per_filter, 0);
for (j = 0; j < d_taps_per_filter; j++) {
ourtaps[i][j] = tmp_taps[i + j * d_nfilters];
}
// Build a filter for each channel and add it's taps to it
ourfilter[i]->set_taps(ourtaps[i]);
}
// Set the history to ensure enough input items for each filter
set_history(d_taps_per_filter + d_sps + d_sps);
// Make sure there is enough output space for d_osps outputs/input.
set_output_multiple(d_osps);
}
void pfb_clock_sync_fff_impl::create_diff_taps(const std::vector<float>& newtaps,
std::vector<float>& difftaps)
{
std::vector<float> diff_filter(3);
diff_filter[0] = -1;
diff_filter[1] = 0;
diff_filter[2] = 1;
float pwr = 0;
difftaps.clear();
difftaps.push_back(0);
for (unsigned int i = 0; i < newtaps.size() - 2; i++) {
float tap = 0;
for (unsigned int j = 0; j < diff_filter.size(); j++) {
tap += diff_filter[j] * newtaps[i + j];
}
difftaps.push_back(tap);
pwr += fabsf(tap);
}
difftaps.push_back(0);
// Normalize the taps
for (unsigned int i = 0; i < difftaps.size(); i++) {
difftaps[i] *= d_nfilters / pwr;
if (difftaps[i] != difftaps[i]) {
throw std::runtime_error(
"pfb_clock_sync_fff::create_diff_taps produced NaN.");
}
}
}
std::string pfb_clock_sync_fff_impl::taps_as_string() const
{
int i, j;
std::stringstream str;
str.precision(4);
str.setf(std::ios::scientific);
str << "[ ";
for (i = 0; i < d_nfilters; i++) {
str << "[" << d_taps[i][0] << ", ";
for (j = 1; j < d_taps_per_filter - 1; j++) {
str << d_taps[i][j] << ", ";
}
str << d_taps[i][j] << "],";
}
str << " ]" << std::endl;
return str.str();
}
std::string pfb_clock_sync_fff_impl::diff_taps_as_string() const
{
int i, j;
std::stringstream str;
str.precision(4);
str.setf(std::ios::scientific);
str << "[ ";
for (i = 0; i < d_nfilters; i++) {
str << "[" << d_dtaps[i][0] << ", ";
for (j = 1; j < d_taps_per_filter - 1; j++) {
str << d_dtaps[i][j] << ", ";
}
str << d_dtaps[i][j] << "],";
}
str << " ]" << std::endl;
return str.str();
}
std::vector<std::vector<float>> pfb_clock_sync_fff_impl::taps() const { return d_taps; }
std::vector<std::vector<float>> pfb_clock_sync_fff_impl::diff_taps() const
{
return d_dtaps;
}
std::vector<float> pfb_clock_sync_fff_impl::channel_taps(int channel) const
{
std::vector<float> taps;
for (int i = 0; i < d_taps_per_filter; i++) {
taps.push_back(d_taps[channel][i]);
}
return taps;
}
std::vector<float> pfb_clock_sync_fff_impl::diff_channel_taps(int channel) const
{
std::vector<float> taps;
for (int i = 0; i < d_taps_per_filter; i++) {
taps.push_back(d_dtaps[channel][i]);
}
return taps;
}
int pfb_clock_sync_fff_impl::general_work(int noutput_items,
gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
float* in = (float*)input_items[0];
float* out = (float*)output_items[0];
if (d_updated) {
std::vector<float> dtaps;
create_diff_taps(d_updated_taps, dtaps);
set_taps(d_updated_taps, d_taps, d_filters);
set_taps(dtaps, d_dtaps, d_diff_filters);
d_updated = false;
return 0; // history requirements may have changed.
}
float *err = NULL, *outrate = NULL, *outk = NULL;
if (output_items.size() == 4) {
err = (float*)output_items[1];
outrate = (float*)output_items[2];
outk = (float*)output_items[3];
}
int i = 0, count = 0;
// produce output as long as we can and there are enough input samples
while (i < noutput_items) {
while (d_out_idx < d_osps) {
d_filtnum = (int)floor(d_k);
// Keep the current filter number in [0, d_nfilters]
// If we've run beyond the last filter, wrap around and go to next sample
// If we've gone below 0, wrap around and go to previous sample
while (d_filtnum >= d_nfilters) {
d_k -= d_nfilters;
d_filtnum -= d_nfilters;
count += 1;
}
while (d_filtnum < 0) {
d_k += d_nfilters;
d_filtnum += d_nfilters;
count -= 1;
}
out[i + d_out_idx] = d_filters[d_filtnum]->filter(&in[count + d_out_idx]);
d_k = d_k + d_rate_i + d_rate_f; // update phase
d_out_idx++;
if (output_items.size() == 4) {
err[i] = d_error;
outrate[i] = d_rate_f;
outk[i] = d_k;
}
// We've run out of output items we can create; return now.
if (i + d_out_idx >= noutput_items) {
consume_each(count);
return i;
}
}
// reset here; if we didn't complete a full osps samples last time,
// the early return would take care of it.
d_out_idx = 0;
// Update the phase and rate estimates for this symbol
float diff = d_diff_filters[d_filtnum]->filter(&in[count]);
d_error = out[i] * diff;
// Run the control loop to update the current phase (k) and
// tracking rate estimates based on the error value
// Interpolating here to update rates for ever sps.
for (int s = 0; s < d_sps; s++) {
d_rate_f = d_rate_f + d_beta * d_error;
d_k = d_k + d_rate_f + d_alpha * d_error;
}
// Keep our rate within a good range
d_rate_f = gr::branchless_clip(d_rate_f, d_max_dev);
i += d_osps;
count += (int)floor(d_sps);
}
consume_each(count);
return i;
}
} /* namespace digital */
} /* namespace gr */
|