1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/* -*- c++ -*- */
/*
* Copyright 2012,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "ofdm_chanest_vcvc_impl.h"
#include <gnuradio/io_signature.h>
namespace gr {
namespace digital {
ofdm_chanest_vcvc::sptr
ofdm_chanest_vcvc::make(const std::vector<gr_complex>& sync_symbol1,
const std::vector<gr_complex>& sync_symbol2,
int n_data_symbols,
int eq_noise_red_len,
int max_carr_offset,
bool force_one_sync_symbol)
{
return gnuradio::make_block_sptr<ofdm_chanest_vcvc_impl>(sync_symbol1,
sync_symbol2,
n_data_symbols,
eq_noise_red_len,
max_carr_offset,
force_one_sync_symbol);
}
ofdm_chanest_vcvc_impl::ofdm_chanest_vcvc_impl(
const std::vector<gr_complex>& sync_symbol1,
const std::vector<gr_complex>& sync_symbol2,
int n_data_symbols,
int eq_noise_red_len,
int max_carr_offset,
bool force_one_sync_symbol)
: block("ofdm_chanest_vcvc",
io_signature::make(1, 1, sizeof(gr_complex) * sync_symbol1.size()),
io_signature::make(1, 2, sizeof(gr_complex) * sync_symbol1.size())),
d_fft_len(sync_symbol1.size()),
d_n_data_syms(n_data_symbols),
d_n_sync_syms(1),
d_eq_noise_red_len(eq_noise_red_len),
d_ref_sym((!sync_symbol2.empty() && !force_one_sync_symbol) ? sync_symbol2
: sync_symbol1),
d_corr_v(sync_symbol2),
d_known_symbol_diffs(0, 0),
d_new_symbol_diffs(0, 0),
d_first_active_carrier(0),
d_last_active_carrier(sync_symbol2.size() - 1),
d_interpolate(false)
{
// Set index of first and last active carrier
for (int i = 0; i < d_fft_len; i++) {
if (d_ref_sym[i] != gr_complex(0, 0)) {
d_first_active_carrier = i;
break;
}
}
for (int i = d_fft_len - 1; i >= 0; i--) {
if (d_ref_sym[i] != gr_complex(0, 0)) {
d_last_active_carrier = i;
break;
}
}
// Sanity checks
if (!sync_symbol2.empty()) {
if (sync_symbol1.size() != sync_symbol2.size()) {
throw std::invalid_argument("sync symbols must have equal length.");
}
if (!force_one_sync_symbol) {
d_n_sync_syms = 2;
}
} else {
if (sync_symbol1[d_first_active_carrier + 1] == gr_complex(0, 0)) {
d_last_active_carrier++;
d_interpolate = true;
}
}
// Set up coarse freq estimation info
// Allow all possible values:
d_max_neg_carr_offset = -d_first_active_carrier;
d_max_pos_carr_offset = d_fft_len - d_last_active_carrier - 1;
if (max_carr_offset != -1) {
d_max_neg_carr_offset = std::max(-max_carr_offset, d_max_neg_carr_offset);
d_max_pos_carr_offset = std::min(max_carr_offset, d_max_pos_carr_offset);
}
// Carrier offsets must be even
if (d_max_neg_carr_offset % 2)
d_max_neg_carr_offset++;
if (d_max_pos_carr_offset % 2)
d_max_pos_carr_offset--;
if (d_n_sync_syms == 2) {
for (int i = 0; i < d_fft_len; i++) {
if (sync_symbol1[i] == gr_complex(0, 0)) {
d_corr_v[i] = gr_complex(0, 0);
} else {
d_corr_v[i] /= sync_symbol1[i];
}
}
} else {
d_corr_v.resize(0, 0);
d_known_symbol_diffs.resize(d_fft_len, 0);
d_new_symbol_diffs.resize(d_fft_len, 0);
for (int i = d_first_active_carrier;
i < d_last_active_carrier - 2 && i < d_fft_len - 2;
i += 2) {
d_known_symbol_diffs[i] = std::norm(sync_symbol1[i] - sync_symbol1[i + 2]);
}
}
set_output_multiple(d_n_data_syms);
set_relative_rate((uint64_t)d_n_data_syms, (uint64_t)(d_n_data_syms + d_n_sync_syms));
set_tag_propagation_policy(TPP_DONT);
}
ofdm_chanest_vcvc_impl::~ofdm_chanest_vcvc_impl() {}
void ofdm_chanest_vcvc_impl::forecast(int noutput_items,
gr_vector_int& ninput_items_required)
{
ninput_items_required[0] =
(noutput_items / d_n_data_syms) * (d_n_data_syms + d_n_sync_syms);
}
int ofdm_chanest_vcvc_impl::get_carr_offset(const gr_complex* sync_sym1,
const gr_complex* sync_sym2)
{
int carr_offset = 0;
if (!d_corr_v.empty()) {
// Use Schmidl & Cox method
float Bg_max = 0;
// g here is 2g in the paper
for (int g = d_max_neg_carr_offset; g <= d_max_pos_carr_offset; g += 2) {
gr_complex tmp = gr_complex(0, 0);
for (int k = 0; k < d_fft_len; k++) {
if (d_corr_v[k] != gr_complex(0, 0)) {
tmp += std::conj(sync_sym1[k + g]) * std::conj(d_corr_v[k]) *
sync_sym2[k + g];
}
}
if (std::abs(tmp) > Bg_max) {
Bg_max = std::abs(tmp);
carr_offset = g;
}
}
} else {
// Correlate
std::fill(d_new_symbol_diffs.begin(), d_new_symbol_diffs.end(), 0);
for (int i = 0; i < d_fft_len - 2; i++) {
d_new_symbol_diffs[i] = std::norm(sync_sym1[i] - sync_sym1[i + 2]);
}
float sum;
float max = 0;
for (int g = d_max_neg_carr_offset; g <= d_max_pos_carr_offset; g += 2) {
sum = 0;
for (int j = 0; j < d_fft_len; j++) {
if (d_known_symbol_diffs[j]) {
sum += (d_known_symbol_diffs[j] * d_new_symbol_diffs[j + g]);
}
if (sum > max) {
max = sum;
carr_offset = g;
}
}
}
}
return carr_offset;
}
void ofdm_chanest_vcvc_impl::get_chan_taps(const gr_complex* sync_sym1,
const gr_complex* sync_sym2,
int carr_offset,
std::vector<gr_complex>& taps)
{
const gr_complex* sym = ((d_n_sync_syms == 2) ? sync_sym2 : sync_sym1);
std::fill(taps.begin(), taps.end(), gr_complex(0, 0));
int loop_start = 0;
int loop_end = d_fft_len;
if (carr_offset > 0) {
loop_start = carr_offset;
} else if (carr_offset < 0) {
loop_end = d_fft_len + carr_offset;
}
for (int i = loop_start; i < loop_end; i++) {
if ((d_ref_sym[i - carr_offset] != gr_complex(0, 0))) {
taps[i - carr_offset] = sym[i] / d_ref_sym[i - carr_offset];
}
}
if (d_interpolate) {
for (int i = d_first_active_carrier + 1; i < d_last_active_carrier; i += 2) {
taps[i] = taps[i - 1];
}
taps[d_last_active_carrier] = taps[d_last_active_carrier - 1];
}
if (d_eq_noise_red_len) {
// TODO
// 1) IFFT
// 2) Set all elements > d_eq_noise_red_len to zero
// 3) FFT
}
}
// Operates on a per-frame basis
int ofdm_chanest_vcvc_impl::general_work(int noutput_items,
gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
const gr_complex* in = (const gr_complex*)input_items[0];
gr_complex* out = (gr_complex*)output_items[0];
const int framesize = d_n_sync_syms + d_n_data_syms;
// Channel info estimation
int carr_offset = get_carr_offset(in, in + d_fft_len);
std::vector<gr_complex> chan_taps(d_fft_len, 0);
get_chan_taps(in, in + d_fft_len, carr_offset, chan_taps);
add_item_tag(0,
nitems_written(0),
pmt::string_to_symbol("ofdm_sync_carr_offset"),
pmt::from_long(carr_offset));
add_item_tag(0,
nitems_written(0),
pmt::string_to_symbol("ofdm_sync_chan_taps"),
pmt::init_c32vector(d_fft_len, chan_taps));
// Copy data symbols
if (output_items.size() == 2) {
gr_complex* out_chantaps = ((gr_complex*)output_items[1]);
memcpy((void*)out_chantaps, (void*)&chan_taps[0], sizeof(gr_complex) * d_fft_len);
produce(1, 1);
}
memcpy((void*)out,
(void*)&in[d_n_sync_syms * d_fft_len],
sizeof(gr_complex) * d_fft_len * d_n_data_syms);
// Propagate tags
std::vector<gr::tag_t> tags;
get_tags_in_range(tags, 0, nitems_read(0), nitems_read(0) + framesize);
for (unsigned t = 0; t < tags.size(); t++) {
int offset = tags[t].offset - nitems_read(0);
if (offset < d_n_sync_syms) {
offset = 0;
} else {
offset -= d_n_sync_syms;
}
tags[t].offset = offset + nitems_written(0);
add_item_tag(0, tags[t]);
}
produce(0, d_n_data_syms);
consume_each(framesize);
return WORK_CALLED_PRODUCE;
}
} /* namespace digital */
} /* namespace gr */
|