1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/* -*- c++ -*- */
/*
* Copyright 2011,2012,2013,2018 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#include <cstddef>
#include <cstdint>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "constellation_receiver_cb_impl.h"
#include <gnuradio/expj.h>
#include <gnuradio/io_signature.h>
#include <gnuradio/math.h>
#include <boost/format.hpp>
#include <stdexcept>
namespace gr {
namespace digital {
#define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking
constellation_receiver_cb::sptr constellation_receiver_cb::make(
constellation_sptr constell, float loop_bw, float fmin, float fmax)
{
return gnuradio::make_block_sptr<constellation_receiver_cb_impl>(
constell, loop_bw, fmin, fmax);
}
constellation_receiver_cb_impl::constellation_receiver_cb_impl(
constellation_sptr constellation, float loop_bw, float fmin, float fmax)
: block("constellation_receiver_cb",
io_signature::make(1, 1, sizeof(gr_complex)),
io_signature::makev(1,
5,
{ sizeof(char),
sizeof(float),
sizeof(float),
sizeof(float),
sizeof(gr_complex) })),
blocks::control_loop(loop_bw, fmax, fmin),
d_constellation(constellation)
{
if (d_constellation->dimensionality() != 1)
throw std::runtime_error(
"This receiver only works with constellations of dimension 1.");
message_port_register_in(pmt::mp("set_constellation"));
set_msg_handler(pmt::mp("set_constellation"),
[this](pmt::pmt_t msg) { this->handle_set_constellation(msg); });
message_port_register_in(pmt::mp("rotate_phase"));
set_msg_handler(pmt::mp("rotate_phase"),
[this](pmt::pmt_t msg) { this->handle_rotate_phase(msg); });
}
constellation_receiver_cb_impl::~constellation_receiver_cb_impl() {}
void constellation_receiver_cb_impl::phase_error_tracking(float phase_error)
{
advance_loop(phase_error);
phase_wrap();
frequency_limit();
#if VERBOSE_COSTAS
GR_LOG_DEBUG(d_debug_logger,
boost::format("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f "
" constellation: %f+j%f") %
phase_error % d_phase % d_freq % sample.real() % sample.imag() %
d_constellation->points()[d_current_const_point].real() %
d_constellation->points()[d_current_const_point].imag());
#endif
}
void constellation_receiver_cb_impl::set_phase_freq(float phase, float freq)
{
d_phase = phase;
d_freq = freq;
}
void constellation_receiver_cb_impl::handle_set_constellation(
pmt::pmt_t constellation_pmt)
{
if (pmt::is_any(constellation_pmt)) {
boost::any constellation_any = pmt::any_ref(constellation_pmt);
constellation_sptr constellation =
boost::any_cast<constellation_sptr>(constellation_any);
set_constellation(constellation);
} else {
GR_LOG_ERROR(d_logger, "Received constellation that is not a PMT any; skipping.");
}
}
void constellation_receiver_cb_impl::handle_rotate_phase(pmt::pmt_t rotation)
{
if (pmt::is_real(rotation)) {
const double phase = pmt::to_double(rotation);
d_phase += phase;
} else {
GR_LOG_ERROR(d_logger, "Received rotation value that is not real; skipping.");
}
}
void constellation_receiver_cb_impl::set_constellation(constellation_sptr constellation)
{
d_constellation = constellation;
}
int constellation_receiver_cb_impl::general_work(int noutput_items,
gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
const auto in = reinterpret_cast<const gr_complex*>(input_items[0]);
auto out = reinterpret_cast<std::uint8_t*>(output_items[0]);
size_t idx = 0;
std::vector<tag_t> tags;
auto offset = nitems_read(0);
get_tags_in_range(tags, 0, offset, offset + ninput_items[0]);
if (output_items.size() == 5) {
auto out_err = reinterpret_cast<float*>(output_items[1]);
auto out_phase = reinterpret_cast<float*>(output_items[2]);
auto out_freq = reinterpret_cast<float*>(output_items[3]);
auto out_symbol = reinterpret_cast<gr_complex*>(output_items[4]);
for (const auto& tag : tags) {
for (; idx < tag.offset - offset; ++idx) {
auto nco =
gr_expj(d_phase); // NCO value for derotating the current sample
auto sample = in[idx] * nco; // downconverted symbol
float phase_error;
unsigned int sym_value =
d_constellation->decision_maker_pe(&sample, &phase_error);
phase_error_tracking(phase_error); // corrects phase and frequency offsets
out[idx] = sym_value;
out_err[idx] = phase_error;
out_phase[idx] = d_phase;
out_freq[idx] = d_freq;
out_symbol[idx] = sample;
}
dispatch_msg(tag.key, tag.value);
}
for (; idx < static_cast<unsigned int>(noutput_items); ++idx) {
auto nco = gr_expj(d_phase); // NCO value for derotating the current sample
auto sample = in[idx] * nco; // downconverted symbol
float phase_error;
unsigned int sym_value =
d_constellation->decision_maker_pe(&sample, &phase_error);
phase_error_tracking(phase_error); // corrects phase and frequency offsets
out[idx] = sym_value;
out_err[idx] = phase_error;
out_phase[idx] = d_phase;
out_freq[idx] = d_freq;
out_symbol[idx] = sample;
}
} else {
for (const auto& tag : tags) {
for (; idx < tag.offset - offset; ++idx) {
auto nco =
gr_expj(d_phase); // NCO value for derotating the current sample
auto sample = in[idx] * nco; // downconverted symbol
float phase_error;
unsigned int sym_value =
d_constellation->decision_maker_pe(&sample, &phase_error);
phase_error_tracking(phase_error); // corrects phase and frequency offsets
out[idx] = sym_value;
}
dispatch_msg(tag.key, tag.value);
}
for (; idx < static_cast<unsigned int>(noutput_items); ++idx) {
auto nco = gr_expj(d_phase); // NCO value for derotating the current sample
auto sample = in[idx] * nco; // downconverted symbol
float phase_error;
unsigned int sym_value =
d_constellation->decision_maker_pe(&sample, &phase_error);
phase_error_tracking(phase_error); // corrects phase and frequency offsets
out[idx] = sym_value;
}
}
consume_each(noutput_items);
return noutput_items;
}
void constellation_receiver_cb_impl::setup_rpc()
{
#ifdef GR_CTRLPORT
// Getters
add_rpc_variable(rpcbasic_sptr(
new rpcbasic_register_get<control_loop, float>(alias(),
"frequency",
&control_loop::get_frequency,
pmt::mp(0.0f),
pmt::mp(2.0f),
pmt::mp(0.0f),
"",
"Frequency Est.",
RPC_PRIVLVL_MIN,
DISPTIME | DISPOPTSTRIP)));
add_rpc_variable(rpcbasic_sptr(
new rpcbasic_register_get<control_loop, float>(alias(),
"phase",
&control_loop::get_phase,
pmt::mp(0.0f),
pmt::mp(2.0f),
pmt::mp(0.0f),
"",
"Phase Est.",
RPC_PRIVLVL_MIN,
DISPTIME | DISPOPTSTRIP)));
add_rpc_variable(rpcbasic_sptr(
new rpcbasic_register_get<control_loop, float>(alias(),
"loop_bw",
&control_loop::get_loop_bandwidth,
pmt::mp(0.0f),
pmt::mp(2.0f),
pmt::mp(0.0f),
"",
"Loop bandwidth",
RPC_PRIVLVL_MIN,
DISPTIME | DISPOPTSTRIP)));
// Setters
add_rpc_variable(rpcbasic_sptr(
new rpcbasic_register_set<control_loop, float>(alias(),
"loop_bw",
&control_loop::set_loop_bandwidth,
pmt::mp(0.0f),
pmt::mp(1.0f),
pmt::mp(0.0f),
"",
"Loop bandwidth",
RPC_PRIVLVL_MIN,
DISPNULL)));
#endif /* GR_CTRLPORT */
}
} /* namespace digital */
} /* namespace gr */
|