summaryrefslogtreecommitdiff
path: root/gr-digital/lib/linear_equalizer_impl.cc
blob: 747e935fc32cb5673f7b6a46152d2a89425c5134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* -*- c++ -*- */
/*
 * Copyright 2020 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "linear_equalizer_impl.h"
#include <gnuradio/io_signature.h>
#include <gnuradio/misc.h>
#include <volk/volk.h>
#include <boost/smart_ptr/make_unique.hpp>
#include <vector>

#include "adaptive_algorithms.h"

using namespace pmt;
using namespace std;

namespace gr {
namespace digital {

linear_equalizer::sptr linear_equalizer::make(unsigned num_taps,
                                              unsigned sps,
                                              adaptive_algorithm_sptr alg,
                                              bool adapt_after_training,
                                              std::vector<gr_complex> training_sequence,
                                              const std::string& training_start_tag)
{
    return gnuradio::make_block_sptr<linear_equalizer_impl>(
        num_taps, sps, alg, adapt_after_training, training_sequence, training_start_tag);
}

/*
 * The private constructor
 */
linear_equalizer_impl::linear_equalizer_impl(unsigned num_taps,
                                             unsigned sps,
                                             adaptive_algorithm_sptr alg,
                                             bool adapt_after_training,
                                             std::vector<gr_complex> training_sequence,
                                             const std::string& training_start_tag)
    : gr::sync_decimator("linear_equalizer",
                         io_signature::make(1, 1, sizeof(gr_complex)),
                         io_signature::make3(1,
                                             3,
                                             sizeof(gr_complex),
                                             num_taps * sizeof(gr_complex),
                                             sizeof(unsigned short)),
                         sps),
      filter::kernel::fir_filter_ccc(sps, vector<gr_complex>(num_taps, gr_complex(0, 0))),
      d_num_taps(num_taps),
      d_sps(sps),
      d_alg(alg),
      d_adapt_after_training(adapt_after_training),
      d_training_sequence(training_sequence),
      d_training_start_tag(pmt::intern(training_start_tag)),
      d_new_taps(num_taps),
      d_updated(false),
      d_training_sample(0)
{
    if (training_start_tag == "" || training_sequence.empty()) {
        d_training_state = equalizer_state_t::DD;
    } else {
        d_training_state = equalizer_state_t::IDLE;
    }

    alg->initialize_taps(d_new_taps);
    // NOTE: the filter kernel reverses the taps internally
    filter::kernel::fir_filter_ccc::set_taps(d_new_taps);

    const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
    set_alignment(max(1, alignment_multiple));
    set_history(num_taps);
}

void linear_equalizer_impl::set_taps(const vector<gr_complex>& taps)
{
    gr::thread::scoped_lock guard(d_mutex);
    d_new_taps = taps;
    d_updated = true;
}

vector<gr_complex> linear_equalizer_impl::taps() const
{
    gr::thread::scoped_lock guard(d_mutex);
    return d_taps;
}

int linear_equalizer_impl::equalize(const gr_complex* input_samples,
                                    gr_complex* output_symbols,
                                    unsigned int num_inputs,
                                    unsigned int max_num_outputs,
                                    std::vector<unsigned int> training_start_samples,
                                    bool history_included,
                                    gr_complex* taps,
                                    unsigned short* state)
{
    unsigned nout = num_inputs / d_sps;
    if (nout > max_num_outputs) {
        nout = max_num_outputs;
    }

    const gr_complex* samples;
    std::unique_ptr<std::vector<gr_complex>> in_prepended_history;
    if (history_included) {
        samples = input_samples;
    } else {
        in_prepended_history =
            boost::make_unique<std::vector<gr_complex>>(num_inputs + d_num_taps - 1);
        std::copy(input_samples,
                  input_samples + num_inputs,
                  in_prepended_history->begin() + d_num_taps - 1);
        samples = in_prepended_history->data();
    }

    unsigned int tag_index = 0;
    unsigned int j = 0; // pre-decimated input buffer index
    for (unsigned i = 0; i < nout; i++) {
        output_symbols[i] = filter(&samples[j]);

        if (taps) {
            std::copy(d_taps.begin(), d_taps.end(), taps + d_num_taps * i);
        }

        if (state) {
            state[i] = (unsigned short)d_training_state;
        }

        if (training_start_samples.size() > 0 &&
            tag_index < training_start_samples.size()) {
            unsigned int tag_sample = training_start_samples[tag_index];
            if (tag_sample >= j && tag_sample < (j + decimation())) {
                d_training_state = equalizer_state_t::TRAINING;
                d_training_sample = 0;
                tag_index++;
            }
        }

        // Are we done with the training sequence
        if (d_training_sample >= d_training_sequence.size()) {
            if (d_adapt_after_training) {
                d_training_state = equalizer_state_t::DD;
            } else {
                d_training_state = equalizer_state_t::IDLE;
            }
            d_training_sample = -1;
        }

        // Adjust taps
        if (d_training_state == equalizer_state_t::TRAINING) {
            d_decision = d_training_sequence[d_training_sample];
            d_error = d_alg->error_tr(output_symbols[i],
                                      d_training_sequence[d_training_sample++]);
        } else if (d_training_state == equalizer_state_t::DD) {
            d_error = d_alg->error_dd(output_symbols[i], d_decision);
        }
        switch (d_training_state) {
        case equalizer_state_t::IDLE:
            d_error = gr_complex(0.0, 0.0);
            break;
        case equalizer_state_t::TRAINING:
        case equalizer_state_t::DD:
            d_alg->update_taps(
                &d_taps[0], &samples[j], d_error, d_decision, d_taps.size());
            for (unsigned k = 0; k < d_taps.size(); k++) {
                // Update aligned taps in filter object.
                filter::kernel::fir_filter_ccc::update_tap(d_taps[k], k);
            }
            break;
        }

        j += decimation();
    }

    return nout;
}

int linear_equalizer_impl::work(int noutput_items,
                                gr_vector_const_void_star& input_items,
                                gr_vector_void_star& output_items)
{
    {
        gr::thread::scoped_lock guard(d_mutex);
        if (d_updated) {
            d_taps = d_new_taps;
            set_history(d_taps.size());
            d_updated = false;
            return 0; // history requirements may have changed.
        }
    }

    unsigned long int nread = nitems_read(0);
    vector<tag_t> tags;
    get_tags_in_window(tags, 0, 0, noutput_items * decimation(), d_training_start_tag);
    vector<unsigned int> training_start_samples(tags.size());
    unsigned int tag_index = 0;
    for (const auto& tag : tags) {
        training_start_samples[tag_index++] = tag.offset - nread;
    }

    auto in = static_cast<const gr_complex*>(input_items[0]);
    auto out = static_cast<gr_complex*>(output_items[0]);

    int outlen = output_items.size();
    unsigned short* state = nullptr;
    gr_complex* taps = nullptr;

    if (outlen > 1)
        taps = static_cast<gr_complex*>(output_items[1]);
    if (outlen > 2)
        state = static_cast<unsigned short*>(output_items[2]);

    return equalize(in,
                    out,
                    noutput_items * decimation(),
                    noutput_items,
                    training_start_samples,
                    true,
                    taps,
                    state);
}

} // namespace digital
} /* namespace gr */