summaryrefslogtreecommitdiff
path: root/gr-digital/lib/constellation.cc
blob: 49eb1e4258970ae63731ef28876b8e8bcf7e5db9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/* -*- c++ -*- */
/*
 * Copyright 2010-2012,2014,2018 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/digital/constellation.h>
#include <gnuradio/gr_complex.h>
#include <gnuradio/io_signature.h>
#include <gnuradio/math.h>

#include <boost/format.hpp>

#include <cfloat>
#include <cstdlib>
#include <stdexcept>

namespace gr {
namespace digital {

// Base Constellation Class
constellation::constellation(std::vector<gr_complex> constell,
                             std::vector<int> pre_diff_code,
                             unsigned int rotational_symmetry,
                             unsigned int dimensionality,
                             normalization_t normalization)
    : d_constellation(constell),
      d_pre_diff_code(pre_diff_code),
      d_rotational_symmetry(rotational_symmetry),
      d_dimensionality(dimensionality),
      d_scalefactor(1.0),
      d_re_min(1e20),
      d_re_max(1e20),
      d_im_min(1e20),
      d_im_max(1e20),
      d_lut_precision(0),
      d_lut_scale(0)
{
    unsigned int constsize = d_constellation.size();
    float summed_mag = 0;
    switch (normalization) {
    case NO_NORMALIZATION:
        break;

    case POWER_NORMALIZATION:
        // Scale constellation points so that average power is 1.
        for (unsigned int i = 0; i < constsize; i++) {
            gr_complex c = d_constellation[i];
            summed_mag += std::norm(c);
        }
        d_scalefactor = constsize / sqrt(summed_mag);
        for (unsigned int i = 0; i < constsize; i++) {
            d_constellation[i] = d_constellation[i] * d_scalefactor;
        }
        break;

    case AMPLITUDE_NORMALIZATION:
        // Scale constellation points so that average magnitude is 1.
        for (unsigned int i = 0; i < constsize; i++) {
            gr_complex c = d_constellation[i];
            summed_mag += std::abs(c);
        }
        d_scalefactor = constsize / summed_mag;
        for (unsigned int i = 0; i < constsize; i++) {
            d_constellation[i] = d_constellation[i] * d_scalefactor;
        }
        break;

    default:
        throw std::runtime_error("Invalid constellation normalization type.");
    }

    if (pre_diff_code.empty())
        d_apply_pre_diff_code = false;
    else if (pre_diff_code.size() != constsize)
        throw std::runtime_error(
            "The constellation and pre-diff code must be of the same length.");
    else
        d_apply_pre_diff_code = true;
    calc_arity();
}

constellation::constellation()
    : d_apply_pre_diff_code(false),
      d_rotational_symmetry(0),
      d_dimensionality(1),
      d_scalefactor(1.0),
      d_re_min(1e20),
      d_re_max(1e20),
      d_im_min(1e20),
      d_im_max(1e20),
      d_lut_precision(0.0),
      d_lut_scale(0.0)
{
    calc_arity();
}

constellation::~constellation() {}

//! Returns the constellation points for a symbol value
void constellation::map_to_points(unsigned int value, gr_complex* points)
{
    for (unsigned int i = 0; i < d_dimensionality; i++)
        points[i] = d_constellation[value * d_dimensionality + i];
}

std::vector<gr_complex> constellation::map_to_points_v(unsigned int value)
{
    std::vector<gr_complex> points_v;
    points_v.resize(d_dimensionality);
    map_to_points(value, &(points_v[0]));
    return points_v;
}

float constellation::get_distance(unsigned int index, const gr_complex* sample)
{
    float dist = 0;
    for (unsigned int i = 0; i < d_dimensionality; i++) {
        dist += norm(sample[i] - d_constellation[index * d_dimensionality + i]);
    }
    return dist;
}

unsigned int constellation::get_closest_point(const gr_complex* sample)
{
    unsigned int min_index = 0;
    float min_euclid_dist;
    float euclid_dist;

    min_euclid_dist = get_distance(0, sample);
    min_index = 0;
    for (unsigned int j = 1; j < d_arity; j++) {
        euclid_dist = get_distance(j, sample);
        if (euclid_dist < min_euclid_dist) {
            min_euclid_dist = euclid_dist;
            min_index = j;
        }
    }
    return min_index;
}

unsigned int constellation::decision_maker_pe(const gr_complex* sample,
                                              float* phase_error)
{
    unsigned int index = decision_maker(sample);
    *phase_error = 0;
    for (unsigned int d = 0; d < d_dimensionality; d++)
        *phase_error += -arg(sample[d] * conj(d_constellation[index + d]));
    return index;
}

std::vector<gr_complex> constellation::s_points()
{
    if (d_dimensionality != 1)
        throw std::runtime_error(
            "s_points only works for dimensionality 1 constellations.");
    else
        return d_constellation;
}

std::vector<std::vector<gr_complex>> constellation::v_points()
{
    std::vector<std::vector<gr_complex>> vv_const;
    vv_const.resize(d_arity);
    for (unsigned int p = 0; p < d_arity; p++) {
        std::vector<gr_complex> v_const;
        v_const.resize(d_dimensionality);
        for (unsigned int d = 0; d < d_dimensionality; d++) {
            v_const[d] = d_constellation[p * d_dimensionality + d];
        }
        vv_const[p] = v_const;
    }
    return vv_const;
}

void constellation::calc_metric(const gr_complex* sample,
                                float* metric,
                                trellis_metric_type_t type)
{
    switch (type) {
    case TRELLIS_EUCLIDEAN:
        calc_euclidean_metric(sample, metric);
        break;
    case TRELLIS_HARD_SYMBOL:
        calc_hard_symbol_metric(sample, metric);
        break;
    case TRELLIS_HARD_BIT:
        throw std::runtime_error("Invalid metric type (not yet implemented).");
        break;
    default:
        throw std::runtime_error("Invalid metric type.");
    }
}

void constellation::calc_euclidean_metric(const gr_complex* sample, float* metric)
{
    for (unsigned int o = 0; o < d_arity; o++) {
        metric[o] = get_distance(o, sample);
    }
}

void constellation::calc_hard_symbol_metric(const gr_complex* sample, float* metric)
{
    float minm = FLT_MAX;
    unsigned int minmi = 0;
    for (unsigned int o = 0; o < d_arity; o++) {
        float dist = get_distance(o, sample);
        if (dist < minm) {
            minm = dist;
            minmi = o;
        }
    }
    for (unsigned int o = 0; o < d_arity; o++) {
        metric[o] = (o == minmi ? 0.0 : 1.0);
    }
}

void constellation::calc_arity()
{
    if (d_constellation.size() % d_dimensionality != 0)
        throw std::runtime_error(
            "Constellation vector size must be a multiple of the dimensionality.");
    d_arity = d_constellation.size() / d_dimensionality;
}

unsigned int constellation::decision_maker_v(std::vector<gr_complex> sample)
{
    assert(sample.size() == d_dimensionality);
    return decision_maker(&(sample[0]));
}


void constellation::gen_soft_dec_lut(int precision, float npwr)
{
    d_soft_dec_lut.clear();
    d_lut_scale = powf(2.0f, static_cast<float>(precision));

    // We know we've normalized the constellation, so the min/max
    // dimensions in either direction are scaled to +/-1.
    float maxd = 1.0f;
    float step = (2.0f * maxd) / (d_lut_scale - 1);
    float y = -maxd;
    while (y < maxd + step) {
        float x = -maxd;
        while (x < maxd + step) {
            gr_complex pt = gr_complex(x, y);
            d_soft_dec_lut.push_back(calc_soft_dec(pt, npwr));
            x += step;
        }
        y += step;
    }

    d_lut_precision = precision;
}

std::vector<float> constellation::calc_soft_dec(gr_complex sample, float npwr)
{
    int v;
    int M = static_cast<int>(d_constellation.size());
    int k = static_cast<int>(log(static_cast<double>(M)) / log(2.0));
    std::vector<float> tmp(2 * k, 0);
    std::vector<float> s(k, 0);

    for (int i = 0; i < M; i++) {
        // Calculate the distance between the sample and the current
        // constellation point.
        float dist = std::abs(sample - d_constellation[i]);
        // Calculate the probability factor from the distance and
        // the scaled noise power.
        float d = expf(-dist / npwr);

        if (d_apply_pre_diff_code)
            v = d_pre_diff_code[i];
        else
            v = i;

        for (int j = 0; j < k; j++) {
            // Get the bit at the jth index
            int mask = 1 << j;
            int bit = (v & mask) >> j;

            // If the bit is a 0, add to the probability of a zero
            if (bit == 0)
                tmp[2 * j + 0] += d;
            // else, add to the probability of a one
            else
                tmp[2 * j + 1] += d;
        }
    }

    // Calculate the log-likelihood ratio for all bits based on the
    // probability of ones (tmp[2*i+1]) over the probability of a zero
    // (tmp[2*i+0]).
    for (int i = 0; i < k; i++) {
        s[k - 1 - i] = (logf(tmp[2 * i + 1]) - logf(tmp[2 * i + 0]));
    }

    return s;
}

void constellation::set_soft_dec_lut(const std::vector<std::vector<float>>& soft_dec_lut,
                                     int precision)
{
    max_min_axes();

    d_soft_dec_lut = soft_dec_lut;
    d_lut_precision = precision;
    d_lut_scale = powf(2.0, static_cast<float>(precision));
}

bool constellation::has_soft_dec_lut() { return !d_soft_dec_lut.empty(); }

std::vector<std::vector<float>> constellation::soft_dec_lut() { return d_soft_dec_lut; }

std::vector<float> constellation::soft_decision_maker(gr_complex sample)
{
    if (has_soft_dec_lut()) {
        // Clip to just below 1 --> at 1, we can overflow the index
        // that will put us in the next row of the 2D LUT.
        float xre = branchless_clip(sample.real(), 0.99);
        float xim = branchless_clip(sample.imag(), 0.99);

        // We normalize the constellation in the ctor, so we know that
        // the maximum dimensions go from -1 to +1. We can infer the x
        // and y scale directly.
        float scale = d_lut_scale / (2.0f);

        // Convert the clipped x and y samples to nearest index offset
        xre = floorf((1.0f + xre) * scale);
        xim = floorf((1.0f + xim) * scale);
        int index = static_cast<int>(d_lut_scale * xim + xre);

        int max_index = d_lut_scale * d_lut_scale;

        // Make sure we are in bounds of the index
        while (index >= max_index) {
            index -= d_lut_scale;
        }
        while (index < 0) {
            index += d_lut_scale;
        }

        return d_soft_dec_lut[index];
    } else {
        return calc_soft_dec(sample);
    }
}

void constellation::max_min_axes()
{
    // Find min/max of constellation for both real and imag axes.
    d_re_min = 1e20;
    d_im_min = 1e20;
    d_re_max = -1e20;
    d_im_max = -1e20;
    for (size_t i = 0; i < d_constellation.size(); i++) {
        if (d_constellation[i].real() > d_re_max)
            d_re_max = d_constellation[i].real();
        if (d_constellation[i].imag() > d_im_max)
            d_im_max = d_constellation[i].imag();

        if (d_constellation[i].real() < d_re_min)
            d_re_min = d_constellation[i].real();
        if (d_constellation[i].imag() < d_im_min)
            d_im_min = d_constellation[i].imag();
    }
    if (d_im_min == 0)
        d_im_min = d_re_min;
    if (d_im_max == 0)
        d_im_max = d_re_max;
    if (d_re_min == 0)
        d_re_min = d_im_min;
    if (d_re_max == 0)
        d_re_max = d_im_max;
}

/********************************************************************/


constellation_calcdist::sptr
constellation_calcdist::make(std::vector<gr_complex> constell,
                             std::vector<int> pre_diff_code,
                             unsigned int rotational_symmetry,
                             unsigned int dimensionality,
                             normalization_t normalization)
{
    return constellation_calcdist::sptr(new constellation_calcdist(
        constell, pre_diff_code, rotational_symmetry, dimensionality, normalization));
}

constellation_calcdist::constellation_calcdist(std::vector<gr_complex> constell,
                                               std::vector<int> pre_diff_code,
                                               unsigned int rotational_symmetry,
                                               unsigned int dimensionality,
                                               normalization_t normalization)
    : constellation(
          constell, pre_diff_code, rotational_symmetry, dimensionality, normalization)
{
}

// Chooses points base on shortest distance.
// Inefficient.
unsigned int constellation_calcdist::decision_maker(const gr_complex* sample)
{
    return get_closest_point(sample);
}


/********************************************************************/


constellation_sector::constellation_sector(std::vector<gr_complex> constell,
                                           std::vector<int> pre_diff_code,
                                           unsigned int rotational_symmetry,
                                           unsigned int dimensionality,
                                           unsigned int n_sectors,
                                           normalization_t normalization)
    : constellation(
          constell, pre_diff_code, rotational_symmetry, dimensionality, normalization),
      n_sectors(n_sectors)
{
}

constellation_sector::~constellation_sector() {}

unsigned int constellation_sector::decision_maker(const gr_complex* sample)
{
    unsigned int sector;
    sector = get_sector(sample);
    return sector_values[sector];
}

void constellation_sector::find_sector_values()
{
    unsigned int i;
    sector_values.clear();
    for (i = 0; i < n_sectors; i++) {
        sector_values.push_back(calc_sector_value(i));
    }
}


/********************************************************************/


constellation_rect::sptr constellation_rect::make(std::vector<gr_complex> constell,
                                                  std::vector<int> pre_diff_code,
                                                  unsigned int rotational_symmetry,
                                                  unsigned int real_sectors,
                                                  unsigned int imag_sectors,
                                                  float width_real_sectors,
                                                  float width_imag_sectors,
                                                  normalization_t normalization)
{
    return constellation_rect::sptr(new constellation_rect(constell,
                                                           pre_diff_code,
                                                           rotational_symmetry,
                                                           real_sectors,
                                                           imag_sectors,
                                                           width_real_sectors,
                                                           width_imag_sectors,
                                                           normalization));
}

constellation_rect::constellation_rect(std::vector<gr_complex> constell,
                                       std::vector<int> pre_diff_code,
                                       unsigned int rotational_symmetry,
                                       unsigned int real_sectors,
                                       unsigned int imag_sectors,
                                       float width_real_sectors,
                                       float width_imag_sectors,
                                       normalization_t normalization)
    : constellation_sector(constell,
                           pre_diff_code,
                           rotational_symmetry,
                           1,
                           real_sectors * imag_sectors,
                           normalization),
      n_real_sectors(real_sectors),
      n_imag_sectors(imag_sectors),
      d_width_real_sectors(width_real_sectors),
      d_width_imag_sectors(width_imag_sectors)
{
    d_width_real_sectors *= d_scalefactor;
    d_width_imag_sectors *= d_scalefactor;
    find_sector_values();
}

constellation_rect::~constellation_rect() {}

unsigned int constellation_rect::get_sector(const gr_complex* sample)
{
    int real_sector, imag_sector;
    unsigned int sector;

    real_sector = int(real(*sample) / d_width_real_sectors + n_real_sectors / 2.0);
    if (real_sector < 0)
        real_sector = 0;
    if (real_sector >= (int)n_real_sectors)
        real_sector = n_real_sectors - 1;

    imag_sector = int(imag(*sample) / d_width_imag_sectors + n_imag_sectors / 2.0);
    if (imag_sector < 0)
        imag_sector = 0;
    if (imag_sector >= (int)n_imag_sectors)
        imag_sector = n_imag_sectors - 1;

    sector = real_sector * n_imag_sectors + imag_sector;
    return sector;
}

gr_complex constellation_rect::calc_sector_center(unsigned int sector)
{
    unsigned int real_sector, imag_sector;
    gr_complex sector_center;
    real_sector = float(sector) / n_imag_sectors;
    imag_sector = sector - real_sector * n_imag_sectors;
    sector_center =
        gr_complex((real_sector + 0.5 - n_real_sectors / 2.0) * d_width_real_sectors,
                   (imag_sector + 0.5 - n_imag_sectors / 2.0) * d_width_imag_sectors);
    return sector_center;
}

unsigned int constellation_rect::calc_sector_value(unsigned int sector)
{
    gr_complex sector_center = calc_sector_center(sector);
    unsigned int closest_point;
    closest_point = get_closest_point(&sector_center);
    return closest_point;
}

/********************************************************************/

constellation_expl_rect::sptr
constellation_expl_rect::make(std::vector<gr_complex> constellation,
                              std::vector<int> pre_diff_code,
                              unsigned int rotational_symmetry,
                              unsigned int real_sectors,
                              unsigned int imag_sectors,
                              float width_real_sectors,
                              float width_imag_sectors,
                              std::vector<unsigned int> sector_values)
{
    return constellation_expl_rect::sptr(new constellation_expl_rect(constellation,
                                                                     pre_diff_code,
                                                                     rotational_symmetry,
                                                                     real_sectors,
                                                                     imag_sectors,
                                                                     width_real_sectors,
                                                                     width_imag_sectors,
                                                                     sector_values));
}

constellation_expl_rect::constellation_expl_rect(std::vector<gr_complex> constellation,
                                                 std::vector<int> pre_diff_code,
                                                 unsigned int rotational_symmetry,
                                                 unsigned int real_sectors,
                                                 unsigned int imag_sectors,
                                                 float width_real_sectors,
                                                 float width_imag_sectors,
                                                 std::vector<unsigned int> sector_values)
    : constellation_rect(constellation,
                         pre_diff_code,
                         rotational_symmetry,
                         real_sectors,
                         imag_sectors,
                         width_real_sectors,
                         width_imag_sectors),
      d_sector_values(sector_values)
{
}

constellation_expl_rect::~constellation_expl_rect() {}

/********************************************************************/


constellation_psk::sptr constellation_psk::make(std::vector<gr_complex> constell,
                                                std::vector<int> pre_diff_code,
                                                unsigned int n_sectors)
{
    return constellation_psk::sptr(
        new constellation_psk(constell, pre_diff_code, n_sectors));
}

constellation_psk::constellation_psk(std::vector<gr_complex> constell,
                                     std::vector<int> pre_diff_code,
                                     unsigned int n_sectors)
    : constellation_sector(constell, pre_diff_code, constell.size(), 1, n_sectors)
{
    find_sector_values();
}

constellation_psk::~constellation_psk() {}

unsigned int constellation_psk::get_sector(const gr_complex* sample)
{
    float phase = arg(*sample);
    float width = (2.0 * GR_M_PI) / n_sectors;
    int sector = floor(phase / width + 0.5);
    if (sector < 0)
        sector += n_sectors;
    return sector;
}

unsigned int constellation_psk::calc_sector_value(unsigned int sector)
{
    float phase = sector * (2.0 * GR_M_PI) / n_sectors;
    gr_complex sector_center = gr_complex(cos(phase), sin(phase));
    unsigned int closest_point = get_closest_point(&sector_center);
    return closest_point;
}


/********************************************************************/


constellation_bpsk::sptr constellation_bpsk::make()
{
    return constellation_bpsk::sptr(new constellation_bpsk());
}

constellation_bpsk::constellation_bpsk()
{
    d_constellation.resize(2);
    d_constellation[0] = gr_complex(-1, 0);
    d_constellation[1] = gr_complex(1, 0);
    d_rotational_symmetry = 2;
    d_dimensionality = 1;
    calc_arity();
}

constellation_bpsk::~constellation_bpsk() {}

unsigned int constellation_bpsk::decision_maker(const gr_complex* sample)
{
    return (real(*sample) > 0);
}


/********************************************************************/


constellation_qpsk::sptr constellation_qpsk::make()
{
    return constellation_qpsk::sptr(new constellation_qpsk());
}

constellation_qpsk::constellation_qpsk()
{
    d_constellation.resize(4);
    // Gray-coded
    d_constellation[0] = gr_complex(-GR_M_SQRT2, -GR_M_SQRT2);
    d_constellation[1] = gr_complex(GR_M_SQRT2, -GR_M_SQRT2);
    d_constellation[2] = gr_complex(-GR_M_SQRT2, GR_M_SQRT2);
    d_constellation[3] = gr_complex(GR_M_SQRT2, GR_M_SQRT2);

    /*
      d_constellation[0] = gr_complex(GR_M_SQRT2, GR_M_SQRT2);
      d_constellation[1] = gr_complex(-GR_M_SQRT2, GR_M_SQRT2);
      d_constellation[2] = gr_complex(GR_M_SQRT2, -GR_M_SQRT2);
      d_constellation[3] = gr_complex(GR_M_SQRT2, -GR_M_SQRT2);
    */

    d_pre_diff_code.resize(4);
    d_pre_diff_code[0] = 0x0;
    d_pre_diff_code[1] = 0x2;
    d_pre_diff_code[2] = 0x3;
    d_pre_diff_code[3] = 0x1;

    d_rotational_symmetry = 4;
    d_dimensionality = 1;
    calc_arity();
}

constellation_qpsk::~constellation_qpsk() {}

unsigned int constellation_qpsk::decision_maker(const gr_complex* sample)
{
    // Real component determines small bit.
    // Imag component determines big bit.
    return 2 * (imag(*sample) > 0) + (real(*sample) > 0);

    /*
      bool a = real(*sample) > 0;
      bool b = imag(*sample) > 0;
      if(a) {
      if(b)
      return 0x0;
      else
      return 0x1;
      }
      else {
      if(b)
      return 0x2;
      else
      return 0x3;
      }
    */
}


/********************************************************************/


constellation_dqpsk::sptr constellation_dqpsk::make()
{
    return constellation_dqpsk::sptr(new constellation_dqpsk());
}

constellation_dqpsk::constellation_dqpsk()
{
    // This constellation is not gray coded, which allows
    // us to use differential encodings (through diff_encode and
    // diff_decode) on the symbols.
    d_constellation.resize(4);
    d_constellation[0] = gr_complex(+GR_M_SQRT2, +GR_M_SQRT2);
    d_constellation[1] = gr_complex(-GR_M_SQRT2, +GR_M_SQRT2);
    d_constellation[2] = gr_complex(-GR_M_SQRT2, -GR_M_SQRT2);
    d_constellation[3] = gr_complex(+GR_M_SQRT2, -GR_M_SQRT2);

    // Use this mapping to convert to gray code before diff enc.
    d_pre_diff_code.resize(4);
    d_pre_diff_code[0] = 0x0;
    d_pre_diff_code[1] = 0x1;
    d_pre_diff_code[2] = 0x3;
    d_pre_diff_code[3] = 0x2;
    d_apply_pre_diff_code = true;

    d_rotational_symmetry = 4;
    d_dimensionality = 1;
    calc_arity();
}

constellation_dqpsk::~constellation_dqpsk() {}

unsigned int constellation_dqpsk::decision_maker(const gr_complex* sample)
{
    // Slower deicison maker as we can't slice along one axis.
    // Maybe there's a better way to do this, still.

    bool a = real(*sample) > 0;
    bool b = imag(*sample) > 0;
    if (a) {
        if (b)
            return 0x0;
        else
            return 0x3;
    } else {
        if (b)
            return 0x1;
        else
            return 0x2;
    }
}


/********************************************************************/


constellation_8psk::sptr constellation_8psk::make()
{
    return constellation_8psk::sptr(new constellation_8psk());
}

constellation_8psk::constellation_8psk()
{
    float angle = GR_M_PI / 8.0;
    d_constellation.resize(8);
    // Gray-coded
    d_constellation[0] = gr_complex(cos(1 * angle), sin(1 * angle));
    d_constellation[1] = gr_complex(cos(7 * angle), sin(7 * angle));
    d_constellation[2] = gr_complex(cos(15 * angle), sin(15 * angle));
    d_constellation[3] = gr_complex(cos(9 * angle), sin(9 * angle));
    d_constellation[4] = gr_complex(cos(3 * angle), sin(3 * angle));
    d_constellation[5] = gr_complex(cos(5 * angle), sin(5 * angle));
    d_constellation[6] = gr_complex(cos(13 * angle), sin(13 * angle));
    d_constellation[7] = gr_complex(cos(11 * angle), sin(11 * angle));
    d_rotational_symmetry = 8;
    d_dimensionality = 1;
    calc_arity();
}

constellation_8psk::~constellation_8psk() {}

unsigned int constellation_8psk::decision_maker(const gr_complex* sample)
{
    unsigned int ret = 0;

    float re = sample->real();
    float im = sample->imag();

    if (fabsf(re) <= fabsf(im))
        ret = 4;
    if (re <= 0)
        ret |= 1;
    if (im <= 0)
        ret |= 2;

    return ret;
}


/********************************************************************/


constellation_8psk_natural::sptr constellation_8psk_natural::make()
{
    return constellation_8psk_natural::sptr(new constellation_8psk_natural());
}

constellation_8psk_natural::constellation_8psk_natural()
{
    float angle = GR_M_PI / 8.0;
    d_constellation.resize(8);
    // Natural-mapping
    d_constellation[0] = gr_complex(cos(15 * angle), sin(15 * angle));
    d_constellation[1] = gr_complex(cos(1 * angle), sin(1 * angle));
    d_constellation[2] = gr_complex(cos(3 * angle), sin(3 * angle));
    d_constellation[3] = gr_complex(cos(5 * angle), sin(5 * angle));
    d_constellation[4] = gr_complex(cos(7 * angle), sin(7 * angle));
    d_constellation[5] = gr_complex(cos(9 * angle), sin(9 * angle));
    d_constellation[6] = gr_complex(cos(11 * angle), sin(11 * angle));
    d_constellation[7] = gr_complex(cos(13 * angle), sin(13 * angle));
    d_rotational_symmetry = 8;
    d_dimensionality = 1;
    calc_arity();
}

constellation_8psk_natural::~constellation_8psk_natural() {}

unsigned int constellation_8psk_natural::decision_maker(const gr_complex* sample)
{
    unsigned int ret = 0;

    float re = sample->real();
    float im = sample->imag();

    if ((re + im) < 0)
        ret = 4;
    if (fabsf(im) > fabsf(re)) {
        ret |= 2;
        if (re * im < 0)
            ret |= 1;
    }
    if (fabsf(im) < fabsf(re) && re * im > 0)
        ret |= 1;

    return ret;
}


/********************************************************************/


constellation_16qam::sptr constellation_16qam::make()
{
    return constellation_16qam::sptr(new constellation_16qam());
}

constellation_16qam::constellation_16qam()
{
    const float level = sqrt(float(0.1));
    d_constellation.resize(16);
    // The mapping used in 16qam set partition
    d_constellation[0] = gr_complex(1 * level, -1 * level);
    d_constellation[1] = gr_complex(-1 * level, -1 * level);
    d_constellation[2] = gr_complex(3 * level, -3 * level);
    d_constellation[3] = gr_complex(-3 * level, -3 * level);
    d_constellation[4] = gr_complex(-3 * level, -1 * level);
    d_constellation[5] = gr_complex(3 * level, -1 * level);
    d_constellation[6] = gr_complex(-1 * level, -3 * level);
    d_constellation[7] = gr_complex(1 * level, -3 * level);
    d_constellation[8] = gr_complex(-3 * level, 3 * level);
    d_constellation[9] = gr_complex(3 * level, 3 * level);
    d_constellation[10] = gr_complex(-1 * level, 1 * level);
    d_constellation[11] = gr_complex(1 * level, 1 * level);
    d_constellation[12] = gr_complex(1 * level, 3 * level);
    d_constellation[13] = gr_complex(-1 * level, 3 * level);
    d_constellation[14] = gr_complex(3 * level, 1 * level);
    d_constellation[15] = gr_complex(-3 * level, 1 * level);
    d_rotational_symmetry = 4;
    d_dimensionality = 1;
    calc_arity();
}

constellation_16qam::~constellation_16qam() {}

unsigned int constellation_16qam::decision_maker(const gr_complex* sample)
{
    unsigned int ret = 0;
    const float level = sqrt(float(0.1));
    float re = sample->real();
    float im = sample->imag();

    if (im <= 0 && im >= -2 * level && re >= 0 && re <= 2 * level)
        ret = 0;
    else if (im <= 0 && im >= -2 * level && re <= 0 && re >= -2 * level)
        ret = 1;
    else if (im <= -2 * level && re >= 2 * level)
        ret = 2;
    else if (im <= -2 * level && re <= -2 * level)
        ret = 3;
    else if (im <= 0 && im >= -2 * level && re <= -2 * level)
        ret = 4;
    else if (im <= 0 && im >= -2 * level && re >= 2 * level)
        ret = 5;
    else if (im <= -2 * level && re <= 0 && re >= -2 * level)
        ret = 6;
    else if (im <= -2 * level && re >= 0 && re <= 2 * level)
        ret = 7;
    else if (im >= 2 * level && re <= -2 * level)
        ret = 8;
    else if (im >= 2 * level && re >= 2 * level)
        ret = 9;
    else if (im >= 0 && im <= 2 * level && re <= 0 && re >= -2 * level)
        ret = 10;
    else if (im >= 0 && im <= 2 * level && re >= 0 && re <= 2 * level)
        ret = 11;
    else if (im >= 2 * level && re >= 0 && re <= 2 * level)
        ret = 12;
    else if (im >= 2 * level && re <= 0 && re >= -2 * level)
        ret = 13;
    else if (im >= 0 && im <= 2 * level && re >= 2 * level)
        ret = 14;
    else if (im >= 0 && im <= 2 * level && re <= -2 * level)
        ret = 15;

    return ret;
}


} /* namespace digital */
} /* namespace gr */