summaryrefslogtreecommitdiff
path: root/gr-digital/lib/clock_tracking_loop.cc
blob: d74e4b21204f9012856a495acd621aa987ef06ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/* -*- c++ -*- */
/*
 * Copyright (C) 2011,2013,2016-2017 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "clock_tracking_loop.h"
#include <gnuradio/math.h>
#include <stdexcept>

namespace gr {
  namespace digital {

    clock_tracking_loop::clock_tracking_loop(float loop_bw,
                                             float max_period, float min_period,
                                             float nominal_period,
                                             float damping)
      : d_avg_period(nominal_period),
        d_max_avg_period(max_period),
        d_min_avg_period(min_period),
        d_nom_avg_period(nominal_period),
        d_inst_period(nominal_period),
        d_phase(0.0f),
        d_zeta(damping),
        d_omega_n_norm(loop_bw),
        d_alpha(0.0f),
        d_beta(0.0f),
        d_prev_avg_period(nominal_period),
        d_prev_inst_period(nominal_period),
        d_prev_phase(0.0f)
    {
        set_max_avg_period(max_period);
        set_min_avg_period(min_period);
        set_nom_avg_period(nominal_period);

        set_avg_period(d_nom_avg_period);
        set_inst_period(d_nom_avg_period);

        if (d_zeta < 0.0f)
            throw std::out_of_range (
                           "clock_tracking_loop: damping factor must be > 0.0");

        if (d_omega_n_norm < 0.0f)
            throw std::out_of_range (
             "clock_tracking_loop: loop bandwidth must be greater than 0.0");

        update_gains();
    }

    clock_tracking_loop::~clock_tracking_loop()
    {
    }

    void
    clock_tracking_loop::update_gains()
    {
        float omega_n_T, omega_d_T, zeta_omega_n_T, k1, cosx_omega_d_T;
        float alpha, beta;

        omega_n_T = d_omega_n_norm;
        zeta_omega_n_T = d_zeta * omega_n_T;
        k1 = 2.0f * expf(-zeta_omega_n_T);

        if (d_zeta > 1.0f) { // Over-damped (or critically-damped too)

            omega_d_T = omega_n_T * sqrtf(d_zeta * d_zeta - 1.0f);
            cosx_omega_d_T = coshf(omega_d_T);
            // cosh ---------^^^^

        } else if (d_zeta == 1.0f) { // Critically-damped

            omega_d_T = 0.0f;
            cosx_omega_d_T = 1.0f;
            // cosh(omega_d_T) & cos(omega_d_T) are both 1 for omega_d_T == 0

        } else { // Under-damped (or critically-damped too)

            omega_d_T = omega_n_T * sqrtf(1.0 - d_zeta * d_zeta);
            cosx_omega_d_T = cosf(omega_d_T);
            // cos ----------^^^
        }

        alpha = k1 * sinhf(zeta_omega_n_T);
        beta  = 2.0f - (alpha + k1 * cosx_omega_d_T);

        set_alpha(alpha);
        set_beta(beta);
    }

    void
    clock_tracking_loop::advance_loop(float error)
    {
        // So the loop can be reverted one step, if needed.
        d_prev_avg_period = d_avg_period;
        d_prev_inst_period = d_inst_period;
        d_prev_phase = d_phase;

        // Integral arm of PI filter
        d_avg_period = d_avg_period + d_beta * error;
        // Proportional arm of PI filter and final sum of PI filter arms
        d_inst_period = d_avg_period + d_alpha * error;
        // Compute the new, unwrapped clock phase
        d_phase = d_phase + d_inst_period;
    }

    void
    clock_tracking_loop::revert_loop()
    {
        d_avg_period = d_prev_avg_period;
        d_inst_period = d_prev_inst_period;
        d_phase = d_prev_phase;
    }

    void
    clock_tracking_loop::phase_wrap()
    {
        float period = d_avg_period; // One could argue d_inst_period instead
        float limit = period/2.0f;

        while (d_phase > limit)
            d_phase -= period;

        while (d_phase <= -limit)
            d_phase += period;
    }

    void
    clock_tracking_loop::period_limit()
    {
        if (d_avg_period > d_max_avg_period)
            d_avg_period = d_max_avg_period;
        else if (d_avg_period < d_min_avg_period)
            d_avg_period = d_min_avg_period;
    }

    /*******************************************************************
     * SET FUNCTIONS
     *******************************************************************/

    void
    clock_tracking_loop::set_loop_bandwidth(float bw)
    {
        if (bw < 0.0f)
            throw std::out_of_range (
             "clock_tracking_loop: loop bandwidth must be greater than 0.0");

        d_omega_n_norm = bw;
        update_gains();
    }

    void
    clock_tracking_loop::set_damping_factor(float df)
    {
        if (df < 0.0f)
            throw std::out_of_range (
                           "clock_tracking_loop: damping factor must be > 0.0");

        d_zeta = df;
        update_gains();
    }

    void
    clock_tracking_loop::set_alpha(float alpha)
    {
        d_alpha = alpha;
    }

    void
    clock_tracking_loop::set_beta(float beta)
    {
        d_beta = beta;
    }

    void
    clock_tracking_loop::set_avg_period(float period)
    {
        d_avg_period = period;
        d_prev_avg_period = period;
    }

    void
    clock_tracking_loop::set_inst_period(float period)
    {
        d_inst_period = period;
        d_prev_inst_period = period;
    }

    void
    clock_tracking_loop::set_phase(float phase)
    {
        // This previous phase is likely inconsistent with the tracking,
        // but if the caller is setting the phase, the odds of
        // revert_loop() being called are slim.
        d_prev_phase = phase;

        d_phase = phase;
    }

    void
    clock_tracking_loop::set_max_avg_period(float period)
    {
        d_max_avg_period = period;
    }

    void
    clock_tracking_loop::set_min_avg_period(float period)
    {
        d_min_avg_period = period;
    }

    void
    clock_tracking_loop::set_nom_avg_period(float period)
    {
        if (period < d_min_avg_period or
            period > d_max_avg_period   ) {
            d_nom_avg_period = (d_max_avg_period + d_min_avg_period)/2.0f;
        } else {
            d_nom_avg_period = period;
        }
    }

    /*******************************************************************
     * GET FUNCTIONS
     *******************************************************************/

    float
    clock_tracking_loop::get_loop_bandwidth() const
    {
        return d_omega_n_norm;
    }

    float
    clock_tracking_loop::get_damping_factor() const
    {
        return d_zeta;
    }

    float
    clock_tracking_loop::get_alpha() const
    {
        return d_alpha;
    }

    float
    clock_tracking_loop::get_beta() const
    {
        return d_beta;
    }

    float
    clock_tracking_loop::get_avg_period() const
    {
        return d_avg_period;
    }

    float
    clock_tracking_loop::get_inst_period() const
    {
        return d_inst_period;
    }

    float
    clock_tracking_loop::get_phase() const
    {
        return d_phase;
    }

    float
    clock_tracking_loop::get_max_avg_period() const
    {
        return d_max_avg_period;
    }

    float
    clock_tracking_loop::get_min_avg_period() const
    {
        return d_min_avg_period;
    }

    float
    clock_tracking_loop::get_nom_avg_period() const
    {
        return d_nom_avg_period;
    }

  } /* namespace digital */
} /* namespace gr */